Analysis in Theory and Applications DOI: 10.4208/ata.2018.v34.n1.4
Anal. Theory Appl., Vol. 34, No. 1 (2018), pp. 45-56

Commutators of Singular Integral Operators
Related to Magnetic Schrodinger Operators

Wanging Ma and Yu Liu*

School of Mathematics and Physics, University of Science and Technology Beijing,
Beijing 100083, China

Received 7 December 2016; Accepted (in revised version) 7 September 2017

Abstract. Let A:=—(V—id)-(V—id)+V be a magnetic Schrodinger operator on L2(IR"),

n>2, where d:= (ay,---,an) € LfOC(IR”,IR”) and 0<V e Llloc(]R"). In this paper, we
show that for a function b in Lipschitz space Lip, (R") with « € (0,1), the commutator
[b,V1/2A~1/2] is bounded from L?(R") to L1(R"), where p,g€ (1,2] and 1/p—1/g=
a/n.
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1 Introduction

Let b be a locally integrable function on R” and T be a linear operator. For a suitable

function f, the commutator is defined by [b,T|f =bT(f)—T(bf). It is well known that

Coifman, Rochberg and Weiss [3] proved that [b,T] is a bounded operator on L? for 1<

p < oo if and only if b € BMO(IR"), when T is a Calderén-Zygmund operator. Janson [4]

proved that the commutator [b,T] is bounded from L?(IR") into L1(R"), 1< p < g < oo, if
1

and only if b € Lip, (R") with a = (% — )1, where the Lipschitz space Lip, (R") consists

of the functions f satisfying
x J—
flup.= sup LRSI

= <00, O<a<l1.
x,yeR" x#y ’x_y|

Furthermore, Lu, Wu and Yang studied the boundedness properties of the commutator
[b,T] on the classical Hardy spaces when b € Lip, (R") in [12].

In recent years, more scholars pay attention to the boundedness of the commutators
[b, T] when T are the singular integral operators associated with the Schrodinger operator
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(cf. [1,6-11]). When the potential V satisfies the weaker condition, the operator T may
not be a Calderén-Zygmund operator. In this paper we focus on the boundedness of
the commutators [b,T| when T are the singular integral operators associated with the
magnetic Schrédinger operator based on the research in [5] and [16].
Consider a real vector potential 7=(ay,- -4, ) and an electric potential V. In this paper,
we assume that
areL? (R"), Vk=1,---,n,

loc

0<VeLl . (R").

Let Ly =0d/0xx—ia,. We adopt the same notation as in [5] and define the sesquilinear form
Qby

Q(f,g):zk_ZlwakagdH/W V fgdx,
with domain
D(Q):={f € L*(R"):Lyf € L% (R"), k€1,---,n,VVfe L2(R")}.

It is known that Q is closed and symmetric. So the magnetic Schrodinger operator A is a
self-adjoint operator associated with Q.
The domain of A is given by

D(A)= {feD(Q), 3g € L*(R") such that Q(f,¢) Z/Rngq‘)dx, preD(Q)},

and A is formally given by the following expression
n
Af=Y LiLf+Vf
k=1

or A=—(V—id)-(V—id)+V, where L} is the adjoint operator of L;. For k=1,---,n, the op-
erators LyA~1/2 and V1/2A~1/2 are called the Riesz transforms associated with A. More-
over, it was proved in [14] that for each k =1,---,n, the Riesz transform LyA=Y/2 and
V1/2A-1/2 are bounded on L (R") for all 1< p <2. Namely, there exists a constant C >0
such that

n
IVY2AT2 £l ey + 3 LA™ fll ey <Clflprny, 1<p<2.
k=1

Furthermore, in [5] Duong and Yan proved that the commutators [b,V'/2A~1/2] and
[b,LkAfl/ 2] are bounded on L? for 1 < p <2, that is, there exists a constant C > 0 such
that

116,V 2A 2] £ oy + 110, LA™ 2] fll ooy < C I f oy, Where bEBMO(R?).
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See also Shen’s result in [15] for LP-boundedness of singular integral operators related
to the magnetic Schrodinger operator, which is different from the operators Ly A~!/2 and
V1/24-1/2, Recently, D. Y. Yang in [16] has proven that for k€ {1,---,n}, the commuta-
tors [b,LyA~'/?] are bounded from LP(R") to L(R") with 1/p—1/q =a/n, where b €
Lip,(R"). Inspired by [5] and [16], the purpose of this paper is to study the boundedness
of commutator [b,V!/2A~1/2] with a function b in the Lipschitz space Lip, (R"),a € (0,1).

We are now in a position to give our main result, which will be proven in the next
section.

Theorem 1.1. Let a € (0,1), p,q< (1,2) with1/p—1/q=a/n. Assume that b€ Lip,(R"). Then
the commutator [b,V'/2 A=1/2] is bounded from L (R") to L1(IR").

2 Proof of Theorem 1.1

In this section, we adopt the method in [16] to prove Theorem 1.1. Firstly, we begin with
the sharp maximal function M* established in [13]. For any f € LP(R"),p € [1,00), the
sharp maximal function M* associated with the semigroup {¢~'4} is given by

MA@ =sup s [ 1F)—e 5 )y,
x€B | |
where rp is the radius of the ball B and tg:= rZB.

Lemma 2.1. Let p € (1,00). There exists a positive constant C,, such that for all f € LP(R"),
£ e vy < CpllME () 1o (re)-

Proof of Theorem 1.1. Now, we prove the boundedness of the commutator [b,V1/2A~1/2]
in Theorem 1.1. Let (V1/2A~1/2)* = A=1/2y1/2 denote the adjoint operator of V1/2A~1/2,
By duality, for given p,q € (1,2] with 1/p—1/g=a/n, it suffices to prove [b,A~1/2V1/2] is

bounded from L7 (R") to LY (R™). To obtain the conclusion, it suffices to prove that there
exists a constant C such that for all f € CZ°(R") and xeR",

M ([6, A 2V2) ) (x) < CJlbllip, (re) [Maa (AT 2VI2F) (0) + Mo (f) (1)), 21)

where for r € [2,n/a) and any suitable function f,

Mr,,x(f)(x)::sup|B| a/n ’B’/’f 1/r (2.2)

X€EB

In fact, assume that (2.1) holds. For b € Lip,(R") and each N € N, define by :=
min{N, |b[}sgn(b). Then we conclude that by € L*(R") and |[bn |Lip, (rr) < Cl[bl|Lip, (r7)/
where C is a constant. Moreover, it has been proved in Theorem 1.1 of [14] that V1/24~1/2
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is bounded on LP(IR") for all 1< p<2.So A~1/2V1/2 is bounded on L*(R") for s € [2,00),
then we see that for all f € C°(R"),[by, A~Y2V1V/2](f) € L*(R") and

11w, A2V 21 ()l ) S NIl (e -

Recall that My, is bounded from L$(R") to L!(R") with s€ (2,n/a) and 1/s—1/t=
/1, see Chanillo [2]. By this fact together with 1/q'—1/p' =a/n, Lemma 2.1 and (2.1),
we have that for all f € C°(R"),

~1/2y/1/2
H[bN/A V ](f)HLpl(]Rn)
<ClonllLip, (v | M2, (AT 2V2 ) (x)) + M () (2)]

SCHbHLlpa(]R”) HfHLq/ (IRH)'

0 o)

A standard argument together with the Fatou lemma then implies that for all f L7 (R"),

b, A"V2V12)(F) €LY (R")

and

H [b’Ail/ZVl/z] (f) HL‘”, (]Rn) S CHbHLlpa(]Rn) HfHLq, (]Rn)’

which imply Theorem 1.1.

Now, we prove (2.1) is valid. For any f € Le (R"), and x € R", choose a ball B:=
B(xp,78) ={y€R":|xp—y| <rp} which contains x. Set T:= A~1/2V1/2 Let f; = fxp and
f2:=f— f1. Then we have the following decompositions:

[b,T]f=(b—bg)Tf-T((b—bs)f1)—T((b—bp)f2)

and

e WA (b, T|f) =e 4 ((b—bp)Tf) —e " T((b—bp)f1) —e~ "4 T((b—bp)f2)

for any function f and ball B, where

fB::E/Bf(Z)dZ' tp=r%.
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Therefore,

m = 1= Ty
SE [ 10=bo)Tf)ldy-+og7 [T (=0 1) )y
457 e (O=b) TN g+ o7 [ T((0=bs) ) )y

+E/B|(I—etBA)T((b—bB)fZ)(y)’dy
=TT+ VA4V,

()b =[ ) ~ 57 [, p(2ez| = | [ 0w

b(y)~b(2)
§—/ e P TRE)
B Js Y T

1 o
<11 o 7 21"z

<CIBI™||bllip, (re)- (2.3)

Firstly, we get

For I, by the Holder inequality and (2.3), we have
1
=L / b—bg)TF(y)|d

1 2 2
S(W/B’b( bB’ dy |B|/|Tf ’ dy>
<C||bllLip, rr) M2, (Tf)(x)
=C|[b|ip, (rr)Ma,a(A™2VI2£) (x).

For II, using the Holder inequality again and the L?(IR")-boundedness of T, if follows
that

1
=g [ IT(6—bs) ) (9)ldy
<(mg7 f T )00 Pay)

<c (g7 [, o0 bl )

1 1 1/2
< ) —_ [ — 2
<Clbli, e rg=a7e (757 f F )

<C|1b[|Lip, Ry M2,u () (x).
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tA

To estimate III, it follows from [5] that the kernel p;(y,z) of e~ ' satisfies that for all

t>0and almost all y,z€R",

]2
pily,2) < (4t) “dexp( - v 4f' ). (2.4)

Let g:= (b—bp)Tf. By (2.4), the formula equation of ¢~ < C|x| N and the conclusion of
I, for any y € B,

eI < [ Ipnw2)g@)dz< [ 1o (12)l1g() a2

~ ly—z?
< 2 —
< Jo b ep (=g )Is(z)ldz

-1 ly—z
_ 2 _
o A G S OIS

_n —z|?
e (120 g(e)laz

(o]
=0 /zktlB/2< |y—z|<2k+1tL/2

< TPl —_—

_C _|B| A|g( ’dz+ Z(:) t2 2kt1/2<\y Z|<2k+1t1/2 (|y Z’2> |g(Z)’dz]
tN

SC L|B| / 3(2) (zktl/Z)ZN /|y_z<2k+1%/2 ’8(2)|d2}

SC_HbHLipa(IR”)MZ,a(A 1/le/zf)(x)

(o] 1 B
+ L o [, (e Maa (4720126 )

<Cl|bllLip, (rey M (A 2V2f) (),
where N >n/2. So for 111, it is easy for us to get
1
=g 17 (0= bs)T) () dy

1 —tgA

- d
,Blﬂﬂe 8(y)ldy

<ClIblip, (rry M2 (A™H2VI2£) (x).

For 1V, for all locally integrable functions f and x€R", let M( f)(x) be the Hardy-Littlewood
maximal function as follow:

M(P@):=suprzr [ 1F(w)ldy.

X€B
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By (2.4), the conclusion of II, the Holder inequality and the L?(IR")-boundedness of T and
M, we conclude that

v:ﬁ [ e AT (b= ba) ) () dy
gcfﬂ [ MIT(o=bw) )] (w)dy
sqﬁ [ AMIT((0=ba) 1)) ) P2
_c% [ IT((b=bs) 1) () Pty 2

|B|/ | )’2dy]1/2
<Clblig M),

In order to estimate the term V, we need the following Proposition 2.1 and Lemma 2.2.

Proposition 2.1 (cf. Proposition 3.1 in [5]). Fix s>0. Let A=—(V —id)-(V —id)+V be the
magnetic Schrodinger operator. Then for any m € N, there exist positive constants C and
c such that

V1/2 : 2 = L , 2 d <C —-n 211’1 ¢ n—2 = -
/2m\/2<x—y|<2m+1\/§(| ps(x y)’ +k:Z:1’ sz(x y)| > =8 ( \/_) eXp( CcS >

for all s>0 and y €IR".

Lemma 2.2. For a real vector potential i=(ay,--,a,) and an electric potential V, we as-
sume that ax € L2 (R",R"), Vk=1,---,n,0<V € L] (R"). Then the composite operator (I—
e M ATY2V12 't >0, which is the adjomt operator of V12 A=V2(] —et4), has an associated
kernel K; (y,z) which satisfies

[ee]

Z 2111\/_ n/2</
— zm\/?§|y_z‘<2m+l\/¥

1/2
]K;‘(y,z)|2dy> <C<o, z€R".  (25)

Proof of Lemma 2.2. Firstly, we need to compute the K (y,z) of (I—e~*4)A~1/2V1/2_ Ob-

serve that
1 o0 ds
A—1/2:_/ e sA %S
VT o Vs
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then we have
(I_e—tA)A—l/Zvl/Z

:L/ p—sAy1/2.95 ds / ~(s+HAy1/2 95 ds
\/7 NERVL: Vs
/ —sayt2ds 1 1% _sayyp 4
\/,

Vs Vi Vit
/ —sAy/1/2 ds 1 —sAV1/2 X(s>t) ds
VG Vs Vrho Vs—t

_ )\ ,—sAy,1/2
= —— Vi 4ds.
\/%A \/g \/S—t)e s

Therefore,

Ki (v,2 |—‘\/—/ \/—)>Ps(y, z)VV/24s|.

By Minkowski’s inequality, we have

’K* 2d 1/2
</2W<|y z\<2m+1\f t(v2)] y)

/2
1/22
\/—/ ‘ S /—S_ (/2"’\/_<y z|<2m+1\/_|Ps(% )V ’ dy) ds.

Together with Proposition 2.1, this gives

2 amansie( |

zm\/—<|y_z‘<2m+l\/_

K (y,2) Pdy)

1/2
<cy om(m ”/2/ / V22 d
Z Vi) (\/ — (2N<y oz i P @AV y) ds
<C sz zm\/’ n/2/ s>t n/2(2m\/2)(n2)/2exp<_22mt)ds
\[ \/ST 2cs
2m
m X(s>t) g n/2(pm _2 t
_CZZ /‘ \/ST (2mV)"- exp( 2C5>ds
2m
m X(s>t) fn/2 m _2 t
+CZ2/ i \/_ (2"VE)"~ exp( 2C5>ds
=1 +115.

We first estimate the term I;. Note that xs~; =0 for s <t. This, together with the fact
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that wPe“ < C for any w,f >0, shows

2m
Il—CZ2’”/‘\[ Azt sT"2(2m\/t)" exp(—%)ds

‘/s_
2%m¢
_ m —(n+1)/2om n—1 s °
CZZ /|s (2"/t) exp( 5os >ds
22mt s \ ‘T +lds
< —
CZ / 22mt) s

<C Zz*mrl/ ds < C' < oo,
m=0 0

Consider the term II;. Oberve that, for s >, then x> =1. A direct calculation shows that

1 (s>t)
v ;_Mrg?kffjm:wa
1 t
T sVt o +\/§ sv/s—t++/s(s—t)
t
St

Substituting the above into the term II;, we obtain

lec22m/ NG \/5—>_t 52 (M /Fy exp(—%)ds
<c22m/t ;_t /2 fp)n- exp(—%)ds
ey [ () T en(- 5%

ey [Tt () Ten(- )%
=11y 1 +11 5.

Because that t <s <2t, so we can get

22mt 22m ¢

(?)%gzm(n—l), exp(—E>§exp(—Z), S\_ﬁ<t—1/2'
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Therefore,

IIll—CZZ’”/ \/\;57(22mt>n2_lexp( 222;”;)515

2t =172 92m

<C22m \/? (”_1)exp<—z)ds

2
mn —1/2
<C§ 2 exp( / \/ST
2m

<C ZZ’””exp(——) < (' <o

Finally, we estimate the term II; ,. Since s >2t, we have that /s —t > \/s/2. Hence,

2 n—l 2m d
ma=e 2 [T (50) Tew (5T
ey [[H) Ter (-5
m=0
eEr [ )
m=0
gcgz—%/:(gfi_sgc/@o

Combining the estimates of I, II; 1, II; » we obtain (2.5). Hence, the proof of (2.5) is com-
plete. Now, we will start the proof of Theorem 1.1.

Proof of Theorem 1.1. Let us consider the term V. We have that

1/2 A =1/2(7 _ ,—tA\Y* _ (T_ ,—tA\ A—1/27/1/2
(VAT 2 (I—e ")) =(I—e")A Ve,

So the kernel K} (y,z) of the operator (V1/2A=12([—e=t4))* = (I—e~*) A=1/2V1/2 gatis-
fies the following estimate

) 1/2
2@ 2( Ki(y,2)[2dz)  <C<w,
Y2 @V ([ KR Pdz) T <Ccoo

where C is a constant independent of ¢ and y.
Finally, from the fact that |y—z|>rg for any y € B,z¢2B, the conclusion of (2.3), Lemma
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2.2 and the Holder inequality, the term V is dominated as follows,

|B|/’ e~ )T ((b—bs) f2)(y)ldy
<31 o i 2 02) ) 2ty
SE/BMZO /z%gyz|<2mﬂ,B’K?B (v,2)]1(b(z)~bg) £ (2)]dz) dy
1 . m o/ n X
_CE/BmZ_:o’2 HB’ / HbHLip“(Rn)(/zmrs<y—z|<2m+1rB’KtB(y'z)FdZ)

([ lrer) Cay

<Csup2~ m||bHLlp Ry Moo (f) (%)

m=0
<Cl|b|[Lip, (rr) M2« (f) (x)-

Combining the estimates from I to V, we see that (2.1) holds, which completes the proof
of Theorem 1.1. O

1/2
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