Journal of Computational Mathematics http://www.global-sci.org/jcm
Vol.37, No.1, 2019, 130-150. doi:10.4208/jcm.1711-m2014-0239

UNIFORMLY CONVERGENT NONCONFORMING
TETRAHEDRAL ELEMENT FOR DARCY-STOKES PROBLEM"

Lina Dong
Department of Mathematics, Henan Finance University, Zhengzhou, 450046, China
Email: din3515@163.com
Shaochun Chen
Department of Mathematics, Zhengzhou University, Zhengzhou, 450001, China
Email: shchchen@zzu.edu.cn

Abstract

In this paper, we construct a tetrahedral element named DST20 for the three dimen-
sional Darcy-Stokes problem, which reduces the degrees of velocity in [30]. The finite ele-
ment space V', for velocity is H(div)-conforming, i.e., the normal component of a function
in V', is continuous across the element boundaries, meanwhile the tangential component
of a function in V' is average continuous across the element boundaries, hence V7, is
H'-average conforming. We prove that this element is uniformly convergent with respect
to the perturbation constant e for the Darcy-Stokes problem. At the same time, we give a
discrete de Rham complex corresponding to DST20 element.

Mathematics subject classification: 65N15, 65N30.
Key words: Darcy-Stokes problem, Mixed finite elements, Tetrahedral element, Uniformly
convergent.

1. Introduction

In this paper, we consider the mixed finite element methods for the following singular
perturbation problem of three dimension [12,30]:

(I —e2A)u —gradp = f in Q,
dive =0 in Q, (1.1)
u=0 on 0f).

Here Q C R? is a bounded, convex and connected polygonal domain with boundary 99, ¢ € (0, 1]
is a parameter, A is the standard Laplace operator. The vector field u and the scalar field p
are corresponding to velocity and pressure in flow problems, respectively.

The problem (1.1) admits a unique solution and p is determined only up to addition of a
constant [22]. When ¢ is not too small, this problem is simply a standard Stokes problem,
but with an additional non-harmful lower order term. If f = 0 and ¢ approaches zero, the
problem (1.1) tends to a mixed formulation of the Poisson equation with homogeneous Neumann
boundary conditions i.e. a Darcy flow. When ¢ = 0, the first equation of (1.1) has the form
of Darcy’s law for flow in a homogeneous porous medium. Generalizations of the system (1.1)
have been proposed in various physical models, see, e.g., [14,15,17,21,23,24, 31, 33].
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In order to make the discrete problem using mixed finite element method for (1.1) well posed,
one has to be careful to choose the velocity/pressure finite element spaces. One of the usual
methods( [6] etc.) chooses nonconforming Crouzeix-Raviart elements [13] that are convergent
for Stokes problem, and we also know that Raviart-Thomas elements that are convergent for the
mixed two order problem [28], are not uniformly convergent with respect to the perturbation
constant €. Several methods are presented to construct uniformly convergent elements for
(1.1). The first method uses H'-conforming elements for velocity but on the special meshes,
such as [3,27,29,32,34]. The second method is stabilized method based on different approaches,
such as [4,8,9,18-20,31]. The third method uses H (div, Q)-conforming but H*-nonconforming
elements [10,16,22,35].

In three dimension case, the bubble function method proposed in [11] for 3D fourth-order
elliptic problem can also be employed in the construction of uniformly convergent finite elements
for the Darcy-Stokes problem. Tai & Wither, 2006, [30] presented a H (div)-conforming and
uniformly convergent tetrahedron element with 24 degrees of freedom for velocity. In this paper,
we present a H (div)-conforming and uniformly convergent tetrahedron element with 20 degrees
of freedom for velocity. We name the element DSC20 element. Another object of this paper is
to construct the discrete de Rham complex corresponding to DSC20 element. Discrete de Rham
complex are fundamental tools in the construction of stable elements for some finite element
methods [1,2]. Well-known examples of such finite element spaces are described in [25,26]. In
three space dimensions the Sobolev space version of the de Rham complex can be written in
the form

curl

RS B2 22 H(curl) <2 H(div) 2% 12 — 0.
A corresponding discrete de Rham complex is the form

R-S 5, 2% w, 2 v, % Q, — 0,
where Sy, Wp, Vi and Qp, are conforming or nonconforming finite element spaces of H? (Q),
H(curl,Q), H(div,Q) and L?(Q), respectively.

In our discrete de Rham complex, S, is H'-conforming and HZ2-average conforming, it
is convergent for the fourth order elliptic problem and uniformly convergent for the fourth
order singular perturbation problem; W, is H(curl)-conforming and H Laverage conforming,
V), presented in this paper is H (div)-conforming and H!-average conforming, it is uniformly
convergent for Darcy-Stokes singular perturbation problem.

The rest of this paper is organized as follows. In section 2, we introduce the notation and
some well-known results of the Darcy-Stokes problem presented in [22]. The construction of
DSC20 element is given in section 3. In section 4, we discuss the uniform convergence and the
uniform error estimates of the discrete Darcy-Stokes problem. The last section, we construct a
discrete de Rham complex corresponding to DST20 elements.

2. Preliminaries

Let Q C R? be a convex and bounded polygon, H™(Q) and H{*(£2) be the usual Sobolev
spaces with norm || - ||, , and semi-norm |- | respectively, H~™(Q) be the dual space of
HJ'(Q), L3(2) be the space of L?(Q) functions with mean value zero. Bold-faces are used to
denote the vector functions.

The differential operators are defined as the following:
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If q is scalar function, then

oo — (01 9a 9a\"
g 1= 6$1 ’ 6302’ 6303 '

The gradient of a vector field v is denoted by Dw, it is a 3 X 3 matrix with elements

o 8%—

- Y
6xj

(D’U)Z"j ]. S Z,] § 3

ou ou ou
If w = (ui,ug,u3) is a vector function, then divu = 1,22 —3,
81'1 8932 81'3

Q.
Q =y

)

0
curlu=curlNu=| — — —
81‘1 8932 8933

u uz  ug

The notation P(7T") means the space of polynomials of degree k defined on T', and P}*(T)
denotes the corresponding space of polynomial vector fields. These definitions lead to the
following Green’s formula:

7/ Avu-vdr = / Du: Dvdx, Yuc H*(Q), Yve H)Q).
Q Q
In addition to the above spaces, we will also use the following spaces:
H (div,Q) = {'u € L*(Q);dive € LQ(Q)}, with [[v]|3,.0 = [[v][5 o + [[dive|[ o,

H(div, Q) = {'v € H(div,Q);v-n =0, on 89}.

A weak formulation of problem (1.1) is given: find (u, p) € H{(Q) x LZ(Q) such that

where a.(u,v) = (u, v) +?(Du, Dv) and (o, 8) = [, af dx.
The reduced system (e = 0) corresponding to (1.1) is
u® —gradp’ = f, in Q,
divu® = 0, in €, (2.2)

u’-n=0, on 0f).

This system has a weak formulation given by (2.1) with € = 0, but the solution space Hp ()
replaced by Hy(div, Q). The energy norm ||| - ||| is defined by

l0lll2 = [[9][5 o + lldivel[§ o + €[ Do|[§ o (2.3)
Considering

Z = {'u € Hy(Q); (¢,dive) =0, Vq € LS(Q)} = {'u € Hy(Q); dive = 0},
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for all v € Z, we get
a:(v,v) = (v,v) +*(Dv, Dv) = |||v]||2.

Due to Lemma 11.2.3 of [1], Vg € L3(Q), vy € Hy(Q), diveg = ¢, ||vol|1 < ¢||q]o, and

o/l < [[lvllls < [lvll, Vo e Hg(),

q,divy q, divuy q,q 1
sup ( ) 5 | )5 (@9) _ Liiallo,
veri) vl o[l — cllgllo ¢

so (2.1) has one and only one solution.
Lemma 2.1. ([30]) There exists constant ¢ independent of € and f, such that

[l + 11p°l2 < el (2.4)

Lemma 2.2. ([30]) Assume that Q is convex and f € H'(QY). There exists a constant ¢ > 0,
independent of € and f, such that
1 3
&2 ||ufly + 2 ||ulls < [, (2.5)
1
[lw—llo + [lp — p°ll < ez |Iflr- (2.6)

3. Construction of the Element DSC20

Let the reference element be 7' = {; 2; > 0,1 <i<3,0<x+x2+ 23 < 1}, whose
vertices are a1(1,0,0), a2(0,1,0), as(0,0,1), a4(0,0,0), respectively; let the opposite face be
denoted f;, 1 < i <4, n; is a unit normal vector on f;.

as

[=33
4

a2

Fig. 3.1. a reference element.
The shape function space of the velocity is defined by

V(T) = P}(T) & curl(bP;?), (3.1)
Py = {ve PP dive =0},

where b = AMAA3AL A = 2,1 <i <3, 4 =1—21 — Tg — I3, ]31 is homogeneous polynomial
of Pl.
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Lemma 3.1. V(1)) has the following properties:

dim V(T") = 20,
div V(T') = Py, (3.4)

curl(bP3) - | =0, 1<i<4. 3.5
1 fi

Proof. (1) dim V(T') = dimP}? +dimP;3 = 4x3—3x3—1 = 20. (2) Because of diveurl = 0,
(3.4) is concluded.
(3) In fact, we obtain

curl(hd) - |, =0, 1<i<4, Voe C'(T). (3.6)

Define ¥ = (v1,v2,v3). Then it holds that

. A(bvs)  A(bvy) A(bvy)  A(bvs) Albvy)  A(bvy)\
1(b9) = - - - 3.7
curl(b?) ( 0%, 03 ' O0%; 08 0i1 0z )’ (37)
on fi, #1 =0, iy, = (1,0,0),
curl(bp) - 7| & (a(bf’3) - a(bf’Q)) 0,
#1=0 6302 6303 21=0
on fa, &5 =0, fix = (0,1,0),
L @.7) (0(bvy) a(iw3))
1(b) - = - =0,
curl(bd) - np - ( s 90 )]
on fs, &5 =0, 71z = (0,0,1),
curl(hd) - 2y (3.7) (3(b})2) B 3(1{01)) o,
#3=0 6$1 6302 #3=0
on fy, 1 — &) —dy— g =0, n —i(1 1,1)
4, 1 2 3 — Y, T4 — \/§ s Ly )
o @ [(O(bus)  O(bus) O(bva)  A(bus) O(bvy)  A(buy)
V3eurl(bd) - fu 5, = [< 9is  om )\ om 0w ) T\ o 0w )|y
d(bvs)  d(bvs) Ovs  Ovz\: . . A
A7) UAUR8) — == 23} — 2) Mg - =\
( O AR 9ma 9wy )0 Erds = E2da)havs B pidafy, o =0
Using a similar method, we have
A(buy)  A(bvy)
- = poA
<6§cl 9w )|;, thimo =0
8(?)’1)1) 8(?)’()1)
(8533 T 0w )| Pty =0,

where p1, p2, p3 are polynomial. So (3.6) is complete. O
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The degrees of freedom are taken as

/@-ﬁpdg, Vpe Pi(f), 1<i<A4, (3.8a)

i

/@/\hdé, 1<i<d (3.8b)

i

Lemma 3.2. An element v € V(T) is uniquely determined by the degrees of freedom (3.8).

Proof. Because of (3.8) and (3.3), it is enough to show that if # € V(T') and all the degrees
of freedom of v are zero, the © = 0. To this end, assume that

[@~ﬁpd§:0, Vpe Pi(f), 1<i<A4, (3.9a)
/@/\hdézO, 1<i<4 (3.9b)
fi

The definition of V(T') and (3.5) imply - h‘f € Py(f;) and (3.9a). There holds

v-n

;=0 1<i<d (3.10)
It follows from (3.4) that

. (3.10)

1 1
divo = —A/divi)dfc: 7/ v-ndz 0. (3.11)
|T| J7 T Jor

Consequently,
veHE {f)eH(div,T); dive = 0, v.n|af:o}. (3.12)
Because of (3.12) and Theorem 3.6 of [7], there exists ¢ € H(curl, T), such that
¥ = curly, (3.13)

P AR, =0, divg =0, /E,Tga~ﬁd§:0. (3.14)

From the definition of V(T'), there exists ¢ € P3(T) @ bP;3. Assume ¢ = w + b, w €
P3(T),%p € Py3, o A n|f_ =wA n|f_7 1 <4 <4. Assume w = (w1, wy, ws), and for 1 <¢ < 3.

. . - 2 .2 2 PN PN PN
Wi = Qi + Q4 X1 + QG T2 + QT3 + Q4, T] + Qi 25 + Qg X3 + 4, X1T2 + Qi T1X3 + Qg T2X3-

On fi, & =0, iy = (1,0,0),

Y
wA h‘fl =| w; w2 ws = (0, ws, —w2)|i1=0 =0,
1 0 0

A
which leads to
Ay = Oy = Qg = Qg = Oljg = Qg = 0, 1= 2, 3. (315)
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On fa, @ =0, 71y = (0,1,0),

i j k
""/\’h‘fl = | w1 w2 w3 :(U}3,0,7U}1)|i‘2=0:0,
0 1 0 |.
f2
which gives
Oy =y = Qg = 0y, = Qg = o =0,  1=1,3.
ODf3,I3—0 n3 (001)
i ]k
w A ’h‘fj =] w1 w2 wWs = (U}Qa —wy, 0)|§;3:0 = 07
0 0 1 1.
I3
which leads to
0%:041-1:ah:am:ais:ai?:O, i:1,2.

From (3.15)-(3.17), we obtain
wy = afels, wo = fi1d3, wz=YT12,

where «, 8,7 are constants. On f4, 1—21 — 29 —23=0, g = %(1, 1,1),

P 7k
V3w A = | wn we wy | = (w2 —wsws —wi,wy —ws)| g, =0,
0 O 1

fa
W2 — W3 = le-fiﬁ — ’y.ﬁljg = Bil(l — jl — .fg) — ’y.ﬁlfg 0.

Then 8=~ =0,

w3 — w1 = Y18y — adodiy = yi1de — adia(1 — &1 — 32) =0,

so a = = 0. Consequently w = 0. Then ¢ = btp,vp € P?*. Define ¥ = (11,12, ¥3),
Vi = P &1 + Piy&2 + Pig 2z, 1 <1< 3.
cur14p|f = curl(by)) |f

< (bis)  Obpa) O(bepy)  O(baps) O(bebs) 8(61/)1))‘
f

0o 0503 ’ 8@3 89?:1 ’ 0501 0o

ob ob
= (8—:%2% ¢27 aA ¢ ¢37 aA ¢2 - 8—:%2%)‘)@1_’

A A ,
=(q1,92,93) = Q, 1<i<4.

Since b = T1&223(1 — &1 — &2 — &3), we have

b oyt — s 2 — ) =
= ToZ3(1l — &1 — T2 — T3) — T1T2T3,
iy 223 1 2 3 12223
b
=2123(1 — 21 — To — T3) — T12223,
97, ( 1 2 — 3) 12223
b

T18o(1 — T — Zo — &3) — B122T3.

021

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(3.21a)
(3.21b)

(3.21¢)
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For (3.9b), we first note

QA nds (33”/ curlcp/\fzd§=/ PARdE=0, 1<i<4. (3.22)
f7, (2 i
Its is known that
Coaa 1121120
X N = o = 3.23
JAA K= A = gl (3:23)
On fi, #1 =0, iy = (1,0,0),
i 7k
Qradsi= [ o w w| d= [ Ol
fl 1 1 0 0 f 1

(3.20) A A
= /( ¢2 7 7w38m1)‘@1:0ds

= / (0, Ao Asha(Bay A2 + B2, A3), Ao Az Aa (B3, Ao + Bs, A3)) d&

1

(328 _ |f1|( 0, B2, + B2s, B3, + P35) = 0,

180
which gives
B2 + P2y =0,  Ps, + B3, =0. (3.24)
On fa, @ =0, 71y = (0,1,0),
i j Ok
QAnds= / @G a4 dS—/( a3, 0,q1)| ;. _,d3
12 210 1 0 2

= |1‘22(|)(512+513,0 B3, + P3,) =0,
which yields
Bi, + b1, =0, B3, + B3, =0. (3.25)
On fs, #3 =0, 7y = (0,0, 1),
i 7k
Qnadsi= [ o @ a| &= [ @00, _ds
fs sl 0 1 0 5

(3.21) ob ob .
2 P 20y d
/f3 (1/)1 8@371/)2 a£3 ’0)|12:0 S
= / (Mo Aa(Br, M+ Brada), A Ao A (Ba, Ai + B, M), 0) ds
f3

= !I_f;g (ﬂh + 612aﬂ21 + 6227 ) - 07
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which yields

Bi, + B, =0,  Pa, + P2, = 0. (3.26)
On fy, 1 — &1 — 30— &3 =0, fag = %(1,1,1),
i j ok
V3 [ Q/\ﬁdé:/ @ @2 g3 d§:/(Q2*Q3,Q3*Q1,Q1*Q2)d§
fa 4| 1 1 1 f4 1
. / (A A2 As (=201 + o + ¥3), Ao ds (1 — 2002 + 1bs), A Ao As (¢ + o — 243)) d
-0, ’
Hence we have
—2(B1, + Br, + B1y) + (B2, + B2y + Bay) + (B3, + B3, + B3,) =0, (3.27)
= 2(B2y + B2, + B2g) + (B1, + B, + By) + (B3, + B3, + B3,) = 0. (3.28)
Tts follows from the definition of (3.2), that
B1, + B2, + B3, = 0. (3.29)

From the above (3.24)—(3.29), it yields that

Aﬁ =0,
where A is 9 x 9 matrix,
1 0 1 0 0 0 0 0 O
1 1 0 0 0 0 0 0 O
0 0 0 0 1 1 0 0 0
0 0 0 1 1 0 0 0 O
A= 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 0 1
-2 -2 =2 1 1 1 1 1 1
1 1 1 -2 -2 -2 1 1 1
1 0 0 0 1 0 0 0 1
It is easy to show that det(A4) = 9. Then
Bi; =0, 1<4,j<3. (3.30)
From (3.19), % = 0, ¢ = by = 0, and from (3.13), v = 0 is deduced. O

Remark 3.1. Firstly, from (3.10), we know that the finite element space of DST20 is conform-
ing in H(div,). Secondly, in [30], authors presented a tetrahedral element for Darcy-Stokes
problem whose convergent rate is the same as ours, but the dimension of V (T') of their element
is 24. So our element is simplified form of [30]. On the other hand, our proof for unique solv-
ability of V(T) by the degrees of freedom is different from theirs. Thirdly, the above element
has the same degrees of freedom as the element in [30], but it has different shape function space,
ours is simple and has the explicit expression.
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The interpolation operator IT: H' N Hé((i;') — V(T is defined via

/(fi)—ﬁfb)~ﬁpd§, Vpe Pi(fi), 1<i<A4, (3.31a)

/ (b [0) A fds, 1<i<Ad, (3.31D)

Iy : H' N H(div) — V(T) is defined by

/ (v—TIlpv) - npds, Vpe Pi(f;), 1<i<A4, (3.32a)

/ (v—Trv) Ands, 1<i<A4. (3.32b)
Define ITj, : H' N Hy(div) — Vi, p|r = I, and Vi |r = V(T),VT € T..
Given the shape function space of the pressure of DST20

Q(T) = Py(T). (3.33)

The degrees of freedom are taken as

[ ada. (3.34)

T

The corresponding interpolation operator also being L2-projection on Q(T) is Py : L(T) —

Q(T) satistying,
/(é — P;g)ds = 0. (3.35)

7
On the general element 7', we have

lla = Pralljr S0 lar, 0<j<I<1. (3.36)

4. Uniformly Convergent of Element DSC20

4.1. Uniformly convergence of the discrete Darcy-Stokes system

Now we consider the finite element method for (2.1). Let 7, be a shape regular triangulation

of  with the mesh parameter h = %n%g({diameter of T}, Q =Urer, T, T be an element. The
. !

discrete problem of (2.1) is

{ ae,n(Un, V) + (pn, divor) = (f, vn), Yop € Vi, (41)
(diVU}l, Qh) = 0) Vq}l e Qh)
where
ae p(Un, vp) = (uh,vh)JrEQZ Dwuy, : Dvy, dz.
5T JoT
The discrete energy norm is defined by
wnll12 5 = llonll.0 + [Idivonll§ .o+ > lonli 7 (4.2)

TeT

Lemma 4.1. It holds that divV, = Q.
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Proof. For any vy, € Vj, because diV’U}l|T =divV(T) = Py(T), and

/divvhdac:/ v - n dx =0,
Q o0

it implies that divV, C Q. On the other hand, for all ¢, € Q, C L3(f), there exists
v € H(), divo = g, we obtain IIv € Vj,

/diVHhvd:c:/ Hh'v~nds:/ 'v~nds:/divvd:c,
Q o0 o0 Q

which implies that

anE€EQn

divllyv = Ppdive = Prgy qn, qn € divVy, (43)

that is Qp, C div V. O

We shall discuss the proper uniform inf-sup condition of the discrete Darcy-Stokes system
(4.1). For all g, € Q C L3(T), there exists v € HY(T),dive = qp, ||v||1 < ¢||gn|lo. Conse-
quently

II,v € Vh, divlilpv = qn, ||Hh’l)||17h < ||’U||1 + ||’U — Hhv||1,h < C||’U||1.

Note that
Mol]12, = [ITh][§ + |[divITyo|[§ + €| Tpolf , < ol [Tavl[7 ), < cllol[F < cllqnll3,

we get
((Jm divvh) (qu divIIy, 'U) ||Qh | |(2)

1
sup > 2 = —|lgnllo
o, Mol = ol = elianlls o1

and then the assertion is proved.
Since div V', = Qp, we obtain

Zy, = {Uh € Vi, (qn,divey) =0, Vg, € Qh} = {Uh € Vi; divoy, = 0}-
Then for all v, € Z;, we have

acn(vn, vn) = ||vall§ + €% |onl7

= llvnlld +€*oli  + ldivonl§ = [lloalll2 5. (4.4)

Combining our previous relations, the discrete system (4.1) has one and only one solution.

4.2. Uniform error estimates for the Darcy-Stokes system

Lemma 4.2. ([11]) The discrete problem (4.1) has following error estimates

E u, w
lla— wlllen < 2lllu—Tyulllop+ sup Ezrltewn)] (45)
e Twnlllon
E u, w
o = palloa < c<|||u wnlllen +11p — Papllog + sup M) (46)
e Twnlllon
where ¢ is independent of €, h, f and
ou
E. n(u,wy) = Z g2 on wy, dz. (4.7
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In the following, we estimate |||u — Ilpul||c,n and  sup |E. p(w, wy)|/|||wnsl]]. . By the
wpEV)

standard interpolation theory of [5], we have

lv— vl < ch! v r, 1<1<2,0<5<1, (4.8)

llg — Ingllo,r < chlglir.

Firstly, we estimate ||u — IInul|o, 7. Define

1 ou 1
Pv=— vds, v=—, PTvz—/'uds.
ALy, on 7| Jr
It can be verified that
[ u— Tyullo.r < chlla — il - (4.10)

< ch(||(I — )(a — a°)[lyz + [|a” 1’| 7)
ch(|[(I = T)((a — a°) = Pp(@ — a))ll 7 + || — 113 7)
< ch(||(& — ") = Pp(a — @)l 7+ [1((a — &°) — Pp(a — @)l 7 + [18” — T4’ 7).

Note that

. A0 PN L0 PN INTE
= [[(@ =) = Pp(a — w)||] zl[(@ — @) = Pp(a — a)l|] -
L 0T |5 20
<|la—a ||§7Th|u7u if
< ch ™3 |Ju—u®||Z plu— u®|?
(2.4)(2.5) 1 1 1 1 1 1
< chmE e fllf o e 2 e < chTE Al (4.11)
(% — ") — Pp(a — @)l ¢
(48) R .0 R A0 1 " ~0 “ ~0 1
< (@ —a’) = Pp(a —a’)l[g zll(a — a7) — Pp(a —al)l] 5
<ch™2|fllir. (4.12)
Then we have
0 fa 4.8) (2.4
o —11&[, < elil’], 3 < clu’hr < llfih (4.13)
Substituting (4.11)—(4.13) into (4.10) gives
= Thullor < ch?||fil1r. (4.14)
Secondly, we note
[|div(w — Ipu)||o = 0. (4.15)

Thirdly, by noting that
el D(u — My u)fo,r

1 1 1 2'5) 1
=elu—Hpulir < ceh?|ulipluls 7 < ch2|[fllr,
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we obtain
1
e[| D(u — Hpu)|lo,n < ch2||fi]1.

Using (4.14)—(4.16) leads to

[llw = Tl

= <||u — T2 + ||dive — divIT, )2 + 2| D(u — Hhu)||g7h) * < chr||fl];.

Lastly, we estimate sup |Egp(w, ws)|/|||wnl|le,n- It can be verified that

wprEVh
| 5huwh|— Z / a ’whdS— Z Z/ v-whdS
TETH TeTh i=1 ofi

Z Z/ (v — Prv) - (wp, — Pwy,)

TeT =1 ofi

2 A A~ A P~ A~
<ee ), Z [l -1 = Ppolly g [1@n = Praonllo g,

TeT) i=1

2 A A
< e’ 30 W0 — Pral|} 4110 — Prol|? pllion — Pranallyp < = S B2l o0}

TeTh TeTh

: 1 1 1 1
<e® YW h A fulld b Rl h Ry < e*hE S Jul pluld ol

TETH TeTh

2,1, 1 1 1/ 1,34 3 2 1
< = fuf} [ [wn1.r < chd (=74 IALE e HIAL ) Plwnlun < eIl lwil o,

which yields
EE ) =
sup [Pen(®wn)l - py g

wne vy l[wnlllen

(4.16)

(4.17)

|wh|1,T

(4.18)

(4.19)

Theorem 4.1. Suppose u and wy, are the solution of (2.1) and (4.1), Ty, is a regular division

of Q) into rectangle elements, then the discrete problem has a unique solution and

1
[lw—walll.,, +1lp = prllo < chz||fll1,
where ¢ is independent of €, h and u.
Proof. Combining (4.5), (4.17) and (4.19), we obtain
1
llw —wnllle.n < ch2|fl]1,
(pn — Inp,divey) = (pr — p,divon) + (p — Inp, divey)
= ae,n(u— up, vp) — Eep(u, vp) + (p — Inp, divey)
< Mw—wnlllenlllvnllle,n + [ Een(w va)| + |lp — Inpllol|vnlllen-
Consequently, we obtain

(pn — Inp, divoy,)

Bllpn — Inpllo < sup

eV Hvnlle,n
) E u, v
2 Numunlllon + sup [ Eerlonl o
S llonlllon
(4.19)(4.21) (4.4)(4.7)

< Cchr[fili +ehlpl < ch||filL

(4.20)

(4.21)

(4.22)

(4.23)
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which leads to (4.20). O

5. The Discrete de Rham Complex Corresponding to DST20

The purpose of this section is to present de Rham complexes in three space dimensions
corresponding to DST20 elements. In three space dimensions, the Sobolev space version of the
de Rham complex can be written in the form

R -5 H? &2 Hicurl) ™% H(div) 2% L2 — 0. (5.1)

A corresponding discrete de Rham complex is the form

grad curl

R i) Sy, — W, — V,, g Qn — 0, (5.2)

where Sy, Wy, Vj, and @, are conforming or nonconforming finite element spaces of H?(2),
H(curl, Q), H(div,) and L?(2), respectively.

Note that (5.2) is an exact de Rham complex means that:
(1) The composition of two consecutive maps is zero, that is
curlgrad =0, divcurl =0. (5.3)
Obviously, (5.3) holds.

(2) If the domain Q is simply connected, the range of each map is exactly the null space of
the succeeding map, that is

Range(grad) = Ker(curl), Range(curl) = Ker(div), (5.4)
where
Range(grad) = {'wh € Wy; 3sp, € S), such that wy, = gradsh},
Ker(curl) = {wh € Wy; curlw, = 0},
Range(curl) = {'vh € Vp; 3wy, € Wy, such that v, = curlwh},
Ker(div) = {vh € Vy; divey, = 0}.
(3) Let Iy : H2(Q) — Sp, )Y : H'(Q) — Wy, ) : H'(Q) = Vi, T2 : L2(Q) — Qu be

the interpolation operators determined by the finite element space S, W, V3 and @y,
respectively. Then the following diagram commutes:

grad curl

R —S H? H(curl) -0 H(div) —Y L2(Q) — 0

S
ni | my ny | g |

grad di
R Sh iv

W, Lﬂ) Vi —— Qn —— 0

In other words, the following identities hold:

gradlly = IT}Vgrad, curlll] =} curl, divIl} = Hgdiv. (5.5)
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First we construct the finite element spaces S(T") and W(T'). We define

S(T) = P(T) + bPi(T). (5.6)
The degrees of freedom are
s(aq), 1<4i<4, (5.7a)
/l s(x)dl, 1<4<6, (5.7b)
. % ds, 1<4<4. (5.7¢)

This element was presented in [30], also see [9]. As S(T') is defined by (5.6), this element is
also H'-conforming and H?-average conforming. We define

W (T) = Ny(T) @ grad(bP, (T)) ® bP>*(T), (5.8)
where
Ni(T) = PUT) ® Su(T), So(T) = {w € PYT)iw- r=0,r= (ar,a2,23)" }.
N, (T) is presented in [21], dimN; (7)=20, and
P (T) = {w e P3(T); divw = o}.

We easily get dim W (T') =20 +4 + 8 = 32.
The degrees of freedom are

l w- tpdl, Vp e Pi(l;), 1 <i<6, (5.9a)
f’ w A nds, 1< <4, (5.9b)
/ w- nds, 1<i<4, (5.9¢)
/ curlw A nds, 1<i<4. (5.9d)

Theorem 5.1. The element of W(T) are uniquely determined by the 32 degrees of freedom
given by (5.9).

Proof. Suppose that w(z) € W(T) and the degrees of freedom of w(x) are zero, i.e.,

/ w-tpdl =0, Vpe Pi(l;), 1 <i<6, (5.10a)
l;

/ wAnds =0, 1<i<4, (5.10b)
/ w-nds =0, 1<¢<4, (5.10c)

i

/ curlw A nds =0, 1<i<4. (5.10d)

i
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Let
w(x) = wyi(z) ® grad(bp) + by,

where wy (x) € Ni(T), p € P,(T), q€ P3>*(T). Obviously,

grad(bp) - tj;, =0, bqg-t;, =0, 1<i<6. (5.11a)
bgAmly, =0, 1<i<d4 (5.11b)

We have
grad(bp) Anl;, =0, 1 <i<4. (5.12)

Then by (5.12), (5.11a) and (5.11b), we have
/w-tpdle — /wl-tpdl=07 Vp e Pi(l;), 1 <i<6,
l; l;
wAnds=0 <— w; Ands=0, 1 <4 <4.

fi fi
By Theorem 1 of [25], we have

wi(z)An|p =0, 1<i<d4. (5.13)
wi(z) =0. (5.14)
Since
bg-nly, =0, 1<4<4,
/w-nds=0 — fgrad(bp)-ndSZO, 1<1<4,
/ grad(bp) - nds = / p% ds =0,

i i

> 0in f, 1 <4 < 4. Hence there exists b; € fi such that p(b;) = 0,

i

ab
it is easy to check that —
on

1 <4 < 4. Consequently,
p(z) = 0. (5.15)

Now
/ curlwAnds =0 <<= curl(bg) A nds = 0.
i fi
By the proof of Lemma 3.2, it holds
g(x)=0. (5.16)

From (5.14)—(5.16), we get w(x) = 0. O

Remark 5.1. From (5.11), (5.13) and (5.9), we know that

w(z) A n P

Hence H{curl, Q2)-conforming and H L_average conforming.
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Theorem 5.2. The finite element spaces S(T'), W(T), V(T) and Q(T) defined by (5.6), (5.8)
(3.1) and (3.33), respectively, form an exact discrete de Rham complex, i.e., (5.4) and (5.5)
hold.

Proof. (1) We prove (5.4). Obviously, Range(grad) C Ker(curl). Conversely, suppose
w(z) € Ker(curl), i.e.
w(z) € W(T), curlw = 0.

Let
w(z) = wi(x) + s(x) + grad(bp) + by,

where wy (z) € P}(T), s(x) € 82(T), p € Pi(T), g€ P?*(T). Then
curlw(z) = curlw;(z) + curls(z) + curl(bg) = 0.
Comparing the coefficients of terms with degrees higher than 3, we get
q(z) = 0.

From [9], SQ(T) = Spa’n{qla T qS}a where

2
0 0 —x123 x5
_ _ 2 _ _
q =\ —x223 |, @=| —-23 |, g= 0 y Q= 0 ;
a3 T23 z3 —T1x3
—T1T2 —a3 TaT3 0
_ 2 _ _ _
q5 = x7 ) 4 = 172 3 q; = —X1x3 y qs = Tr1x3
0 0 0 —X1T2

Let s(z) = Zle a;q;. We have

(Oé7 — 20&8)I1 + 3a1x9 + 3asTs
curls(z) = 3asxr + (a7 + ag)ra + 3asxs
3asry + 3agxe + (—2a7 + ag)ws

From curlw, (z) + curls(z) = 0, we have s(z) = 0. Then
curlw(z) =0 <= curlw(z) =0.
Let wi(x) = wio(x) + w11 (z), where

wio(z) = (B10, P20, B0) ",

3 3 3 T
wyy (z) = (Zﬂlj%zﬂwwzﬂ”m) ’
j=1 Jj=1 J=1
curlw; (z) = (832 — Bas, B13 — Ba1, P12 — fa1) | =0.

We then have
Bijit1 = Bit1i, 1<i <3,

Take s(z) = s1(x) + bp(x) with

3 3 3
Sl(T) =ap + Z a;x; + Z bJI? + Z CiTiTjq1,
j=1 =i j=1
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where a; = Bio, bi = Bii/2, ¢i = Bii+1, 1 <1 < 3. We have grads(z) = w(x). That is

Range(grad) = Ker(curl).
Next obviously

Range(curl) C Ker(div).
Conversely suppose v(x) € Ker(div), i.e.,

v(z) € V(T), dive(z)=0.
Let v(x) = v (z) + curl(bp), where v, (z) € P}(T), p € P>*(T).
divo(z) =0 <= dive(z) =0.

Suppose

3
vi(z) = (v1,09,08), v =B+ Y By, 1<i<3.
j=1

Then
3

dive, ($) =0 = Zﬁ” =0.
i=1

Taking w(z) = wy (z) + s(z) + bp, where

8
wy(x) = (Baows, Baow1, Prowa), s(x) =Y g,
i=1

o =B P B P B P
1 3’ 2 3’ 3 3’ 4 3 5 3’ 6 3’
we have
curl(w; (z) + s(z)) = vi(z), curlw(z)= v(z).
Hence

Range(curl) = Ker(div).

147

(2) Now we prove (5.5). To prove gradlIly = II}" grad, it is enough to prove that Vs(z) €
S(T), gradlly satisfies the interpolation conditions of I}V for grads(z), by (5.9), that is to

prove that
/ gradHfs ~tpdl = / grads - tpdl, Vp e Pi(l;), 1 <i<6,
l; l;
/ gradH;ol’s Ands = / grads A nds, 1 <1 <4,
/ gradHfs-nds:/ grads - nds, 1<i<4,
/ curlgradHfs Ands= / curlgrads A nds, 1<¢<4.

i i

In fact, by the interpolation conditions of Hg according to (5.5), we have

dp
— [ Is=di
I /17 hs ot

o1ry
/l grangs ~tpdl = /l agspdl = Hfsp

o )
&N spli, — / 56—2; dl = / grads - tpdl, Vpe Pi(l;), 1<i<A4.
l; l;
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That is (5.17a) is proved. For n = (1,0, 0),

olys oIy
dilys Ands= | (0, =2, ——L)d
/fgra 7sAnds /f(’(():cg’ 3x2)8

:/ (0,117 sns, 115 sno) di (5#7)/
of

(0, sng, —sng) dl = / grads A n dl.
of

f

In the same way, for other m, (5.17b) is proved. Furthermore, note that

oty : 0
/ gradHﬁs -nds = P s (50 95 gs = / grads - nds.
: fi On £ on i
Then (5.17c) is proved. Since curlgrad = 0, (5.17d) automatically holds.
Next to prove curlll}’ = II} curl. It is enough to prove that Vw(z) € W (T), curlll} w(z)
satisfies the interpolation conditions of II} for curlw(z) according to (3.34), that is to prove
that

/ curlll})V w- npds = / curlw-npds, Vpe Pi(f;), 1 <i<A4, (5.18a)

i i

/ curlll}V wA nds = / curlwnnds, 1<i<A4 (5.18b)

First we have
curlv - n=VAv-n=V-(vAn)=div(vAn).

By the interpolation conditions of HZV, according to (5.5), we have

/ curlll}’ - npds = / div(IY w A n)pds = / M wAn-n,
i T 8f7,

—/ Hth/\n-Vpds(agb)—/ w/\n-Vpds:/ curlw-npds, 1<i<4,

i.e. (5.18a) is proved. Note also

/ curlll} w A n ds (5.104) / curlwAnds, 1<i<4,

i.e. (5.18b) holds.

Last we prove divIl} = Hgdiv. It is sufficient to prove that for any Vv € Vj, divHZv
satisfies the interpolation conditions of H,? for divv. According to (3.35), that is to prove that

/pdivn,‘{vdz:/pdivvd:c, Vp € Pi(T). (5.19)
T T

To obtain (5.19), we observe

/pdivHdex:/ pH}f%ndsf/H}l/vad:c
T oT T

(4;7)/ pv.ndsf/'v-VpdﬂC:/pdiV”dfc'
aT T T

This completes the proof of the theorem. O
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