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A NUMERICAL METHOD FOR SOLVING THE VARIABLE

COEFFICIENT WAVE EQUATION WITH INTERFACE JUMP

CONDITIONS
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Abstract. Wave equations with interface jump conditions have wide applications in engineering
and science, for example in acoustics, elastodynamics, seismology, and electromagnetics. In this
paper, an efficient non-traditional finite element method with non-body-fitted grids is proposed to
solve variable coefficient wave equations with interface jump conditions. Numerical experiments
show that this method is approximately second order accurate both in the L

∞ norm and L
2 norm

for piecewise smooth solutions.
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1. Introduction

Problems involving wave equations with interfaces have a wide variety of appli-
cations in science and engineering, for example in acoustics, seismology and elec-
tromagnetics. Designing highly effective and computational efficient methods for
these problems is nontrivial.

Before studying the wave interface problems, one needs to study the method for
solving the elliptic interface problem since that is one of the major challenges in the
problem. Therefore we first summarize the past work on elliptic interface problems
below.

For nearly four decades, extensive research has been performed in the area of
numerical solutions of elliptic equations with discontinuous coefficients and singular
sources on Cartesian grids. The choice of uniform Cartesian grids saves the cost
of mesh generation. It started with the pioneering work of Peskin [1] on the first
order accurate immersed boundary method developed to simulate the pattern of
blood flow in the heart.

Also, a great amount of work has been done to use finite difference methods on
elliptic interface problems. The main idea is to use difference schemes and stencils
near the interface to incorporate the jump conditions and interface in the Taylor
expansions. Using finite difference schemes requires the use of high order derivatives
of jump conditions and interface conditions. LeVeque and Li proposed the immersed
interface method for solving elliptic equations with discontinuous coefficients and
singular sources [2]. This method incorporates the interface conditions in both
solution and flux, [u] 6= 0 and [βun] 6= 0, into the finite difference stencil resulting
in second order accuracy. The method produces a linear system that is sparse,
but may not be symmetric or positive definite if there is a jump in the coefficient.
Detailed information about the IIM can be found in [3].

In [4], the matched interface and boundary method (MIB) was proposed to solve
elliptic equations with smooth interfaces. In [5], the MIB method was generalized
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for problems involving sharp-edged interfaces. In [6], the MIB method was gener-
alized for problems involving triple junction points. This method has achieved 2nd
order accuracy in the L∞ norm even for sharp-edged interfaces.

In [7] and [8], the immersed finite element method (IFEM) was developed using
non-body fitted Cartesian meshes for homogeneous jump conditions. The method
was extended to treat non-homogeneous jump conditions in [9]. The partially pe-
nalized IFEM was developed in [10].

Also, there has been a large body of work from the finite volume perspective
for developing high order methods for elliptic equations in complex domains, such
as [11, 12] for two dimensional problems and [13] for three dimensional problems.
Furthermore, Discontinuous Galerkin method [14] can be used to solve elliptic in-
terface problems. Both the mesh and polynomial degree can be adaptively refined
in a remeshing scheme [15]. Recently, the gradient recovery method [30–32] was
introduced for accurate gradient computation.

Some theoretical discussions about interface problems can be found in [16] and
[17].

This paper is based on the Petrov-Galerkin type non-traditional finite element
method for solving elliptic interface problems that was first introduced in [18] and
improved in [19] and [20]. [19] extended the original method to include the case
of sharp edged interfaces with matrix coefficients. This extension improved the
accuracy for sharp edged interfaces from 0.8th order to nearly second order. In
[18] and [19], if the interface hits a grid point exactly, it is perturbed away. [20]
treats this case carefully without perturbation. The second improvement in [20]
is that not only Dirichlet but also Neumann boundary conditions are considered.
The third improvement is that the coefficient matrix data can only be given at the
grid points, not as an analytic function. In [21], the method was extended to three
dimensions. The extension for the elasticity equations can be found in [22]. The
method for multi-domain problems can be found in [23]. Some other extensions
can be found in [24] and [25]. The method has two advantages: first, this method
uses non-body-fitted grid so that the cost of mesh generation can be saved. Second,
compared with other methods the method is easier to implement for complicated
problems with non-homogeneous jump conditions and matrix coefficients.

In [26], the second order accurate immersed interface method is used to solve
the wave equation with interface jump conditions. The wave equation is rewritten
as a first order system. In [27], the correction function method is proposed to solve
the wave equation with interface jump conditions. The result is excellent with 4th
order accuracy. However, the scope of the work is for constant coefficient case only.
On both sides of the interface, it is the Laplacian operator. The scope of our work
in this paper is the variable matrix coefficient case, which has wider applications.

2. Formulation and Numerical Method

2.1. Problem Definition and Weak Formulation. In this paper, we solve the
wave equation with discontinuous variable matrix coefficients along the interface.
Consider a rectangular domain Ω = (xmin, xmax)× (ymin, ymax). Γ is an interface
prescribed by the zero level-set {(x, y) ∈ Ω | φ(x, y) = 0} of a level-set function

φ(x, y). The unit normal vector of Γ is n = ∇φ

|∇φ| pointing from Ω− = {(x, y) ∈
Ω | φ(x, y) < 0} to Ω+ = {(x, y) ∈ Ω | φ(x, y) > 0}, see Figure 1. Now the governing
equation reads

∂2u(x, y, t)

∂t2
−▽ · (β(x, y, t)▽ u(x, y, t)) = f(x, y, t), in (Ω \ Γ)× [0, T ],(1)
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in which ▽ is the gradient operator. The coefficient β(x, y, t) for each fixed t is
assumed to be a 2× 2 matrix that is uniformly elliptic on each disjoint subdomain,
Ω− and Ω+, and its components are continuously differentiable on each disjoint
subdomain, but they may be discontinuous across the interface Γ.

x

y
Ω+

β+

Ω−

β−

Γ →
n

Figure 1. A rectangular domain Ω = Ω+ ∪ Ω− ∪ Γ.

Given functions a and b along the interface Γ, we prescribe the jump conditions
on Γ× [0, T ]

(2)

a(x, y, t) = [u]Γ (x, y, t)

≡ u+(x, y, t)− u−(x, y, t),

b(x, y, t) = [(β ▽ u) · n]Γ (x, y, t)
≡ n · (β+(x, y, t)▽ u+(x, y, t))− n · (β−(x, y, t)▽ u−(x, y, t)),

The superscripts “ ± ” refer to limits taken from within the subdomains Ω±. The
initial conditions can be given as

(3)

u(x, y, 0) = u0(x, y), in Ω,

∂u

∂t
(x, y, 0) = u0t (x, y), in Ω.

where u0 and u0t are given functions on the domain Ω. Finally, we prescribe the
boundary condition

(4) u(x, y, t) = g(x, y, t), on ∂Ω× [0, T ]

for a given function g on the boundary ∂Ω.
In this paper, we use non-traditional finite element method [18–20] to solve the

wave equation with interface jump conditions described by equations (1)-(4). By
multiplying both sides of equation (1) with the test function ψ ∈ H1

0 (Ω) and inte-
grating over the domain Ω, from Green’s theorem we deduce the weak formulation
of equation (1) with u = g on boundary points as

(5)

∫

Ω

fψ =

∫

Ω+
⋃

Ω−

∂2u

∂t2
ψ +

∫

Ω+
⋃

Ω−

β∇u · ∇ψ +

∫

Γ

bψ.
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2.2. Time Discretization. Below we employ the weak formulation for the wave
equation. First divide the time interval [0, T ] into N equally spaced subintervals
[tn−1, tn], n = 1, 2, · · · , N , with tn = n∆t, where ∆t = T/N is the time step. For
simplicity, we use un to denote u(x, tn).

In order to derive a second order accuracy scheme, an efficient method called
θ-Scheme introduced in [28] is used. According to the θ-Scheme, equation (1) can
be rewritten as

untt = ∆un,θ + fn,θ, n = 1, 2, · · · , N.(6)

where

untt =
un+1 − 2un + un−1

∆t2
,

∆un,θ = θ▽ ·(βn+1 ▽ un+1) + (1− 2θ)▽ ·(βn ▽ un) + θ▽ ·(βn−1 ▽ un−1),

fn,θ = θfn+1 + (1− 2θ)fn + θfn−1.

Combining equations (5) and (6) together, the weak formulation of semidiscrete
problem reads

∫

Ω+
⋃

Ω−

(

un+1ψ + θ∆t2βn+1∇un+1 · ∇ψ
)

=

∫

Ω+
⋃

Ω−

(

2unψ − (1− 2θ)∆t2βn∇un · ∇ψ
)

−
∫

Ω+
⋃

Ω−

(

un−1ψ + θ∆t2βn−1∇un−1 · ∇ψ
)

+

∆t2
∫

Ω

(

θfn+1 + (1 − 2θ)fn + θfn−1
)

ψ −

∆t2
∫

Γ

(

θbn+1 + (1− 2θ)bn + θbn−1
)

ψ,

∀ψ ∈ H1
0 (Ω),

According to [29], the θ-Scheme is an unconditional stable scheme when θ ≥ 1
4
.

From equation (6), the θ-Scheme we used here is a three-level scheme. It requires
appropriate initial conditions u0 and u1. Since u0 and u0t are given in (3), in a

normal research domain without interface, the central difference scheme u1−u−1

2∆t
=

u0t as in [28] can be used to get a second order accuracy scheme. An alternative
approach to get u1 is the Taylor expansion method proposed in [32], which can
achieve second order accuracy. However, in this paper we use non-traditional finite
element method to solve problems with interfaces. The construction of local system
is needed at every time step, which means the jump conditions (2) are needed at
every time step. We cannot construct the local system for the fictitious value u−1.

In this paper, the forward difference scheme u1−u0

∆t
= u0t is employed to get u1.

For stability concern, we could use a much smaller time step (compared with the
time step ∆t defined above) to get u1, say ∆t

10
. We use it for all our numerical

experiments. The results are not sensitive to this choice.

2.3. Domain Discretization. The spacial domain discretization for wave eqation
with interface is similar to the discretization for elliptic interface problems in [18–
20]. For completeness of the work, we explain in this section how the discretization
is done. More details can be found in [18–20]. We also present in this section the
new contribution of combining the θ-Scheme with the spacial discretization. The
equations we derived will be used in the next section for numerical experiments.
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We restrict ourselves to a rectangular domain Ω = (xmin, xmax) × (ymin, ymax)
in the plane. Given positive integers I and J , set ∆x = (xmax − xmin)/I and
∆y = (ymax − ymin)/J . Define (xi, yj) = (xmin + i∆x, ymin + j∆y) for i = 0, ..., I
and j = 0, ..., J as a uniform Cartesian grid. Each (xi, yj) is called a grid point.
For the case i = 0, I or j = 0, J , a grid point is called a boundary point, otherwise
it is called an interior point. If φ(xi, yj) < 0, we count the grid point (xi, yj) as in
Ω−; if φ(xi, yj) > 0, we count the grid point (xi, yj) as in Ω+; otherwise we count
it as on the interface Γ. The grid size is defined as h = max(∆x,∆y) > 0.

Two sets of grid functions are needed and they are denoted by

H1,h = {ωh = (ωi,j) : 0 ≤ i ≤ I, 0 ≤ j ≤ J},

and

H1,h
0 = {ωh = (ωi,j) ∈ H1,h

± : ωi,j = 0 if i = 0, I or j = 0, J}.

Next we cut every rectangular region [xi, xi+1]×[yj, yj+1] into two right triangles:

one is bounded by x = xi, y = yj and y =
yj+1−yj

xi−xi+1
(x − xi+1) + yj , the other is

bounded by x = xi+1, y = yj+1 and y =
yj+1−yj

xi−xi+1
(x−xi+1)+yj. Collecting all those

triangular regions, we obtain a uniform triangulation T h :
⋃

K∈Th K, see Figure 2.
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Figure 2. A uniform triangulation.

A cellK is called a regular cell if all of its vertices belong to the same subdomain,
see Figure 3; otherwise it is called an interface cell, see Figure 4. For an interface
cell, we write K = K+

⋃

K−. K+ and K−are approximations of the regions
K

⋂

Ω+ and K
⋂

Ω− , respectively. K+ and K− are separated by a straight line
segment, denoted by Γh

K . The two end points of the line segment Γh
K are located on

interface Γ and their locations are calculated from the linear interpolations of the
discrete level-set functions φh = φ(xi, yj). In this way, we obtain the triangulation
Th of the domain Ω.

For any ψh ∈ H1,h
0 , define T h(ψh) as a standard continuous piecewise linear

function, which is a linear function in each triangular cell and T h(ψh) matches
ψh on grid points. For any uh,n ∈ H1,h with uh,n = gh,n on boundary points
at tn, U

h(uh,n) is a piecewise linear function and matches uh,n on grid points at
tn. It is a linear function in each regular cell, just like the first extension operator
Uh(uh,n) = T h(uh,n) in a regular cell at tn. In each interface cell, it consists of two
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Figure 3. Regular cell.

(a) Case 1. The interface
comes across one vertex of
the triangle.

(b) Case 2. The interface
covers one side of the tri-
angle.

(c) Case 3. The interface
comes across one vertex and
one side of the triangle.

(d) Case 4. The interface
cuts two sides of the trian-
gle.

Figure 4. Interface cells.

pieces of linear functions, one is on K+ and the other is on K−. See [19] for more
details.

We shall construct an approximate solution to the interface problem taking into
account the jump conditions. Note that the Neumann jump condition [(β∇u) · n] =
b along the interface Γ is already absorbed into the weak formulation, hence, we
only need to take care of the Dirichlet jump condition [u] = a along the interface Γ.
We shall seek an approximate solution which is piecewise linear on both subdomains
Ω− and Ω+, but discontinuous along the interface Γ. Clearly, in cases 1-3, when a
vertex (x, y) of the interface cell K is on the interface, we need to get two solutions
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uh,n(x, y) =

{

u+,n(x, y)

u−,n(x, y)
defined at one point. To this end, we introduce a globally

piecewise linear approximation uh,n(x, y) defined below:
if φ(x, y) > 0,

uh,n(x, y) = u+,n(x, y),

and if φ(x, y) < 0,

uh,n(x, y) =

{

u+,n(x, y), if φ(x, y) = 0,

u−,n(x, y), if φ(x, y) < 0.

For a regular cell(see Figure 3) or an interface cell as in Case 1 (see Figure
4.(a)), we have the following equation

∫

K

(

Uh(uh,n+1)T h(ψh) + θ∆t2βn+1∇Uh(uh,n+1) · ∇T h(ψh)
)

=

∫

K

(

2Uh(uh,n)T h(ψh)− (1− 2θ)∆t2βn∇Uh(uh,n) · ∇T h(ψh)
)

−
∫

K

(

Uh(uh,n−1)T h(ψh) + θ∆t2βn−1∇Uh(uh,n−1) · ∇T h(ψh)
)

+

∆t2
∫

K

(

θfn+1 + (1− 2θ)fn + θfn−1
)

T h(ψh).(7)

In Case 2, The interface is along an edge of the cell. We need to take the
Neumann jump condition into consideration.

If φ(x2, y2) > 0, we have
∫

K+

(

Uh(uh,n+1)T h(ψh) + θ∆t2βn+1∇Uh(uh,n+1) · ∇T h(ψh)
)

=

∫

K+

(

2Uh(uh,n)T h(ψh)− (1− 2θ)∆t2βn∇Uh(uh,n) · ∇T h(ψh)
)

−
∫

K+

(

Uh(uh,n−1)T h(ψh) + θ∆t2βn−1∇Uh(uh,n−1) · ∇T h(ψh)
)

+

∆t2
∫

K+

(

θfn+1 + (1− 2θ)fn + θfn−1
)

T h(ψh),(8)

and if φ(x2, y2) < 0, we have
∫

K−

(

Uh(uh,n+1)T h(ψh) + θ∆t2βn+1∇Uh(uh,n+1) · ∇T h(ψh)
)

=

∫

K−

(

2Uh(uh,n)T h(ψh)− (1− 2θ)∆t2βn∇Uh(uh,n) · ∇T h(ψh)
)

−
∫

K−

(

Uh(uh,n−1)T h(ψh) + θ∆t2βn−1∇Uh(uh,n−1) · ∇T h(ψh)
)

+

∆t2
∫

K−

(

θfn+1 + (1 − 2θ)fn + θfn−1
)

T h(ψh)−

∆t2
∫

Γh
K

(

θbn+1 + (1− 2θ)bn + θbn−1
)

T h(ψh).(9)

In the next two cases, the interface cells are separated into two pieces K+ and
K−. At this time, both the Dirichlet jump condition and the Neumann jump
condition need to be treated. Before getting the integral equation, we need to take
care of the jump conditions first.



8 L. WANG, S. HOU, L. SHI, AND P. ZHANG

In Case 3, the local system can be constructed as follows:

{

[u]5 = a5,

[(β ▽ u) · n]6 = b6

where point 6 is the middle point of points 2 and 5. Solve this system to get the
values of u±5 , which are denoted by the linear combinations of u1, u2 and u3.

In Case 4, notice that points 2, 3, 4, 5 are coplanar, the value of point 5 can be
denoted as a linear combination of the values of points 2, 3, 4 : u5 = c1u2 + c2u3 +
c3u4. Then a local system defined on the interface cell K can be constructed as



















[u]4 = a4,

[u]5 = a5,

c1u2 + c2u3 + c3u4 = u5

[(β ▽ u) · n]6 = b6

where point 6 is the middle point of points 4 and 5. The least squares method is
used to solve this system and get the values of u±4 , u

±
5 , they are denoted by the

linear combinations of u1, u2 and u3.
In cases 3 and 4, after solving the local system, we have the integral equation

defined on this interface cell as

∫

K+

(

Uh(uh,n+1)T h(ψh) + θ∆t2βn+1∇Uh(uh,n+1) · ∇T h(ψh)
)

+

∫

K−

(

Uh(uh,n+1)T h(ψh) + θ∆t2βn+1∇Uh(uh,n+1) · ∇T h(ψh)
)

=

∫

K+

(

2Uh(uh,n)T h(ψh)− (1 − 2θ)∆t2βn∇Uh(uh,n) · ∇T h(ψh)
)

−
∫

K−

(

2Uh(uh,n)T h(ψh)− (1− 2θ)∆t2βn∇Uh(uh,n) · ∇T h(ψh)
)

−
∫

K+

(

Uh(uh,n−1)T h(ψh) + θ∆t2βn−1∇Uh(uh,n−1) · ∇T h(ψh)
)

+

∫

K−

(

Uh(uh,n−1)T h(ψh) + θ∆t2βn−1∇Uh(uh,n−1) · ∇T h(ψh)
)

+

∆t2
∫

K+

(

θfn+1 + (1− 2θ)fn + θfn−1
)

T h(ψh)−

∆t2
∫

K−

(

θfn+1 + (1 − 2θ)fn + θfn−1
)

T h(ψh)−

∆t2
∫

Γh
K

(

θbn+1 + (1− 2θ)bn + θbn−1
)

T h(ψh).(10)

With the above local system, all the nonzero elements of the large sparse linear
system could be generated and solved. The main idea is to write the solution on
the interface cut points in terms of linear combinations of the unknowns on the
uniform Cartesian grid.

We propose the following method:
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Method 2.1. Find a discrete function uh,n ∈ H1,h
± with uh,n = gh,n on boundary

points such that for all ψh ∈ H1,h
0 , we have

∑

K∈Th

(
∫

K+

(

Uh(uh,n+1)T h(ψh) + θ∆t2βn+1∇Uh(uh,n+1) · ∇T h(ψh)
)

+

∫

K−

(

Uh(uh,n+1)T h(ψh) + θ∆t2βn+1∇Uh(uh,n+1) · ∇T h(ψh)
)

)

=
∑

K∈Th

(
∫

K+

(

2Uh(uh,n)T h(ψh)− (1− 2θ)∆t2βn∇Uh(uh,n) · ∇T h(ψh)
)

−
∫

K−

(

2Uh(uh,n)T h(ψh)− (1− 2θ)∆t2βn∇Uh(uh,n) · ∇T h(ψh)
)

−
∫

K+

(

Uh(uh,n−1)T h(ψh) + θ∆t2βn−1∇Uh(uh,n−1) · ∇T h(ψh)
)

+

∫

K−

(

Uh(uh,n−1)T h(ψh) + θ∆t2βn−1∇Uh(uh,n−1) · ∇T h(ψh)
)

+

∆t2
∫

K+

(

θfn+1 + (1 − 2θ)fn + θfn−1
)

T h(ψh)−

∆t2
∫

K−

(

θfn+1 + (1− 2θ)fn + θfn−1
)

T h(ψh)−

∆t2
∫

Γh
K

(

θbn+1 + (1− 2θ)bn + θbn−1
)

T h(ψh)

)

.(11)

Compared with the large sparse matrix for elliptic interface problem using the
same non-traditional finite element formulation, there is an extra diagonal term.
The smaller the time step size compared with spacial step size, the stronger this
extra diagonal term affects the matrix, the more diagonal dominance. In the end, a
sufficiently small time step size would give a strictly diagonally dominant (therefore
invertible) well-conditioned matrix. This is the reason why in some complicated
numerical examples, we used smaller time step size to obtain more accurate result.

3. Numerical Experiments

In this section, we present some numerical examples with known exact solutions
to demonstrate the accuracy of our method. In all numerical experiments below,
the level-set function φ(x, y), the coefficients β±(x, y, t) and the solutions

u =

{

u+(x, y, t), in Ω+ × [0, T ],
u−(x, y, t), in Ω− × [0, T ],

are given. Hence

u0(x, y) = u(x, y, 0), in Ω \ Γ,

ut0(x, y) =
∂u

∂t
(x, y, 0), in Ω \ Γ,

g(x, y, t) = u(x, y, t), on ∂Ω× [0, T ],

f(x, y, t) = −∇ · (β(x, y, t)∇u(x, y, t)), in (Ω \ Γ)× [0, T ],

a(x, y, t) = u+(x, y, t)− u−(x, y, t), on Γ× [0, T ],

b(x, y, t) = (β+(x, y, t)∇u+(x, y, t)) · n− (β−(x, y, t)∇u−(x, y, t)) · n, on Γ× [0, T ].
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All the examples are defined on the domain [0, 1]× [0, 1]× [0, 1] and the value of
θ is set to be 1

2
. All errors in solutions are measured in the L∞ norm and L2 norm

in the whole domain Ω .

Example 1. The level-set function φ(x, y), the coefficients β± and the solutions
u± are given as follows:

φ1(x, y) = (x − 0.3)2 + (y − 0.3)2 − 0.22,

φ2(x, y) = (x − 0.7)2 + (y − 0.3)2 − 0.22,

φ3(x, y) = (x − 0.5)2 + (y −
√
0.12− 0.3)2 − 0.212,

φ(x, y) = min(min(φ1, φ2), φ3),

β+(x, y, t) =

(

2 + x2 y
y 3 + y2t

)

,

β−(x, y, t) =

(

4 + x2t y
y 3 + y2

)

,

u+(x, y, t) = sin(2πxt) cos(3πyt),

u−(x, y, t) = exp(xyt) sin(2πx) cos(2πy).

Figure 5 is the interface of this example with a grid of 24 × 24. The interface is
a combination of three circles and it is a sharp-edged interface. The difficulty of
solving this example comes from the complicated geometry of the interface.
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Figure 5. Interface of Example 1.

Figure 6 shows the numerical results of the solution at t = 0s, 0.3s, 0.6s and 1s.
Table 1 is the numerical errors with different grids at t = 1s. Figure 7 shows that
our method is about 2nd order accurate both in the L∞ and L2 norm.

Table 1. Example 1, numerical error with different grids at t=1s.

nx × ny × nt ‖u− uh‖∞ Order ‖u− uh‖2 Order
6× 6× 10 0.6124 0.1967
12× 12× 20 0.2116 1.53 0.0726 1.44
24× 24× 40 0.0625 1.76 0.0217 1.74
48× 48× 80 0.0167 1.90 0.0056 1.97
96× 96× 160 0.0042 2.01 0.0014 1.98
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(b) 0.3s
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Figure 6. Numerical solution of Example 1 at different time.
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(a) Numerical errors in the L∞ norm
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(b) Numerical errors in the L2 norm

Figure 7. Numerical errors of Example 1.

Example 2. The level-set function φ(x, y), the coefficients β± and the solutions
u± are given as follows:

φ(x, y) = (x − 0.5)2 + (y − 0.5)2 − 0.252,

β+(x, y, t) =

(

2 + x x
x 3 + yt

)

,

β−(x, y, t) =

(

5 + xt y
y 2− t+ y

)

,

u+(x, y, t) = −2 sin(2πx) sin(2πy) cos(2πt),

u−(x, y, t) = sin(2πx) sin(2πy) cos(2πt).
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Figure 8 shows the interface of this example with a grid of 20×20. The interface
of this example is a circle. Although the interface in this example is simple, the
solution function is much more complicated than other examples, which makes the
simulation much harder.
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Figure 8. Interface of Example 2.

Figure 9 shows the numerical results of the solution at t = 0s, 0.3s, 0.6s and 1s.
Table 2 shows the numerical errors with different grids at t = 1s. Figure 10 shows
that our method is about 2nd order accurate both in the L∞ and L2 norm.
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Figure 9. Numerical solution of Example 2 at different time.
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Table 2. Example 2, numerical error with different grids at t=1s.

nx × ny × nt ‖u− uh‖∞ Order ‖u− uh‖2 Order
5× 5× 40 0.4819 0.1538
10× 10× 80 0.2096 1.20 0.0883 0.80
20× 20× 160 0.0539 1.96 0.0223 1.99
40× 40× 320 0.0117 2.21 0.0049 2.18
80× 80× 640 0.0029 1.96 0.0011 2.16
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(a) Numerical errors in the L∞ Norm
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Figure 10. Numerical errors of Example 2.
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Figure 11. Interface of Example 3.

Example 3. The level-set function φ(x, y), the coefficients β± and the solutions
u± are given as follows:

φ1(x, y) = (x− 0.647)2 + (y − 0.5)2 − 0.1472,

φ2(x, y) = (x− 0.353)2 + (y − 0.5)2 − 0.1472,

φ(x, y) = min(φ1, φ2),

β+(x, y, t) = 10

(

8 + cos(x) x
x 6 + sin(yt)

)

,

β−(x, y, t) =

(

8 + cos(x) x
x 6 + sin(yt)

)

,

u+(x, y, t) = 0.5 sin(2πx) sin(2πy) cos(2πt),

u−(x, y, t) = exp(x+ y) cos(2πt).
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Although the coefficients β± in examples 1 and 2 are variable 2 × 2 matrices with
respect to x, y and t, the coefficients in example 3 are much more complicated,
because it contains some terms with trigonometric function, and the difference of
magnitude of the coefficients on interfaces is 10 times.

Figure 11 shows the interface of this example with a grid of 20×20. The interface
of this example is a combination of two circles. Again, the interface in this example
is a sharp-edged interface.

Figure 12 shows the numerical results of the solution at t = 0s, 0.3s, 0.6s and 1s.
Table 3 shows the numerical errors with different grids at t = 1s. Figure 13 shows
that our method is about 2nd order accurate both in the L∞ and L2 norm.
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Figure 12. Numerical solution of Example 3 at different time.

Table 3. Example 3, numerical error with different grids at t=1s.

nx × ny × nt ‖u− uh‖∞ Order ‖u− uh‖2 Order
5× 5× 20 0.5801 0.1909
10× 10× 40 0.1966 1.56 0.0481 1.99
20× 20× 80 0.0391 2.33 0.0081 2.58
40× 40× 160 0.0090 2.11 0.0021 1.92
80× 80× 320 0.0029 1.63 4.7093e-4 2.17

From the above examples, we can see that the solutions are smooth almost
everywhere but discontinuous along the interfaces. The numerical experiments
show that when the grid size gets smaller, the numerical result gets much better.
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Figure 13. Numerical errors of Example 3.

4. Conclusion

We propose a non-traditional finite element method for solving the variable ma-
trix coefficient wave equation with non-homogeneous interface jump conditions.
Numerical examples justify that our method is close to 2nd order accurate both in
the L∞ norm and L2 norm. Compared with the most recent previous work on wave
equation with interface jump conditions [27], they have the advantage of achieving
4th order accuracy, however, the problem setup is much simpler than our setup.
They have constant scalar coefficients while we have matrix variable coefficients. It
is the simplicity of the non-traditional finite element formulation that allows us to
implement the code for this type of complicated interface problem.
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