
INTERNATIONAL JOURNAL OF c⃝ 2019 Institute for Scientific
NUMERICAL ANALYSIS AND MODELING Computing and Information
Volume 16, Number 2, Pages 192–209

CONVEXITY SPLITTING IN A PHASE FIELD MODEL FOR

SURFACE DIFFUSION

RAINER BACKOFEN, STEVEN M. WISE, MARCO SALVALAGLIO, AND AXEL VOIGT

Abstract. Convexity splitting like schemes with improved accuracy are proposed for a phase
field model for surface diffusion. The schemes are developed to enable large scale simulations in
three spatial dimensions describing experimentally observed solid state dewetting phenomena. We
carefully elaborate the loss in accuracy associated with large time steps in such schemes and show

the existence of a maximal numerical timestep to achieve a prescribed accuracy. We demonstrate
the increase of this maximal numerical time step by at least one order of magnitude using a
Rosenbrock method. This convexity splitting scheme with improved accuracy is used to study the
effect of contact angle on solid state dewetting phenomena.

Key words. Convexity splitting, Rosenbrock time discretization, surface diffusion, solid-state
dewetting.

1. Introduction

If an energy E can be written as the difference of two convex energies Ec and Ee,
E = Ec − Ee, then the time discretization

un+1 − un

τn
= −∇HEc[un+1]−∇HEe[un]

of the gradient flow

ut = −∇HE [u]
is energy stable. That is, it satisfies E [un+1] ≤ E [un] for all time steps n. Here, τn =
tn+1−tn is the discrete time step width, un denotes the time-discrete approximation
of u(tn), ∇HE denotes the gradient of an energy E with respect to the inner product
of a Hilbert space H, defined by (∇HE [u], θ)H = δuE [u](θ) for all θ ∈ H, where the
right-hand side is the Gateaux derivative of E in a test function θ. Typical choices
are H = L2, for non-conserved flows, and H = H−1, for conserved flows. This
convexity splitting idea is often attributed to Eyre [18] and has become popular
as a simple and efficient discretization scheme for various evolution problems with
a gradient flow structure, see e.g. [10, 59, 20, 17, 54, 48, 49]. Some of these
schemes are shown to be unconditionally energy stable, unconditionally solvable
and converge optimally in the energy norm. However, it has also been shown that
convexity splitting approaches can lead to large errors [10, 11, 17, 19]. We will
elaborate on this issue and propose a convexity splitting approach for a phase field
model for surface diffusion with improved accuracy.

The model to be considered reads [42]

∂tu = ∇ · j, j =
1

ϵ
M(u)∇µ, g(u)µ =

1

ϵ
B′(u)− ϵ∆u,(1)

in Ω×(0,∞) with Ω ⊂ Rd with d = 2, 3. The variable u denotes an order parameter
for the phases of the system, such that, for example, u = 1 represents a solid phase,
and u = 0 represents a liquid phase. The variable µ is the chemical potential.
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We consider the initial condition u(x, 0) = u0(x) and boundary conditions, i.e.
n·∇µ = n·∇u = 0, where n is the outward unit normal to ∂Ω. B(u) = 18u2(1−u)2

is a double-well potential, M(u) = 2B(u) a mobility function, g(u) = 30u2(1 −
u)2 an enhancing function, and ϵ relates to the thickness of the transition region
between the two phases u = 1 and u = 0. The model formally converges for
ϵ → 0 to Mullins sharp interface model for surface diffusion [35], see, in particular
[42, 21, 56]. For the aformentioned result to hold the fourth order polynomial in
u in the mobility function M(u) is essential [56]. As recently shown [12, 31, 32]
occasionally used second order polynomials in u in the mobility function M(u),
see e.g. [7, 58, 51, 27], do actually not converge to surface diffusion if ϵ → 0.
Heuristic arguments and matched asymptotic analysis lead to the presence of an
additional bulk diffusion term, which might alter the long time behavior. This is
not the case for the originally proposed phase field approximation [9], which uses a
double-obstacle potential instead of the double-well potential B(u). The enhancing
function g(u) does not alter the matched asymptotic analysis. Such a function
is commonly used in classical phase field models for solidification [29] to ensure
better, though not necessarily higher convergence in ϵ. Herein we demonstrate its
advantage to increasing the accuracy, especially for larger values of ϵ.

For M(u) = g(u) = 1 the classical Cahn-Hilliard equation [8] is recovered, which
formally converges for ϵ → 0 to the Mullins-Sekerka problem [36], see [39]. The
Cahn-Hilliard equation can be written in the abstract framework as the H−1 gra-
dient flow ut = −∇H−1E [u], with respect to the energy

E(u) =
∫
Ω

(
ϵ

2
|∇u|2 + 1

ϵ
B(u)

)
dx.(2)

Convexity splitting for the Cahn-Hilliard equation has been considered in e.g. [18,
6, 19]. In this work we start with the canonical nonlinear convex splitting B(u) =
Bc(u)−Be(u), where

Bc(u) = B(u) + α

(
u− 1

2

)2

, Be(u) = α

(
u− 1

2

)2

.(3)

For α ≥ 9 the two function Bc(u) and Be(u) are convex and thus also the ener-
gies Ec =

∫
Ω

(
ϵ
2 |∇u|2 + 1

ϵBc(u)
)
dx and Ee =

∫
Ω

(
1
ϵBe(u)

)
dx. The resulting convex

splitting scheme is unconditionally energy stable, unconditionally solvable and con-
verges optimally in the energy norm [19]. We will adapt this scheme and use it for
eq. (1) with the above considered functional forms for M(u) and g(u). For g(u) = 1
the analytical results for the Cahn-Hilliard equation can be adapted to show energy
stability properties also for the more general case [16]. But, if g(u) in non-constant,
we are unable to rigorously demonstrate the desired properties of the scheme, the
model does not fall into the considered class of a gradient flow. It does not even
have an energetic-variational structure. On the other side the improved accuracy
of the model with g(u) is absolutely essential to enable large scale simulations for
surface diffusion, such as the complex solid-state dewetting scenarios of ultra-thin
silicon films in [37]. For an introduction to solid-state dewetting see the review [50].
We therefore adapt the proposed scheme for the Cahn-Hilliard equation, consider
a Rosenbrock time discretization to increase the accuracy of the scheme and apply
it to the general case.

The paper is organized as follows: In Section 2 we describe the numerical ap-
proach in detail. We propose a first order scheme, for which we review unconditional
energy stability for the case g(u) = 1. A modified linear first order scheme and a
new Rosenbrock time stepping scheme is then introduced for the more general case.
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In Section 3 we analyze the schemes with respect to accuracy, solvability and effi-
ciency. We consider the solid-state dewetting scenario of a retracting step in two
space dimensions to find optimal parameters, which are used in Section 4 for large
scale simulations for solid-state dewetting in three space dimensions. We further
discuss an outlook to more realistic modeling approaches including the incorpora-
tion of vapor-substrate and film-substrate interfacial energies. In Section 5 we draw
conclusions.

2. Discretization schemes

Eq. (1) with the convex splitting in eq. (3) can be written as a system of two
second order partial differential equations

∂tu = ∇ ·
(
1

ϵ
M(u)∇µ

)
, g(u)µ = −ϵ∆u+

1

ϵ
B′

c(u)−
1

ϵ
B′

e(u).(4)

We observe that this equation does not have an energy dissipation structure, unless
g(u) is a constant function. On the other hand, the sharp interface law to which
it converges is a gradient flow, and it is thus reasonable to expect stable dynamics.
The question is: With what energy do we measure the stability of solutions to (4)?
We currently cannot answer this question in a systematic, quantitative way and,
therefore we recall the analysis only for the case g(u) = 1. Strictly speaking even
with g(u) = 1 eq. (4) is not a gradient flow, because of the presence of the mobility
functionM(u). On the other hand, it does have a clear energy-variational structure,
and this is all that is needed to discuss the issue of energy stability. With M(u)
the rate of dissipation is dtE [u] = −

∫
Ω

1
ϵM(u)|∇µ|2dx and thus E [un+1] ≤ E [un].

2.1. A first order unconditionally energy stable scheme. Here we review
what might be considered a standard framework for constructing first order convex
splitting schemes. Consider the convex splitting scheme

un+1 − un

τn
= ∇ ·

(
1

ϵ
M(un)∇µn+1

)
,(5)

µn+1 = − ϵ∆un+1 +
1

ϵ
B′

c(u
n+1)− 1

ϵ
B′

e(u
n).(6)

Since Bc and Be are convex, it follows that (un+1 − un)B′
c(u

n+1) = Bc(u
n+1) −

Bc(u
n)+Rc(u

n, un+1), −(un+1−un)B′
e(u

n) = −Be(u
n+1)+Be(u

n)+Re(u
n, un+1),

where Rc, Re ≥ 0. Testing (5) with µn+1 and (6) with un+1 − un, and using the
boundary conditions, we obtain(

un+1 − un, µn+1
)
=− τn

ϵ

(
M(un)∇µn+1,∇µn+1

)
(
µn+1, un+1 − un

)
= ϵ

(
∇un+1,∇

(
un+1 − un

))
+

1

ϵ

(
B′

c(u
n+1), un+1 − un

)
− 1

ϵ

(
B′

e(u
n), un+1 − un

)
= E [un+1]− E [un] +

∫
Ω

1

ϵ

(
Rc(u

n, un+1) +Re(u
n, un+1)

)
dx

+
ϵ

2

(
∇(un+1 − un),∇(un+1 − un)

)
.

Combining both, we obtain the following energy stability result

(7) E [un+1] +
τn
ϵ

(
M(un)∇µn+1,∇µn+1

)
+Rn

ϵ = E [un]
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with

Rn
ϵ =

∫
Ω

1

ϵ

(
Rc(u

n, un+1) +Re(u
n, un+1)

)
dx+

ϵ

2

(
∇(un+1 − un),∇(un+1 − un)

)
the non-negative energy dissipation term. Following [22, 61], one can also use the
energetic-variational structure of eq. (4) and the convex splitting methodology to
devise a second order accurate (in time) energy stable scheme. See [14] for more
details, including an optimal order convergence analysis for the case that M(u) = 1.
One drawback of this scheme is that it is not a one-step scheme, which makes it
particularly difficult to adapt the time step size τ > 0. It will therefore not be
used for the full problem, as time-adaptivity will be essential for the large scale
simulation, see Section 4.

2.2. Convex splitting like schemes for the full problem. Since our primary
goal is to conduct efficient and accurate simulations over large time and spatial
scales, employing temporal and spatial adaptivity will be critical. In order to con-
struct practical, stable, and high order time stepping strategies in this setting, we
turn to semi-implicit Runge-Kutta schemes. Such schemes often have excellent
stability properties, can be of arbitrarily high order, and since they are one-step
methods, can handle time adaptivity easily. Semi-implicit Runge-Kutta schemes
that respect the convex-concave structure of the energy have been recently intro-
duced in the literature [49]. These schemes, in their current incarnation, can be
shown to be rigorously unconditionally energy stable and solvable, but only when
M(u) and g(u) are constant functions. Our schemes, based on the Rosenbrock
framework, will be shown to be solvable and accurate when M(u) and g(u) are
non-constant. Moreover, they possess a natural error indicator that is useful for
time step adaptivity, as we will show. We adapt the proposed first order scheme
and approximate the non-linear term to obtain a modified linear system.

We rewrite eq. (4) for û = (u, µ) as

H∂tû = F (û), with F (û) = Fc(û) + Fe(û)(8)

and

H =

[
0 0
1 0

]
, Fc(û) =

[
g(u)µ+ ϵ∆u− 1

ϵB
′
c(u)

∇ · (M(u)∇µ)

]
and Fe(û) =

[
1
ϵB

′
e(u)
0

]
.

We will consider a Taylor expansion to treat Fc semi-implicitly. However, M(u)
and g(u) are treated explicitly. We thus obtain the semi-implicit convex splitting
like scheme

1

τ
Hûn+1 − F ∗

c,û(û
n)ûn+1 =

1

τ
Hûn + Fc(û

n)− F ∗
c,û(û

n)ûn + Fe(û
n)(9)

with

F ∗
c,û(û

n)ûn+1 =

[
g(un)µn+1 + ϵ∆un+1 − 1

ϵB
′′
c (u

n)un+1

∇ ·
(
M(un)∇µn+1

) ]
.(10)

It can be considered as variant of the convex splitting scheme (5) – (6), with a
linearization to treat the cubic term and the inclusion of the function g(u). Since
g(u), B′′

c (u), and M(u) are non-negative functions, the solvability of this scheme
can be established under certain reasonable assumptions. Specifically, solvability
can be proven using, for example, the Browder-Minty lemma, as was done in the
paper by Han and Wang [24]. We point out that, for the solvability to go through
theoretically, g and M must be regularized slightly so that 0 < g0 ≤ gϵ(x) < g1, for
all x ∈ R, and similarly for M . But these regularizations can be effected without



196 R. BACKOFEN, S. M. WISE, M. SALVALAGLIO, AND A. VOIGT

changing the asymptotic convergence, and so we do not write the regularized forms.
The stability of the scheme is, however, unknown, as we have already stated.

We now use this first order scheme to build higher order Rosenbrock, to be
more precise Rosenbrock-Wanner schemes, which are semi-implicit Runge-Kutta
schemes, which do not require iterative Newton steps, see [30] for a review. With
these schemes one can achieve higher order methods for stiff problems by working
the Jacobian matrix of F , in our case only F ∗

c,û, or approximations of it, into the
integration formula. For a general introduction in the context of ordinary differen-
tial equations we refer to the textbooks [23, 13]. Rosenbrock-Wanner schemes are
defined by the recursive update

(11) ûn+1 = ûn +
s∑

i=1

miû
n
i

where ûi = (ui, µi) are the implicitly defined Runge-Kutta stages, mi ∈ R are
coefficients determining the order and accuracy of the method, and s the stage order
of the scheme. We now have to solve a system of s partial differential equations for
the unknown stages ûn

1 , . . . , û
n
s in each time step

(12)
1

τ

1

γ
Hûn

i − F ∗
c,û(û

n)ûn
i =

1

τ
H

i−1∑
j=1

cij û
n
j + Fc(v̂

n
i ) + Fe(v̂

n
i )

with

v̂ni = ûn +
i−1∑
j=1

aij û
n
j(13)

and γ, cij and aij coefficients defined by the particular Rosenbrock method, see
Tables 1 and 2. We will consider a two-stage method (ROS2) and a three-stage
method (ROS34PW2), see [52, 41, 30], and for both methods an approximation of
the Jacobian

F ∗
c,û(û

n)ûn
i =

[
g(un)µn

i + g′(un)µnun
i + ϵ∆un

i − 1
ϵB

′′
c (un)u

n
i

∇ · (M ′(un)un
i ∇µn) +∇ · (M(un)∇µn

i )

]
(14)

where now the nonlinear terms M(u) and g(u) are treated semi-implicitly. Strictly
speaking we thus only have an approximation of a Rosenbrock-Wanner scheme.

Our proposed Rosenbrock-Wanner schemes and the schemes from [49] may be
viewed in the same general semi-implicit Runge-Kutta framework, and the stability
analysis may be related. However, it is still open for the considered equation.

Table 1. A set of coefficients for the ROS2 Rosenbrock scheme.
All coefficients not given explicitly are set to zero. The values for
m̂i are only required for lower order approximations, see Sec. 4.1.

γ = 1.707106781186547 c11 = γ
a21 = 0.5857864376269050 c21 = −1.171572875253810
a22 = 1.0 c22 = −γ
m1 = 0.8786796564403575 m̂1 = 0.5857864376269050
m2 = 0.2928932188134525 m̂2 = 0.0

The standard semi-implicit and Rosenbrock schemes, without convexity splitting,
are obtained by setting α = 0 in eq. (3). However, the resulting schemes are not
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Table 2. A set of coefficients for the ROS34PW2 Rosenbrock
scheme. All coefficients not given explicitly are set to zero. The
values for m̂i are only required for lower order approximations, see
Sec. 4.1.

γ = 0.43586652150845 c11 = γ
a21 = 2 c21 = −4.58856072055809
a22 = 0.871733043016918 c22 = −γ
a31 = 1.41921731745576 c31 = −4.18476048231916
a32 = −0.25923221167297 c32 = 0.285192017355496
a33 = 0.731579957788852 c33 = −0.413333376233886
a41 = 4.18476048231916 c41 = −6.36817920012836
a42 = −0.285192017355496 c42 = −6.79562094446684
a43 = 2.29428036027904 c43 = 2.87009860433106
a44 = 1.0 c44 = 0
m1 = 4.18476048231916 m̂1 = 3.90701053467119
m2 = −0.285192017355496 m̂2 = 1.1180478778205
m3 = 2.29428036027904 m̂3 = 0.521650232611491
m4 = 1.0 m̂4 = 0.5

solvable with standard iterative solvers for reasonable timesteps, which is the reason
to introduce the convexity splitting schemes.

To discretize in space we use globally continuous, piecewise linear Lagrange finite
elements and a conforming triangulation of the domain Ω. To assemble and solve the
resulting systems we use the FEM-toolbox AMDiS [53, 60]. The mesh is adaptively
refined within the diffuse interface to ensure a minimal resolution with respect to
the interface width ϵ. As linear solver we used a BiCGStab(l) method, with l = 2,
and a block Jacobi preconditioner with ILU factorization.

3. Results

We consider an example in a two-dimensional space, which mimics solid-state
dewetting. Fig. 1 shows the setup and the simulation results for a retracting step.
The initial setup is a round step with a small aspect ratio (height/length = 1/50) on
a substrate with 90◦ contact angle. The substrate is not modeled and the boundary
conditions n ·∇µ = n ·∇u = 0 remain, even if only half of the domain is considered.
Fig. 1 shows only a small part of the rectangular computational domain of width
51 and height 5. The initial configuration is out of equilibrium and will evolve
towards a minimal energy state. A hill is formed followed by a small valley. As the
step retracts, the hill grows and the valley deepens, which eventually will lead to
a splitting into well separated parts, each converging to a hemisphere. For larger
aspect ratios this splitting can be prevented, and the shape evolves towards its
equilibrium shape which is given by the Winterbottom construction [57], in our
case again a hemisphere. However, in order to analyze the numerical schemes we
are here only interested in the early stage of evolution, the retracting step. We will
use the tip position to validate our numerical approach. This provides a simple
quantitative measure as a characteristic scaling laws for it is known for surface
diffusion. To approximate surface diffusion the tip position has to scale as t1/2.
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Figure 1. Computational setup and solution for a re-
tracting step at t = 0, 2, 9 and 30 from left to right.
(top) Phase field variable u. (bottom) 0.5 - level ine of u
at various times.

3.1. Justification of modeling. We first demonstrate the modeling advantage
by comparing solutions with and without g(u) for various ϵ with the reference solu-
tion, which here is the corresponding sharp interface solution for surface diffusion.
For numerical treatment of the sharp interface problem we refer e.g. to [3, 25, 44, 4].
Fig. 2 shows the comparison for various ϵ, for the semi-implicit scheme with and
without g(u), τ = ϵ10−3, α = 0 and a direct solver. A scheme, which leads to
accurate results but is impractical for simulations in three space dimensions. The
reference solution is computed using the scheme described in [44] and shows the
characteristic t1/2 scaling for the tip position. While this can only be reproduced
for small values of ϵ if g(u) = 1, the behavior is also found for large values of ϵ if
g(u) is considered.

sharp interface

Figure 2. Tip position for simulations with and without
g(u) for two different values of ϵ in comparison with a
reference solution. a.u. stands for arbitrary units and
considers the used values in the simulations.
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3.2. Comparision of convex-splitting schemes. We now compare the three
proposed convex-splitting-like schemes. For the reference solutions we now consider
the corresponding scheme with a small timestep τ = 10−4, α = 0 and a direct
solver. All simulations start with a small time step τ = 10−4. After the initial
phase at t = 0.05 the time step is gradually increased until it reaches the final time
step τ , which is reported in the following. We consider the smallest possible value
α = 9, for which the resulting linear systems for each scheme and each τ can be
solved by the mentioned iterative solver. Fig. 3 shows the tip position over time
for various timesteps and the corresponding error for the semi implicit convexity
splitting scheme. The correct qualitative behavior is only achieved by the semi
implicit convexity splitting scheme for τ < 3 · 10−2. To achieve a quantitative error
below 1% even requires τ < 4 · 10−3. Such large errors have also been reported for
other convex-splitting schemes [10, 17]. The results in Fig. 3 further indicate first
order convergence in τ .
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Figure 3. Semi implicit convexity splitting scheme. (left)
Tip position over time for various timesteps together with
the reference solution (thick line). The numbers indicate
the used timesteps. (right) Deviation from the reference
solution over timesteps measured at t = 10. The error has
also been evaluated at t = 5 and t = 30 leading to similar
behavior, not shown.

For the comparison with the experimental shapes in [37] a numerical error with-
in 1% will be sufficient. This results from the uncertainties in the experimental
measurements and the large modeling error. However, even if a numerical error
within 1% can be reached with the proposed scheme a much larger time step will
be required to enable large scale simulations in three spatial dimensions. We demon-
strate that this can be achieved using the Rosenbrock schemes. Figs. 4 and 5 show
the results for ROS2 and ROS34WP2, respectively.

The qualitative behavior of the reference solution can be recovered for τ < 10−1

and τ < 1 for ROS2 and ROS34WP2, respectively. Quantitatively we obtain a
solution with an error within 1% for τ < 0.03 and τ < 0.15. The results further
indicate a better than first order convergence in τ in both cases. However, this im-
provement comes with an additional cost associated with the Rosenbrock schemes.
The number of linear equations to be solved in each time step increases by a factor
of two (ROS2), respectively four (ROS34WP2). We thus consider convergence with
respect to an effective numerical time step τeff = τ/s, with s the number of steps
in the considered Rosenbrock scheme. Fig. 6 shows the comparison of the three
considered convexity splitting schemes. We observe first order convergence for the
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Figure 4. Rosenbrock ROS2 convexity splitting scheme.
(left) Tip position over time for various timesteps togeth-
er with the reference solution (thick line). The numbers
indicate the used timesteps. (right) Deviation from the
reference solution over timesteps measured at t = 10. The
error has also been evaluated at t = 5 and t = 30 leading
to similar behavior, not shown.
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Figure 5. Rosenbrock ROS34WP2 convexity splitting
scheme. (left) Tip position over time for various timesteps
together with the reference solution (thick line). The num-
bers indicate the used timesteps. (right) Deviation from
the reference solution over timesteps measured at t = 10.
The error has also been evaluated at t = 5 and t = 30
leading to similar behavior, not shown.

semi-implicit convexity splitting scheme and better than first order convergence for
the Rosenbrock convexity splitting schemes. As the Jacobian is only approximated
in our schemes we do not reach the theoretically predicted order of convergence of
the Rosenbrock schemes. The kink in the error curves in Figs. 4, 5 and 6 results
from the nonlinear behavior of the schemes.

The ROS34WP2 scheme turns out to be the most efficient, it allows at least
one order of magnitude larger timesteps than the semi-implicit convexity splitting
scheme, without loss in accuracy. All schemes indicate the existence of a numerical
upper bound for the timestep, a property which is also noticed for convexity split-
ting schemes where unconditional energy stability and unconditional solvability can
be proven [10, 17].
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Figure 6. Convergence w.r.t. effective numeric time step.
Comparison of the semi-implicit convexity splitting and
Rosenbrock convexity splitting schemes.

We expect these results to be of general interest, especially in applications where
the long time behavior is concerned. In the next section we show large scale sim-
ulations, which would not be possible without the introduced convexity splitting
Rosenbrock scheme. Other applications are found in phase field crystal simulation-
s, where grain growth is considered and a Rosenbrock scheme already applied, see
[2, 40].

4. Application

Fig. 7 shows the adaptively refined mesh and the phase field variable for a time
step of the considered three dimensional simulations which are motivated by the
experimentally observed nano-morphologies in [37].

Figure 7. Phase field variable, interface and adaptive-
ly refined mesh in order to ensure approximately 10 grid
points across the interface.

4.1. Numerical setting for nano-morphology simulation. The ROS34WP2
convex splitting scheme is the method of choice for the large scale simulations in
three spatial dimensions. Fig. 8 shows the results for the dewetting of a square
island with aspect ratio height/length=1/80. (A) indicates the initial state. All
sides retract, but at the corners the retraction speed is smaller, and fingers build up
(B). The valley behind the tip eventually becomes so deep that the island breaks
up and a hole is formed in the middle (C). This hole rapidly increases until it
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approaches the vicinity of the steps, thus, becoming square like (D). The bridges
connecting the corner fingers become thinner (E) and break (F). The resulting four
islands arrange as equidistant hemispherical dots (not shown).

A B C D E F

Figure 8. Dewetting of a square island. (top) Change in
morphology from left to right and (bottom) height profile
for different stages shown across the diagonal depicted in
(A). The profiles corresponding to (A)-(F) evolve towards
the center.
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Figure 9. Dewetting of a square island. Energy decay
and timestep evolution during the simulation. The snap-
shots (A)-(F) from Fig. 8 are labeled in the plot. The dras-
tic reduction in energy associated with topological changes
in the morphology can be seen, as well as the reduction
in the timestep associated with the increased dynamics
of such events. For smooth morphology evolutions large
timesteps, close to the maximal numerical timestep to en-
sure the required accuracy are chosen.

To enable these simulations we exploit the symmetry of the system and only
calculate a quarter of the domain. We further make use of an additional advantage
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of the Rosenbrock scheme. It allows to compute a lower order approximation of the
solution without much additional cost [30],

ûn+1
low = ûn +

s∑
i=1

m̂iû
n
i

This allows for a proper definition of time errors en+1 = ||ûn+1 − ûn+1
low || which

can be used to adapt the timestep [28]. The next timestep is e.g. controlled by a
PI-controller [30],

τn+1 = ρ
(τn)2

τn−1

(
etole

n

(en+1)2

)1/p

,

where etol is a prescribed error bound, ρ ∈ (0, 1] a relaxation factor and p the order
of the Rosenbrock method. In the following we use etol = 4 · 10−3, ρ = 0.95 and
p = 3.

Fig. 9 shows the reduction of the energy and the considered timestep for the
simulation in Fig. 8. The various stages of the evolution indicated by (A) - (F)
are shown and demonstrate the relation between a drastic reduction in timestep
and topological changes in the morphology and the large timesteps used for smooth
morphology changes. The simulations are run on a parallel environment with 384
cores, using domain decomposition.

4.2. Model extension. Even if quantitative comparisons between the experimen-
tally observed and the computed nano-morphologies are already possible, see Fig.
4 in [37], improvements in the considered model are needed to further reduce the
discrepancies. Besides the process conditions this includes the incorporation of
vapor-substrate and film-substrate interfacial energies and anisotropy. We will here
only concentrate on the resulting wetting angle. Following typical approaches for
contact problems in fluid dynamics [26, 55, 1] we introduce the substrate energy

Esub[u] =
∫
Ω

1

ξ
B(v)

(
1

2
(γVS + γFS)−

−4u3 + 6u2 − 1

2
(γVS − γFS)

)
dx

with vapor-substrate and film-substrate energy densities, γVS and γFS, respectively.
We define v(z) = 1

2 (1− tanh( 3zξ )), with z the height above the substrate and ξ > 0

a small parameter. 1
ξB(v) is thus an approximation for a delta function used

to consider the boundary condition at the substrate. The cubic polynomial in u
ensures the substrate energy density to be equal to γVS for u = 0 and to be equal to
γFS for u = 1, as well as it’s derivative to be zero for u = 0 and u = 1. This energy
now has to be added to E in the derivation of the evolution equations, which leads
instead of eq. (1) to

∂tu = ∇ · j, j =
1

ϵ
M(u)∇µ,(15)

g(u)µ =
1

ϵ
B′(u)− ϵ∆u+

1

ξ
B(v)6u(u− 1)(γVS − γFS),(16)

in Ω × (0,∞). The initial and boundary conditions remain. Following [34], the
asymptotic limit ξ → 0 leads to eq. (1) with boundary condition n · ∇µ = 0
and ϵn · ∇u = 6u(u − 1)(γVS − γFS). Using Young’s law, γVS − γFS = γ cos(θ),
with equilibrium contact angle θ and film-vapor energy density γ, which in our
case is constant and equal to one, this is consistent with the treatment in [27]. A
similar approach has recently been proposed in [15]. With θ = 90◦ or equivalently
γVS = γFS we obtain our previous model. The sharp interface limit ϵ → 0 for the
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above treatment of the triple junction is considered in [38, 62] and leads to the
classical Young’s law, see Fig. 10.

Figure 10. Young’s law. The relation between (isotrop-
ic) film-vapor interface energy (γ), film-substrate inter-
face energy (γFS) and the vapor-substrate interface energy
(γVS) determines a unique wetting angle θ.

The formulation in eqs. (15) - (16) allows to use the proposed convexity splitting
approach. We only need to modify eq. (3), which now reads

Bc(u) = B(u) +B(v)(6u(u− 1)(γVS − γFS) + α

(
u− 1

2

)2

,(17)

Be(u) = α

(
u− 1

2

)2

,(18)

where we have set ξ = ϵ. To ensure convexity α now depends on (γVS − γFS) and
reads

α ≥ α0 +
B(v)2

12ϵ
(γVS − γFS),(19)

with α0 ≥ 9 as above. The proposed formulation in eqs. (15) - (16) furthermore
has the advantage to circumvent the definition of a contact angle, which becomes
less meaningful if anisotropies are considered.

A B C D E F

Figure 11. Dewetting of a square island. (top) Change in
morphology from left to right and (bottom) height profile
for different stages shown across the diagonal depicted in
(A). The profiles corresponding to (A)-(F) evolve towards
the center. The corresponding times of the snap-shots are
(A,...,F) = (0, 219, 670, 1610, 3422, 4802).

We consider two scenarios (γVS−γFS)
γ = 0.5 and (γVS−γFS)

γ = −0.5, corresponding

to wetting angles θ = 60◦ and θ = 120◦, respectively. Fig. 11 shows the evolution
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for the first case. All sides of the initial square (A) retract. The retraction speed
at the corners is smaller which leads to the formation of fingers at the corners (B).
Due to the smaller wetting angle, the hill and valley behind the retracting front
is elongated and not as pronounced (C). Thus, the breaking of the film due to
hole formation is suppressed. Instead, the evolving fingers at the corners lead to a
cross-shape (D). This shape then becomes more and more compact and evolves to
a singular drop (E-F). The final shape is a sphere, which is cut by the substrate to
fulfill the volume constraint and the equilibrium wetting angle (not shown). The
second case is shown in Fig. 12, where a completely different effect is observed.

A B C D E F

Figure 12. Dewetting of a square island. (top) Change in
morphology from left to right and (bottom) height profile
for different stages shown across the diagonal depicted in
(A). The profiles corresponding to (A)-(F) evolve towards
the center. The corresponding times of the snap-shots are
(A,...,F) = (0, 22, 40, 123, 274, 1123).

The hill behind the retracting step grows faster, and the valley becomes deeper.
Thus, the film touches the substrate earlier and forms holes (B). At the corners the
valley is thinner due to the effect of both adjacent steps and thus the hole formation
starts earlier. A chain of holes starts to form in the primary valley parallel to the
sides of the initial structure. These holes join and separate an outer set of material
lines from a inner square patch (C). The outer lines form a square and decompose
similar to a Rayleigh instability and form a line of dots (D-F). The inner square
patch resembles the initial square on a smaller scale. The remaining patch in the
middle, is too small to further decompose and collapses to a single drop (D-F).
At the end a regular array of dots is achieved. Every dot is a sphere cut by the
substrate with a wetting angle, θ = 120◦.

We should mention that the observed topological changes are quite sensitive to
the interface width of the phase field and the width of the surface delta function.
Smaller ϵ lead to a delay of the touching of the interface with the substrate. Thus,
the hole formation occurs later. However, the general trend is independent of the
modeling details. A reduced contact angle θ < 90◦ leads to more compact shapes,
while an increased contact angle θ > 90◦ enhances further splitting.

In our modeling approach the interaction between film and substrate is smeared
out by construction. Due to the boundary condition the isolines of the phase field
are still forced to touch the substrate with 90◦ on a smaller length scale than the
interface width. Thus the wetting angle has to be defined by extrapolating the
shape of the film towards the substrate. In the equilibrium state, a sphere may be
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fitted to the island shape. The angle of the sphere at the substrate then defines a
proper wetting angle.

Even if models for weak and strong anisotropies in the film-vapor interfacial
energy density in the context of phase field approximations for surface diffusion
are available, see e.g. [51, 33, 43, 47, 5, 46, 45], large scale simulations for these
models which allow a detailed investigation of solid-state dewetting are still work in
progress. The same is true for a combination of substrate interfacial energies and
anisotropies. All current results in this direction only consider two-dimensional
models, see [15, 4].

5. Conclusions

The advantages of convexity splitting schemes, which might be uncondition-
ally energy stable, unconditionally solvable and optimally convergent in the energy
norm, come with a reduction in accuracy. For simulations within a given error
bound a maximal numerical timestep exist. This maximal numerical timestep might
not be much larger than in classical schemes without convexity splitting. Even if
this disadvantage has been pointed out by several people [10, 11, 17, 19] many ex-
amples exist where this fact is not respected and convexity splitting schemes are
used with unrealistic large timesteps. We here propose a convexity splitting scheme
with increased accuracy for a phase field model for surface diffusion [42]. The con-
vexity splitting idea is combined with a Rosenbrock time stepping scheme. Through
various approximations we make large scale simulations in three spatial dimensions
tractable. We numerically demonstrate the accuracy of the method on an example
in two spatial dimensions. The considered convexity splitting Rosenbrock scheme
ROS34RW2 allows for at least one order of magnitude larger time steps than the
semi-implicit convexity splitting scheme without loss in accuracy. We demonstrate
the possibilities the proposed scheme offers for exploring the physical phenomena
behind solid-state dewetting in three spatial dimensions.
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