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Abstract. Traditional methods for solving linear systems have quickly become imprac-
tical due to an increase in the size of available data. Utilizing massive amounts of
data is further complicated when the data is incomplete or has missing entries. In this
work, we address the obstacles presented when working with large data and incom-
plete data simultaneously. In particular, we propose to adapt the Stochastic Gradient
Descent method to address missing data in linear systems. Our proposed algorithm,
the Stochastic Gradient Descent for Missing Data method (mSGD), is introduced and
theoretical convergence guarantees are provided. In addition, we include numerical
experiments on simulated and real world data that demonstrate the usefulness of our
method.
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1. Introduction

When handling large amounts of data, it may not be possible to load the entire matrix
(data set) into memory, as typically required by matrix inversions or matrix factorization.
This has led to the study and advancement of stochastic iterative methods with low memo-
ry footprints such as Stochastic Gradient Descent, Randomized Kaczmarz, and Randomized
Gauss-Seidel [13, 16, 18, 23]. The need for algorithms that can process large amounts of
information is further complicated by incomplete or missing data, which can arise due
to, for example, attrition, errors in data recording, or cost of data acquisition. Standard
methods for treating missing data, which include data imputation [6, 7], matrix comple-
tion [3, 11, 12, 19], and maximum likelihood estimation [5, 15] can be wasteful, create
biases, or be impractical for extremely large amounts of data. This work simultaneously
addresses both issues of large-scale and missing data.
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Consider the system of linear equations Ax = b1, where A ∈ Cm×n is a large, full-
rank, overdetermined (m > n) matrix. Suppose that A is not known entirely, but instead
only some of its entries are available. As a concrete example, suppose A is the rating ma-
trix from the survey of m users about n service questions, and b contains the m “overall”
ratings from each user (which is fully known). Each user may not answer all of the indi-
vidual service questions, but a company wishes to understand how each question affects
the overall rating of the user. That is, given partial knowledge of A, one wishes to uncover
x? = argminx

1
2m
‖Ax − b‖2.

Let Ã = D ◦ A where A denotes the full matrix, and ◦ be the element-wise product,
D denotes a binary matrix (1 indicating the availability of an element and 0 indicating a
missing entry). Formally, one wants to solve the following optimization program:

Given Ã, b s.t. Ax = b and Ã= D ◦ A,

Find x? = argmin
x∈W

1

2m
‖Ax − b‖2, (1.1)

where W is a convex domain containing the solution x? (e.g. a ball with large enough
radius).

Contributions. This work presents a stochastic iterative projection method for solving
large-scale linear systems with missing data. We provide theoretical bounds for the pro-
posed method’s performance and demonstrate its usefulness on simulated and real world
data sets.

1.1. Stochastic Gradient Descent

Stochastic iterative methods such as Randomized Kaczmarz (RK) and Stochastic Gra-
dient Descent (SGD) have gained interest in recent years due to their simplicity and ability
to handle large-scale systems. Originally discussed in [20], SGD has proved to be partic-
ularly popular in machine learning [1, 2, 24]. SGD minimizes an objective function F(x )
over a convex domain W using unbiased estimates for the gradient of the objective, i.e.,
using fi(x ) such that E[∇ fi(x )] =∇F(x ). At each iteration, a random unbiased estimate,
∇ fi(x ), is drawn and the minimizer of F(x ) is estimated with:

xk =PW
�

xk−1−αk∇ fi(xk−1)
�

, (1.2)

where αk is an appropriately chosen step size, or learning rate, at iteration k and PW
denotes the projection onto the convex set W . To solve an overdetermined linear system
Ax = b, one approach is to minimize the least-squares objective function F(x ) = 1

2m
‖Ax −

b‖2 = 1
m

∑m
i=1 fi(x ), where fi(x ) =

1
2
(Ai x − bi)2, Ai denotes the i th row of A, and bi

denotes the i th entry of b. In this setting, a random row of the matrix A is selected and

1The linear system is not assumed to be consistent; we will use the notation Ax = b to denote a general linear
system.



Stochastic Gradient Descent for Linear Systems with Missing Data 3

(1.2) is computed with ∇ fi(xk−1) = A∗i (Ai xk−1 − bi), where (·)∗ denotes the conjugate
transpose.

The performance of SGD on linear systems depends on the choice of αk and the consis-
tency of the system (i.e. whether a solution to the system exists). When the linear system
is consistent, SGD achieves linear convergence with an appropriately chosen fixed step
size [21]. For example, RK, a special instance of SGD for linear systems, has been shown
to converge linearly for consistent systems without decreasing step sizes [10, 18, 23]. Un-
fortunately, this is not the case when the system is inconsistent. When the linear system
is inconsistent, or Ax ≈ b, one must use decreasing step sizes to obtain the optimum (see
e.g. [4, 9, 21]). This phenomenon is explained by the norm of the unbiased estimates at
the minimizer, ‖∇ fi(x?)‖2. For consistent systems, ‖∇ fi(x?)‖2 = ‖A∗i (Ai x? − bi)‖2 = 0
since Ax? = b. Intuitively, as SGD progresses closer to the minimizer, the magnitude
of the iterates get smaller and allow SGD to converge. When the system is inconsisten-
t, Ax? = b + r for some residual vector r and least squares minimizer x?. As the S-
GD approximates approach x?, the magnitude of the iterates do not converge to 0 since
‖∇ fi(x?)‖2 = ‖A∗i (Ai x?−bi)‖2 = r 2

i ‖Ai‖2. Using diminishing step sizes dampens the mag-
nitude of the iterates over time, allowing SGD to converge. When SGD with fixed step
size is applied to inconsistent systems, the iterates oscillate within a fixed distance from
the solution [18]. The fixed distance, also referred to as the convergence horizon, is pro-
portional to the step size but inversely proportional to the rate of convergence. Therefore,
there is a trade-off between the rate of convergence (speed) and the radius of convergence
(accuracy).

The proposed method, which we refer to as mSGD, is an SGD-type iterate with a cor-
rection term that takes into account the fact that not all entries of A are available. We start
with a discussion on the model under which mSGD operates and proceed to derive the
iterate. After the introduction of the algorithm, the formal results are stated.

Outline. Section 2 introduces the proposed method, the Stochastic Gradient Descent
for Missing Data method (mSGD) and the main theoretical results. The performance of
mSGD on simulated and real world data are shown in Section 3. Finally, we conclude in
Section 4.

2. Stochastic Gradient Descent for missing data

We model whether an entry of A is missing with i.i.d. Bernoulli random variables that
are equal to 1 with probability p. Practically, there are many applications in which this type
of assumption holds. For example, surveys where participants are given a random subset
of questions to answer follow this assumption. In collaborative filtering, there are various
models where such assumptions hold [8, 17]. As another example, consider an extremely
large m×n matrix A where it is not possible to load entire rows of A nor columns of A due
to memory constraints. Instead, one is restricted to only loading bpnc (random) elements
of A at a time. Under this probabilistic assumption on the missing entries, the least squares
solution can be computed without making any additional assumptions on the structure
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of A such as sparsity or low-rankness. In the case of having a fixed matrix Ã ∈ Cm×n

with missing entries, the theoretical results hold only if each row of the matrix is utilized
once. If Ã is an extremely overdetermined matrix (i.e. m� n), then this is a reasonable
assumption.

Notation. Let D be an m× n matrix where the entries of D, denoted by δi, j for i =
1,2, · · · , m and j = 1,2, · · · , n, are drawn independent and identically distributed (i.i.d.)
from a Bernoulli distribution with parameter p so that δi, j = 1 with probability p. The
matrix D is referred to as a binary mask throughout and its entries indicate the locations of
non-missing entries of A. Let Di be the diagonal matrix whose diagonal is equal to the ith
row of D. Given an n× n matrix M , we denote the a matrix containing only the diagonal
of M as diag(M). Let Ã represent the matrix A with missing elements filled in with zeros
so that Ã = D ◦ A and Ãi = DiA

∗
i , where ◦ denotes the element-wise product. Additionally,

let σ2
min(A) be the smallest singular value of A and ‖ · ‖ denote the `2-norm. The expected

value taken over the random selection of rows of Ã is denoted Ei[·], the expected value
taken over all (2mn) possible binary masks D as Eδ[·], and the full expected value as E[·].
Lastly, let W be some convex domain containing x? and B :=maxx∈W ‖x‖2.

2.1. The method

Suppose one naively applies SGD to the system Ãx = b. To that end, consider the
objective bF = 1

2m
‖Ãx − b‖2 = 1

m

∑m
i=1
bfi(x ) where bfi(x ) =

1
2
(Ãi x − bi)2. This objective

function leads to the update:

xk = xk−1−αk

�

Ã∗i (Ãi xk−1− bi)
�

,

since ∇bfi(x ) = Ã∗i (Ãi x − bi). Unfortunately, one computes that, taking the expectation
with respect to the binary mask and gradient direction,

EiEδ[∇bfi(x )] = EiEδ[Ã∗i (Ãi x − bi)]

=
1

m

 

p2A∗Ax + (p− p2)diag(A∗A)x − p
∑

i

A∗i bi

!

6=∇F(x ).

As a result, the iterates are not moving in the gradient descent direction toward the desired
solution in expectation.

Now, since we have information on the distribution of missing entries, we can use this
to design a better objective function. For example, we can approximate the proportion of
the right hand side vector b which can be accounted for using the distribution for missing
entries. In other words, since Eδ[Ãi x] = pbi , consider the objective F̃(x ) = ‖Ãx − pb‖22.
Applying SGD to this objective, one computes

EiEδ[∇ f̃i(x )] = EiEδ[Ã∗i (Ãi x − pbi)]

=
1

m

 

p2A∗Ax + (p− p2)diag(A∗A)x − p2
∑

i

A∗i bi

!

6=∇F(x ),
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which is again not the direction that one wants on average.
Instead of using ∇ f̃ (x ) as the step direction, we use ∇ f̃i(x ) to estimate ∇F(x ). In

other words, we want to represent ∇F(x ) in terms of E[∇ f̃i(x )]. By doing so, iterates xk
move in the gradient descent direction towards the least squares solution to the objective
F(x ) = 1

2m
‖Ax − b‖2. From the above computation, one can see

∇F(x ) =
1

p2E[∇ f̃i(x )]−
(1− p)

p2 E[diag(Ã∗i Ãi)]x .

The detailed computation is available in the Appendix (Lemma A.1). Therefore the appro-
priate update is

xk = xk−1−αk

�

1

p2

�

Ã∗i (Ãi xk−1− pbi)
�

−
1− p

p2 diag(Ã∗i Ãi)xk−1

�

.

Note that in classical SGD literature, the expected value is taken over the row choice i
when being applied to linear systems. However, in this setting there are two sources of
randomness: the randomness from row selection and the randomness incurred by mod-
eling missing data. In this computation, the expected value is taken with respect to both
sources of randomness. The method is outlined in Algorithm 2.1.

Algorithm 2.1 Stochastic Gradient Descent for Missing Data (mSGD).

1: procedure (Ã, b, T , p, {αk}) . If using a fixed step size α, αk = α for all k.
2: Initialize x0
3: for k = 1, 2, · · · , T do
4: Choose row i of Ã with probability 1

m

5: g(xk−1) =
1
p2

�

Ã∗i (Ãi xk−1− pbi)
�

− 1−p
p2 diag(Ã∗i Ãi)xk−1

6: xk =PW
�

xk−1−αg(xk−1)
�

. PW is the projection onto the set W .
7: end for
8: Output xk
9: end procedure

2.2. Main results

Before the main results are presented, note the following properties of the objective
function,

F(x ) =
1

2m
‖Ax − b‖2, (2.1)

and the update function in Algorithm 2.1 (Line 5),

g(x ) =
1

p2

�

Ã∗i (Ãi x − pbi)
�

−
(1− p)

p2 diag(Ã∗i Ãi)x , (2.2)

as they play an important role in the convergence analysis of mSGD.
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• The objective function (2.1) is µ-strongly convex. For all x , y ∈W ,

(x − y)∗(∇F(x )−∇F(y))≥ µ‖x − y‖2,

where

µ=
σ2

min(A)

m
. (2.3)

• The update function g(x ) is Lipschitz continuous, has Lipschitz constant Li,D (for a
fixed instance of i and D), and supremum Lipschitz constant Lg . In other words, for
all x , y ∈W ,

‖g(x )− g(y)‖ ≤ Li,D‖x − y‖, (2.4a)

Lg = sup
i,D

Li,D. (2.4b)

The supremum is taken over all choices of rows and all possible binary masks (i.e.
all 2mn possible binary masks).

• There exists a constant G that uniformly bounds the expected norm of ‖g(x )‖2,

E[‖g(x )‖2]≤ G (2.5)

for all x ∈W and rows Ãi . The expected norm of g(x?) plays an important role in the
convergence horizon. For this reason, let G? denote the upper bound of E[‖g(x?)‖2]:

E[‖g(x?)‖2]≤ G?. (2.6)

The computation of Li,D and Lg are shown in Lemma A.2. Lemma A.3 shows the computa-
tion of G and G?. The statements and proofs of both lemmas are provided in the Appendix
so that we may proceed to the presentation of the main results.

Theorem 2.1 shows that, in expectation, Algorithm 2.1 converges to the least squares
solution of the linear system Ax = b with properly chosen step size. This theorem is an
application of the previously proven result stated in Lemma 2.1. The fixed step size regime
and the trade off between convergence rate and accuracy is explored in Theorem 2.2. In
addition, we provide an optimal step size choice based on a desired error tolerance, ε, and
a bound on the number of iterations required to obtain said tolerance in Corollary 2.1.
Lastly, we remark on the recovery of classical SGD when p = 1 both algorithmically and
with respect to the proven error bounds.

Theorem 2.1. Consider (1.1) with Ã = D ◦ A where entries of D are drawn i.i.d. from a
Bernoulli distribution with probability parameter p. Let µ be as defined in (2.3). Choosing
αk =

1
µk

, Algorithm 2.1 converges in expectation with error

E[‖xk − x?‖2]≤
17G(1+ log(k))

µ2k
,
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where

G =
2B

mp2

�

1+
(1− p)(2− p)

p

�

∑

i





Ai







4
+

2

mp2

∑

i





Ai







2 |bi|2

is an upper bound on E[‖g(x)‖2] and B =maxx∈W ‖x‖2.

It is clear that the convergence behavior of Algorithm 2.1 depends on G, the uniform
upper bound on the expected norm of g(x ) and onσ2

min(A). As one would expect, the more
data that is missing, the larger the upper bound on expected error. In particular, assuming
all other variables are constant and p ∈ (0, 1], as p decreases, G increases. Theorem 2.1 is
an application of the following previously proved lemma.

Lemma 2.1. ([22, Theorem 1]) Let F(x ) be a µ-strongly convex objective function, g(x ) be
such that E[g(x )] = ∇F(x ), and E[‖g(x )‖2] ≤ G for all x ∈ W . Using step size αk =

1
µk

and update xk =PW (xk−1−αk g(xk−1)), it holds that

E[F(xk)− F(x?)]≤
17G(1+ log(k))

µk
.

The next theorem details the convergence behavior of Algorithm 2.1 when using a fixed
step size. Theorem 2.2 shows that Algorithm 2.1 experiences a convergence horizon that
depends on Lg and G?. For p ∈ (0, 1], as p decreases, G? and Lg both increase. Intuitively
this makes sense as a larger amount of missing data should increase the size of the conver-
gence horizon. Additionally, the convergence rate r =

�

1− 2αµ
�

1−αLg

��

also increases
as p decreases. In other words, more missing data causes a slower convergence rate.

Theorem 2.2. Consider (1.1) with Ã = D ◦ A where entries of D are drawn i.i.d. from
a Bernoulli distribution and are equal to 1 with probability p. Let Lg , G?, and µ be as
defined in (2.4b), (2.6), and (2.3) respectively. Additionally, let the fixed step size be α < 1

Lg
.

Algorithm 2.1 converges with expected error

E
�

‖xk − x?‖2
�

≤ rk‖x0− x?‖2+
αG?

µ
�

1−αLg

� , (2.7)

where r =
�

1− 2αµ
�

1−αLg

��

, Lg =
1
p2 sup

i
‖Ai‖2, µ = σ2

min(A)/m. If Ax = b is consis-

tent,

G? =
2(1− p)(2− p)

mp3 ‖x?‖2
∑

i





Ai







4
.

If the linear system is inconsistent (i.e. Ax = b+ r for some residual vector r ), then

G? =
2

mp2

∑

i





Ai







2
r 2

i +
2(1− p)(2− p)

mp3 ‖x?‖2
∑

i





Ai







4
.
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Corollary 2.1 and the subsequent remark comment on the number of iterations re-
quired by Algorithm 2.1 to obtain some desired error tolerance ε using a particular fixed
step size α∗. The corollary itself details this information in terms of the variables in The-
orem 2.2 while the remark translates and simplifies α∗ and k (the number of iterations)
into terms relating to A. Note that the number of iterations required to reach a specified
tolerance is a function of the ratio between the log of the initial error and ε. The number of
iterations increase as ε decreases. Additionally, the remark shows that as p decreases, or as
less data becomes available, more iterations are required to obtain an expected error of ε.
The proof of Corollary 2.1 can be found in ( [18] Corollary 2.2) with different constants.

Corollary 2.1. Given an initial error ε0 and choosing the fixed step size

α∗ =
εµ

2G?+ 2µεLg
,

after

k = 2 log
�

2ε0

ε

�� Lg

µ
+

G?
µ2ε

�

iterations of Algorithm 2.1, E[‖xk − x?‖2]≤ ε holds in expectation.

Remark 2.1. Let a2
max = maxi ‖Ai‖2 be the maximum squared row norm of A. Given an

initial error ε0 and a desired tolerance ε to the true solution, choosing the fixed step size

α∗ =
p3εσ2

min(A)

4(2− p)(1− p)‖x?‖2
∑

i ‖Ai‖4+ 2pεa2
maxσ

2
min(A)

,

after

k = 2 log
�

2ε0

ε

�

�

ma2
max

p2σ2
min(A)

+
2(2− p)(1− p)m‖x?‖2

∑

i ‖Ai‖4

p3σ4
min(A)ε

�

iterations of Algorithm 2.1, E[‖xk − x?‖2]≤ ε holds in expectation.

Recovering SGD. When p = 1, Algorithm 2.1 behaves as classical SGD does on the
full linear system Ax = b. Additionally, mSGD experiences similar convergence bounds as
classical SGD for fixed step sizes [18]. In particular, when p = 1 the updating function
g(x ) reduces to g(x ) = A∗i (Ai x − bi).

3. Experiments

This section demonstrates the usefulness of Algorithm 2.1 on synthetic and real world
data. Although the full data set is available in every experiment, missing data is simulated
by computing a binary mask that dictates which elements are available at every iteration.
By doing so, the simplifying assumption is satisfied, and the ground truth is known, ap-
proximation error is computable, and we can investigate the performance of Algorithm 2.1
with varying levels of missing data. In each experiment, the percentage of available data is
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(a) (b)

Figure 1: This figure compares the performance of Algorithm 2.1 on linear systems drawn from a standard
Gaussian distribution. The percentage of data that is missing is varied. The x−axis is log(iteration)
and the y−axis is the log(`2-error). Note that using a fixed step size (left), allows mSGD to converge
much faster but to some convergence horizon. Using updating step sizes (right), continual progress is
made at the cost of slower convergence.

varied and log `2-error to the least squares solution, ‖xk − x?‖2 is averaged over 20 trials.
For the fixed step size in simulated data, α = 10−4 and for real world data α = 10−5. For
the updating step size regime, αk =

c
σ2

min(A)k
with c = 10−2. Using αk =

1
σ2

min(A)k
(as de-

scribed in Theorem 2.1) creates an initial increase in error followed by a decrease in error.
This behavior is attributed to the step sizes being too large initially. It seems that the factor
c can be optimized but we do not attempt to optimize such parameters here.

In the first experiment, we apply mSGD to synthetic data. The results can be seen in
Fig. 1 and Fig. 2. Here, elements of A ∈ Rm×n are drawn i.i.d. from a standard Gaussian
distribution where m = 1000 and n = 200. Fig. 1(a) and Fig. 2(a) show the results of
Algorithm 2.1 using a fixed step size (α= 10−4) while Fig. 1(b) and Fig. 2(b) show results
using updating step sizes. For inconsistent systems, we use b + r as the right hand side
vector where r is computed such that r ∈ null(A∗) using Matlab’s null() function.

The first real world data set was obtained form the UCI Machine Learning Repository
[14] and contains data from a bike rental service. Rows of A contain hourly information
from a bike share rental system and columns contain information such as weather, total
number of rented bikes, time, and day of the week. In this experiment, m = 17379 and
n = 9. Fig. 3 displays the performance of mSGD on this data set for fixed and updating
step sizes.

The performance of Algorithm 2.1 on Lyme data from lymedisease.org is shown in
Fig. 4. This data set contains survey responses from patients who have been diagnosed with
Lyme Disease. Examples of responses include number of emergency room visits, severity
of symptoms, and effectiveness of medication. For the right hand side vector, we use the
number of health care providers a patient saw before being diagnosed with Lyme. For this
experiment, m= 3686 and n= 81. Solving such a system would potentially uncover what
factors lead to late-stage diagnosis, a critical question in Lyme disease research. As seen
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(a) (b)

Figure 2: The performance of mSGD on inconsistent linear systems. For a fixed step size (left), mSGD
converges to a convergence horizon and using updating step sizes (right) allows mSGD to continually
progress at a slower rate.

(a) (b)

Figure 3: For bike data set, mSGD with a fixed step size (left) experiences a congerence horizon. Using
updating step sizes (right), mSGD continues to progress toward the least squares solution.

in Fig. 2(b), when using the updating step size αk =
c

σ2
min(A)k

, the convergence rate suffers

because the step size decays too quickly. Theoretically, we expect the error to continue to
decay very slowly but, practically, it makes more sense to use another updating step size
regime. In this experiment, we instead use αk =

c
σ2

min(A)
rbk/T∗c so that the initial step size

is c
σ2

min(A)
and after every T ∗ iterations, the step size is multiplied by a factor of r < 1.

Empirical parameter tuning led us to use c = 10−3 for p = 0.7 and p = 1, c = 10−4 for
p = 0.3, T ∗ = 105, and r = 0.8. The results are shown in Fig. 4.

Fig. 5 compares mSGD and classical SGD applied to three different imputation treat-
ments for missing data. We use the Lyme Disease data set with updating step sizes as
described in the previous experiment with c = 10−4 and T ∗ = 105. Setting p = 0.5,
A ∈ R105×81 where each row of A is a randomly selected row of the Lyme Disease data set
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Figure 4: Using updating step sizes, Algorithm 2.1 has decaying approximation error to the least squares
solution of the completed linear system.

Figure 5: The proposed algorithm out performs using imputation methods with SGD.

with roughly half of the entries of the row (randomly) removed. Classical SGD is applied
to Ã in three ways: imputing 0 (if Ãi j is missing, Ãi j = 0 ), imputing row means (if Ãi j
is missing, Ãi j is the average over all non-missing elements in Ãi), and imputing column
means (if Ãi j is missing, Ãi j is the average over all non-missing elements in the j th column
of Ã). Notice that mSGD outperforms the imputation methods presented here.

These experimental results support the theoretical findings presented in Section 2. Us-
ing a fixed step size, mSGD converges to some radius around the solution while using
updating step size allows us to avoid the convergence horizon at the price of a slower con-
vergence. For fixed step size, the amount of missing data affects the convergence horizon.
In particular, as p decreases the size of the convergence horizon increases.

4. Conclusions

In this work, we present a stochastic iterative projection method that solves linear
systems with missing data. We prove that mSGD finds the least squares solution to the
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linear system with full data even though a system has missing data. Additionally, this work
shows theoretical bounds the performance of mSGD using fixed and updating step sizes.
The experiments show that the proposed method is useful in real world settings when
one wishes to solve a linear system with missing data without needing to impute missing
values, which can be extremely costly.

Appendix A

Consider the objective functions

F(x ) =
1

2m
‖Ax − b‖2 =

1

m

m
∑

i=1

1

2
(Ai x − bi)

2, F̃(x ) =
1

2m
‖Ãx − pb‖2.

Let f̃i(x ) =
1
2
(Ãi x−pbi)2. Let Eδ[·] denote the expected value function with respect to the

Bernoulli random variables of the binary mask D and Ei[·] denote the expected value with
respect to the choice of rows of Ã. In addition, let µ be the strong convexity parameter
F(x ) so that for any x , y ∈W , (x − y)∗(∇F(x )−∇F(y))≥ ‖x − y‖2µ.

First, we will show a few useful properties pertaining to the update function g(x ). In
particular, Lemma A.1 shows that in expectation g(x ) allows us to make progress in the
gradient direction of the objective F(x ) (as opposed to the direction of ∇F̃(x )). Next,
Lemma A.2 investigates the Lipschitz continuity of g(x ) for a fixed row i and binary mask
D and its supremum Lipschitz constant of g(x ) over all rows and binary masks. Lemma A.3
shows that we can uniformly bound the expected norm of g(x ) and provides said bound.
Finally, we prove Theorem 2.2.

Lemma A.1. The expected value of the update function g(x ) defined in (2.2) is the gradient
of the objection function F(x ). In other words, for

g(x ) =
1

p2

�

Ã∗i (Ãi x − pbi)
�

−
(1− p)

p2 diag(Ã∗i Ãi)x ,

we have that E[g(x )] =∇F(x ).
Proof. To prove this lemma, we will first take the expected value of ∇ f̃i(x ). We then

take the expected value of g(x ), substitute E[∇ f̃i(x )], and simplify to complete the proof.
Let’s first check that

E[∇ f̃i(x )] = E[Ã∗i (Ãi x − pbi)] = p2A∗Ax + (p− p2)diag(A∗A)x − p2
∑

i

Ai bi . (A.1)

Taking a simple derivative, ∇ f̃i(x ) = Ã∗i (Ãi x − pbi). The matrix D is a m× n binary mask

with entries δi, j
i.i.d.∼ Bern(p). Let Di = diag(δi,1,δi,2, · · · ,δi,n) be a n× n diagonal matrix

so that Ãi = DiA
∗
i . Substituting Ãi = DiA

∗
i and taking the expectation with respect to the

δi, j ’s,

Eδ[∇ f̃i(x )] = Eδ[Ã∗i Ãi]x − pEδ[Ã∗i ]bi

=Eδ[Ã∗i Ãi]x − p2A∗i bi
(i)
= p2A∗i Ai x + (p− p2)diag(A∗i Ai)x − p2A∗i bi .
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Letting [A∗i Ai] jk denote the ( j, k)th element of A∗i Ai , step (i) uses the fact that,

Eδ[Ã∗i Ãi] =

(

p[A∗i Ai] jk, j = k,

p2[A∗i Ai] jk, j 6= k.

Now, we take the expectation with respect to the rows of A to obtain:

E[g(x )]
(i)
=

1

p2E
�

Ã∗i (Ãi x − pbi)
�

−
1− p

p2 E
�

diag(Ã∗i Ãi)
�

x

=
1

p2E
�

∇ f̃i(x )
�

−
1− p

p2 E
�

diag(Ã∗i Ãi)
�

x

(ii)
=

1

mp2

 

p2A∗Ax + (p− p2)diag(A∗A)x − p2
∑

i

A∗i bi

!

−
p(1− p)

mp2 diag(A∗A)x

=
1

m
A∗Ax +

(p− p2)
mp2 diag(A∗A)x −

1

m
A∗b−

p− p2

mp2 diag(A∗A)x

=
1

m
�

A∗Ax − A∗b
�

=∇F(x ).

Step (i) follows from the definition of g(x ) and linearity of the expected value. Step (ii)
utilizes (A.1) for the first expected value and evaluates the expectation of

E[diag(Ã∗i Ãi)] = Ei[Eδ[diag(Ã∗i Ãi)]] = pEi[diag(A∗i Ai)] =
p

m
diag(A∗A).

The remaining steps follow by simplification. �

Lemma A.2. The update function g(x ) of Algorithm 2.1 is Lipschitz continuous with Lipschitz
constant Li,D. In other words, for all x , y ∈W ,

‖g(x )− g(y)‖ ≤ Li,D‖x − y‖.

In addition, we can bound the supremum Lipschitz constant, Lg by

Lg = sup
i,D

Lg,i,D ≤
a2

max

p2 ,

where a2
max =maxi ‖Ai‖2.

Proof. First we show that the Lipschitz constant Li,D of g(x )

‖g(x )− g(y)‖=












�

1

p2 Ã∗i Ãi −
(1− p)

p2 diag(Ã∗i Ãi)
�

�

x − y
�













≤












1

p2 Ãi Ã
∗
i −
(1− p)

p2 diag(Ã∗i Ãi)













‖x − y‖ ≤
1

p2





Ãi







2 ‖x − y‖.
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The last step follows from Weyl’s Inequality which allows us to bound




Ã∗i Ãi − (1− p)diag(Ã∗i Ãi)




≤ ‖Ãi‖2.

Therefore we conclude that the Lipschitz constant of g(x ) is Li,D =
1
p2 ‖Ãi‖2.

To determine the supremum Lipschitz constant, we simply bound Li,D over all possible
rows and all possible binary masks:

Lg = sup
i,D

Li,D = sup
i,D

1

p2





Ãi







2 ≤
1

p2 sup
i





Ai







2 ≤
a2

max

p2 ,

where a2
max is a largest row norm of A. Note that the supremum over all possible binary

masks D occurs when D is the ones matrix. �

Lemma A.3. We can uniformly bound the expected value of the magnitude of the update
function in the following way. We have that E‖g(x )‖2 ≤ G, where

G =
2B

mp2

�

1+
(1− p)(2− p)

p

�

∑

i





Ai







4
+

2

mp2

∑

i





Ai







2 |bi|2,

where B =maxx∈W ‖x‖2. In addition, we have that

• if Ax? = b (the linear system is consistent) then

G? =
2(1− p)(2− p)

mp3 ‖x?‖2
∑

i





Ai







4
.

• if Ax? = b+ r (the linear system is inconsistent) then

G? =
2(1− p)(2− p)

mp3 ‖x?‖2
∑

i





Ai







4
+

2

mp2

∑

i





Ai







2
r 2

i .

G and G? are also defined in (2.5) and (2.6) respectively.
Proof. We begin this proof by showing the upper bound of E

�

‖g(x )‖2
�

for a general x .
From here, we obtain G? by substituting x with x? and making the appropriate assumptions
on the consistency of the linear system. To get the uniform upper bound over all x , we
isolate ‖x‖2 and bound the norm by B =maxx∈W ‖x‖2. We have,

E[‖g(x )‖2] = E

















1

p2

�

Ã∗i (Ãi x − pbi)
�

−
(1− p)

p2 diag(Ã∗i Ãi)x













2




(i)
≤

2

p4E
h





Ã∗i (Ãi x − pbi)






2
i

+
2(1− p)2

p4 E
�

‖diag(Ã∗i Ãi)x‖2
�

(ii)
=

2

p4E
�

‖Ãi‖2(Ãi x − pbi)
2
�

+
2(1− p)2

p4 E
�

‖diag(Ã∗i Ãi)x‖2
�

(iii)
≤

2

p4E
h





Ai







2
(Ãi x − pbi)

2
i

+
2(1− p)2

p4 E
�

‖diag(Ã∗i Ãi)x‖2
�

.
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Step (i) follows by Jensen’s inequality, step (ii) is simplification and uses the fact that
(Ãi x − pbi) is scalar. Lastly, step (iii) bounds the magnitude of a row of A with missing
data by the magnitude of a row of A without missing data (i.e. ‖Ãi‖ = ‖DiAi‖ ≤ ‖Ai‖ for
all Di). From here, we use the fact that E= EiEδ to obtain the following:

E[‖g(x )‖2]

≤
2

p4Ei

�





Ai







2Eδ[(Ãi x − pbi)
2]

︸ ︷︷ ︸

(A)

�

+
2(1− p)2

p4 Ei

�

Eδ
�

‖diag(Ã∗i Ãi)x‖2
�

︸ ︷︷ ︸

(B)

�

. (A.2)

Now, we will focus on the computation of Eδ. First, we compute (A). We have that,

Eδ
�

(Ãi x − pbi)
2
�

=Eδ
�

(Ãi x )
2
�

− 2pEδ
�

Ãi

�

x bi + p2b2
i = Eδ















n
∑

j=1

Ãi j x j







2








− 2p2Ai x bi + p2b2
i

=Eδ







n
∑

j=1

Ã2
i j x

2
j + 2

n
∑

j=1

j−1
∑

k=1

Ãi j Ãikx j xk






− 2p2Ai x bi + p2b2

i

=






p

n
∑

j=1

A2
i j x

2
j + 2p2

n
∑

j=1

j−1
∑

k=1

Ai jAikx j xk






− 2p2Ai x bi + p2b2

i

(i)
=






p2

n
∑

j=1

A2
i j x

2
j + (p− p2)

n
∑

j=1

A2
i j x

2
j + 2p2

n
∑

j=1

j−1
∑

k=1

Ai, jAi,kx j xk






− 2p2Ai x bi + p2b2

i

=p2







n
∑

j=1

A2
i j x

2
j + 2

n
∑

j=1

j−1
∑

k=1

Ai jAikx j xk − 2Ai x bi + b2
i






+ (p− p2)







n
∑

j=1

A2
i j x

2
j







=p2















n
∑

j=1

Ai j x j







2

− 2Ai x bi + b2
i









+ (p− p2)x ∗diag(A∗i Ai)x

=p2 �Ai x − bi
�2+ p(1− p)x ∗diag(A∗i Ai)x .

In step (i), we add and subtract the term p2
∑n

j=1 A2
i, j x

2
j so that we can combine terms.

Other equalities follow by simplification and computation of expected value. Note that

Eδ[Ãi, j] = pAi, j , Eδ[Ãi, j Ãi,k] = p2Ai, jAi,k, i f j 6= k.
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For term (B), we simply compute that

Eδ
�

‖diag(Ã∗i Ãi)x‖2
�

=Eδ







n
∑

j=1

Ã2
i, j x

2
j






= p

n
∑

j=1

(A2
i, j x

2
j ) = p





diag(A∗i Ai)x






2
.

Now that we have (A) and (B), we can compute a general upper bound for E[‖g(x )‖2].
Starting with substituting (A) and (B) into (A.2),

E
�

‖g(x )‖2
� (i)
≤

2

p2Ei

h





Ai







2 �
Ai x − bi

�2
i

+
2p(1− p)

p4 Ei

h





Ai







2
x ∗diag(A∗i Ai)x

i

+
2p(1− p)2

p4 Ei

h





diag(A∗i Ai)x






2
i

(ii)
≤

2

p2Ei

h





Ai







2 �
Ai x − bi

�2
i

+

�

2p(1− p)
p4 +

2p(1− p)2

p4

�

Ei

h





Ai







2
x ∗diag(A∗i Ai)x

i

≤
2

p2Ei

h





Ai







2 �
Ai x − bi

�2
i

+
2p(1− p)(2− p)

p4 Ei

h





Ai







2
x ∗diag(A∗i Ai)x

i

(iii)
=

2

mp2

∑

i





Ai







2 �
Ai x − bi

�2+
2p(1− p)(2− p)

mp4

∑

i





Ai







2
x ∗diag(A∗i Ai)x

(iv)
≤

2

mp2

∑

i





Ai







2 �
Ai x − bi

�2+
2p(1− p)(2− p)

mp4 ‖x‖2
∑

i





Ai







4
.

Step (i) substitutes (A) and (B) in (A.2). Step (ii) uses the fact that





diag(A∗i Ai)x






2 ≤




diag(Ai)diag(Ai)x






2 ≤




Ai







4 ‖x‖2.

From here, we substitute x with x? to compute G?. If Ax? = b (the linear system is
consistent) then the terms

�

Ai x − bi
�2 = 0 and we find that

G? =
2(1− p)(2− p)

mp3 ‖x?‖2
∑

i





Ai







4
.

Otherwise, if Ax? = b+ r for some residual vector r , we have that

G? =
2

mp2

∑

i





Ai







2
r 2

i +
2(1− p)(2− p)

mp3 ‖x?‖2
∑

i





Ai







4
,

where ri is the i th element of the vector r . To finish the proof of Lemma A.3, we simplify
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starting from step (iv).

E
�

‖g(x )‖2
�

≤
2

mp2

∑

i





Ai







2 �
Ai x − bi

�2+
2p(1− p)(2− p)

mp4 ‖x‖2
∑

i





Ai







4

(i)
≤

2

mp2

∑

i





Ai







2 �|Ai x |2+ |bi|2
�

+
2p(1− p)(2− p)

mp4 ‖x‖2
∑

i





Ai







4

(ii)
≤

2

mp2

∑

i





Ai







4 ‖x‖2+
2

mp2

∑

i





Ai







2 |bi|2+
2p(1− p)(2− p)

mp4 ‖x‖2
∑

i





Ai







4

(iii)
≤

2

mp2

∑

i





Ai







4
B+

2

mp2

∑

i





Ai







2 |bi|2+
2p(1− p)(2− p)

mp4 B
∑

i





Ai







4

=
�

2B

mp2 +
2p(1− p)(2− p)B

mp4

�

∑

i





Ai







4
+

2

mp2

∑

i





Ai







2 |bi|2

=
2B

mp2

�

1+
p(1− p)(2− p)

p2

�

∑

i





Ai







4
+

2

mp2

∑

i





Ai







2 |bi|2

=
2B

mp2

�

1+
(1− p)(2− p)

p

�

∑

i





Ai







4
+

2

mp2

∑

i





Ai







2 |bi|2

In step (i) we use Jensen’s inequality. Note that Ai x and bi are both scalar values. In
step (ii), we distribution the summation in the first term and use the fact that |Ai x |2 ≤
‖Ai‖2‖x‖2 by the Cauchy-Schwarz inequality. Step (iii) uses the definition of B =maxx∈W
‖x‖2. The remaining lines are simplification. �

Before we begin the proof of Theorem 2.2, we remind the reader that F(x ) is strongly
convex with strong convexity parameter µ. In other words, for all x , y ∈W we have that

(x − y)∗(∇F(x )−∇F(y))≥ µ‖x − y‖2. (A.3)

In addition, we define a new function

G(x ) =
1

2p2

�

(Ãi x − pbi)
2−
(1− p)

2p2 ‖diag(Ãi)x‖2
�

so that g(x ) = ∇G(x ). The update function g(x ) follows the Co-coercivity Lemma as
stated in Lemma A.4.

Lemma A.4. ([18], Lemma A.1) For G(x ) a smooth function such that ∇G(x ) = g(x ),

‖g(x )− g(y)‖2 ≤ Li,D(x − y)∗(g(x )− g(y)),

where g(x ) has Lipschitz constant Li,D.
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A.1. Proof of theorem 2.2

Proof. First, we bound expected error conditional on the previous k− 1 iterations. Let
Ek−1[·] denote the expected value conditional of the previous k−1 iterations and note that
by the Law of Iterated Expectation, we have that the full expected value over all iterations
is E[·] = E[Ek−1[·]]. Thus,

Ek−1

�

‖xk − x?‖2
�

= Ek−1

�

‖xk−1−αg(xk−1)− x?‖2
�

(i)
= ‖xk−1− x?‖2− 2α(xk−1− x?)

∗Ek−1
�

g(xk−1)
�

+α2Ek−1

�

‖g(xk−1)‖2
�

(ii)
= ‖xk−1− x?‖2− 2α(xk−1− x?)

∗(∇F(xk−1)−∇F(x?)) +α
2Ek−1

�

‖g(xk−1)‖2
�

(iii)
≤ ‖xk−1− x?‖2− 2α(xk−1− x?)

∗(∇F(xk−1)−∇F(x?))

+ 2α2Ek−1





g(xk−1)− g(x?)‖2
�

+α2Ek−1

�

‖g(x?)‖2
�

(iv)
≤ ‖xk−1− x?‖2− 2α(xk−1− x?)

∗(∇F(xk−1)−∇F(x?))

+ 2α2 Li,g(xk−1− x?)
∗(Ek−1[g(xk−1)]−Ek−1[g(x?)]) +α

2G?
(v)
≤ ‖xk−1− x?‖2− 2α(xk−1− x?)

∗(∇F(xk−1)−∇F(x?))

+ 2α2 Lg(xk−1− x?)
∗(∇F(xk−1)−∇F(x?)) +α

2G?
≤ ‖xk−1− x?‖2− 2α(1−αLg)(xk−1− x?)

∗(∇F(xk−1)−∇F(x?)) +α
2G?

(vi)
≤ ‖xk−1− x?‖2− 2α(1−αLg)µ‖xk−1− x?‖2+α2G?

=
�

1− 2αµ(1−αLg)
�

‖xk−1− x?‖2+α2G?
= r‖xk−1− x?‖2+α2G?.

Step (i) follows from the definition of the `2 norm. Step (ii) takes the expectation of
g(xk−1) using Lemma A.1 and uses the fact that ∇F(x?) = 0 to subtract 2α(xk−1 −
x?)∗∇F(x?). In step (iii) we add and subtract the term ‖g(x?)‖2 then apply Jensen’s
inequality. Step (iv) is an application of the Lemma A.4. Step (v) bounds Li,D by Lg =
supi,D Li,D and uses Lemma A.1 to compute the expectation of Ek−1[g(x )]. We use the
strong convexity of F(x ) in step (vi). The remaining lines are simplification. Now, by the
Law of Iterated Expectation we recursively apply this bound to obtain the desired result,

E‖xk − x?‖2 ≤ rEk−2‖xk−1− x?‖2+α2G?

≤rk‖x0− x?‖2+α2G?
k−1
∑

j=0

r j ≤ rk‖x0− x?‖2+
α2G?
1− r

.

This completes the proof of Theorem 2.2. �

A note on Inconsistent Linear Systems. Theorem 2.2 also applies to inconsistent
systems. Let Ax? = b + r where r ∈ null(A∗). In the proof of Theorem 2.2, we use the
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fact that ∇F(x?) = 0 in step (ii). This is still true in the inconsistent setting as ∇F(x?) =
A∗(Ax?− b) = A∗r = 0. All other computations go through without issue.
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