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A DISCONTINUOUS RITZ METHOD FOR A CLASS OF

CALCULUS OF VARIATIONS PROBLEMS

XIAOBING FENG AND STEFAN SCHNAKE

Abstract. This paper develops an analogue (or counterpart) to discontinuous Galerkin (DG)
methods for approximating a general class of calculus of variations problems. The proposed

method, called the discontinuous Ritz (DR) method, constructs a numerical solution by minimizing
a discrete energy over DG function spaces. The discrete energy includes standard penalization
terms as well as the DG finite element (DG-FE) numerical derivatives developed recently by Feng,
Lewis, and Neilan in [7]. It is proved that the proposed DR method converges and that the DG-FE

numerical derivatives exhibit a compactness property which is desirable and crucial for applying
the proposed DR method to problems with more complex energy functionals. Numerical tests
are provided on the classical p-Laplace problem to gauge the performance of the proposed DR
method.
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1. Introduction

In this paper we develop a numerical method using totally discontinuous piece-
wise polynomial functions for approximating solutions to the following problem
from the calculus of variations: Find u ∈ W 1,p

g (Ω) such that

J (u) ≤ J (v) ∀v ∈ W 1,p
g (Ω),(1)

where

J (v) =

∫
Ω

f(∇v, v, x) dx(2)

is the energy functional, f : Rd ×R×Ω → R+ is called the energy density, Ω ⊂ Rd

is an open bounded domain, and

W 1,p
g (Ω) := {v ∈ W 1,p(Ω) : u = g on ∂Ω}.

If such a u exists, it is called a minimizer of J over W 1,p
g (Ω) and is written as

u ∈ argmin
v∈W 1,p

g (Ω)

J (v).(3)

Although the calculus of variations is an old field in mathematics, its growth
and boundary have kept expanding because new applications arising from physics,
differential geometry, image processing, materials science, and optimal control (just
to name a few). Those problems are often formulated as calculus of variations
problems, among them are the Brachistochrone problem [5], the minimal surface
problem [6], and the Erickson energy for nematic liquid crystals [11].

Numerically solving those problems means to approximate the exact minimizer
u of J over W 1,p

g (Ω) via a numerical approximation uh. As expected, there are
many methods for constructing an approximate solution uh. The existing numerical
methods can be divided into two categories: the indirect approach and the direct
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approach. The indirect approach is based on the fact that the minimizer u must
satisfy, in some sense, the following Euler-Lagrange equation:

d∑
i=1

∂

∂xi
(fξi(∇u, u, x)) = fu(∇u, u, x) ∀x ∈ Ω.(4)

As equation (4) is a second order PDE in divergence (or conservative) form, it can
be discretized using a variety of methods such as finite difference, finite element,
discontinuous Galerkin and spectral method for constructing an approximate so-
lution uh. This indirect approach is often the preferred approach because of the
wealthy amount of numerical methods available for discretizing PDEs. However,
this approach does have two drawbacks. First, the Euler-Lagrange equation is only
a necessary condition for a minimizer and it may not be a sufficient one. More
information must be known about J in order to determine if the solution of the
Euler-Lagrange equation indeed globally minimizes J . Second, a discretization of
the PDE may lose some important properties of the original energy functional, such
as conservation or dissipation laws. On the other hand, the direct approach seeks
an approximate solution uh by first constructing a discrete energy functional Jh

and then setting

uh ∈ argmin
vh∈Xh

Jh(vh),(5)

where Xh is a finite-dimensional space which approximates W 1,p
g (Ω). Since prob-

lem (5) is equivalent to a minimization problem in RN , a variety of algorithms (or
solvers) can be employed to compute uh. For example, we may minimize Jh by
using a quasi-Newton algorithm or by first deriving the (discrete) Euler-Lagrange
equation to Jh and then solving for uh. The key issue of this approach is how
to construct a “good” discrete energy functional Jh which can ensure the conver-
gence of uh to u. One important advantage of the direct approach is that a “good”
discrete energy functional Jh will automatically preserve key properties of the orig-
inal energy functional J . For example, the discrete variational derivative method
by Furihata and Matsuo for the KdV equation, nonlinear Schrödinger equations,
and the Cahn-Hillard equation [9]; the Variational DGFEM method by Buffa and
Ortner [2] for calculus of variations problems, and the finite element method by
Nochetto et al. [11] for nematic liquid crystals all have such a trait.

Our goal in this paper is to develop a discontinuous Ritz (DR) framework for a
class of variational problems described by (1). Our numerical method belongs to
the direct approach and takes Xh = Vh - the discontinuous Galerkin (DG) space
consisting of totally discontinuous piecewise polynomial functions on a mesh Th of Ω.
We call our method a discontinuous Ritz method because it directly approximates
problem (1). In the special case when

J (v) =
1

2
a(v, v)− F (v),

and a(·, ·) is a symmetric and coercive bilinear form, problem (1) is known as the
Ritz formulation of the following Galerkin (or weak) formulation: find u ∈ V (which
is assumed to be a Hilbert space) such that

a(u, v) = F (v) ∀v ∈ V.

As mentioned earlier, the key issue we face is to construct a “good” discrete ener-
gy functional Jh. Since DG functions are discontinuous across element edges, two
roadblocks arise when creating a discrete energy functional Jh that makes sense
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on Vh. First, Jh must weakly enforce continuity and the Dirichlet boundary data.
The standard way to cope with this issue in the DG framework is to use interior
penalty terms, and indeed including interior penalty terms in Jh is sufficient to
obtain these properties in the limit as h → 0. Second and more importantly, these
discontinuities also make DG functions not globally differentiable in general, and
one has to determine how to approximate the gradient operator ∇ in the energy
functional J . An obvious choice is to approximate it by a piecewisely defined gradi-
ent operator over Th. However, such a naive choice of a discrete gradient may lead
to divergent numerical method [2]. To overcome this difficulty, our idea is to use the
newly developed discontinuous Galerkin finite element (DG-FE) numerical deriva-
tives (and gradient) by Feng, Lewis, and Neilan in [7] as our discrete derivatives
(and gradient). The bulk of this paper will devote to demonstrating the discrete
energy functional so-constructed is a “good” one, in the sense that the resulting
discontinuous Ritz method converges for a general class of energy functionals J .
On the other hand, no error estimate (or rates of convergence) will be provided for
the general framework, such a result may only be feasible for specific problems and
will be reported in a future work.

The rest of the paper is organized as follows. In Section 2, we give the notation
used for the paper as well as the assumptions on the density function f in order
to guarantee the well-posedness of problem (1) and the convergence of the pro-
posed discontinuous Ritz method. In Section 3, we illustrate the need for a proper
discretization of the gradient operator by showing some failed choices of discrete
gradients tested on Poisson problem with homogeneous Dirichlet boundary data.
In Section 4, we present the definition of the DG-FE numerical derivatives, the
motivation for using it, and then define our discontinuous Ritz method. Section
5 is devoted to the convergence analysis of the proposed DR method. We prove
that the proposed DR method and the variational DGFEM by Buffa and Ortner
[2] are actually equivalent schemes and verify the convergence of the proposed DR
method for a class of densities f . In addition, we present a compactness result
using our DG-FE numerical gradient, which is of independent interests. In Section
6, we show a few numerical tests for the proposed DR method on the p-Laplace
problem.

2. Preliminaries

2.1. Notation. Let Ω be a bounded polygonal domain in Rd (d = 1, 2, 3). For
1 ≤ p < ∞, let Lp(Ω) and W 1,p(Ω) denote the usual Lp space and Sobolev space
on Ω with their standard norms. (·, ·) stands for the standard L2(Ω) inner product.
We use p∗ > 1 to denote the Sobolev conjugate of p, that is,

p∗ =

{
dp
d−p if p < d,

∞ if p ≥ d,
(6)

and q∗ > 1 such that

q∗ =

{
(d−1)p
d−p if p < d,

∞ if p ≥ d.
(7)

Let Th be a quasi-uniform and shape regular mesh of Ω, and let EI
h, EB

h be the
interior and boundary edges of Th, and Eh = EI

h ∪ EB
h . For any e ∈ Eh, let γe > 0,

the penalty parameter, be a constant on e and denote γ∗ = mine∈EI
h
γe.
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For any interior edge/face e = ∂T+∩∂T− ∈ EI
h, we define the jump and average

of a scalar or vector valued function v as

[v]
∣∣
e
:= v+ − v−, {v}

∣∣
e
:=

1

2

(
v+ + v−

)
,

where v± = v|T± . On a boundary edge/face e ∈ EB
h with e = ∂T+ ∩ ∂Ω, we set

[v]
∣∣
e
= {v}

∣∣
e
= v+. For any e ∈ EI

h we use νe to denote the unit outward normal
vector pointing in the direction of the element with the smaller global index. For
e ∈ EB

h we set νe to be the outward normal to ∂Ω restricted to e.
We also define the broken Sobolev space

W 1,p(Th) :=
∏

T∈Th

W 1,p(T )

endowed with the following semi-norm and norm:

|v|W 1,p(Th) = ∥∇v∥Lp(Th) +

( ∑
e∈EI

h

∫
e

γeh
1−p
e

∣∣[v]∣∣p dS)1/p

,

∥v∥W 1,p(Th) = |v|W 1,p(Th) +

( ∑
e∈EB

h

∫
e

γeh
1−p
e |v − g|p dS

)1/p

,

where

∥∇v∥Lp(Th) :=
( ∑

T∈Th

∥∇v∥pLp(T )

) 1
p

.

We define the standard discontinuous Galerkin space Vh by

Vh = V k
h =

{
vh ∈ L2(Ω); vh

∣∣
T
∈ Pk(T ) ∀T ∈ Th

}
,

where k ≥ 0 denotes the polynomial degree. Obviously, we have Vh ⊂ W 1,p(Th).

2.2. Well-posedness of calculus of variations problems. As previously men-
tioned, the calculus of variations is an old field in mathematics, which gives us a
solid well-posedness theory for problem (1) with a general density function f . To
be precise for the remaining presentation, we shall only consider the following class
of density functions f :

(1) f is a Carathédory function, that is,
(a) x → f(ξ, v, x) is measurable for every (ξ, v) ∈ Rd × R, and
(b) (ξ, v) → f(ξ, v, x) is continuous for every x ∈ Ω.

(2) ξ → f(ξ, v, x) is convex for every (v, x) ∈ R× Ω.
(3) For fixed 1 < p < ∞, there exists constants α0, α1 > 0, a0, a1 ∈ L1(Ω), and

r and q satisfying r < p and r ≤ q < p∗ such that the following growth
condition holds:

α0

(
|ξ|p − |v|r + a0(x)

)
≤ f(ξ, v, x) ≤ α1

(
|ξ|p + |v|q + a1(x)

)
.

Under above three assumptions, the direct method of calculus of variations (see
[4]) shows that there exists a u ∈ W 1,p

g (Ω) satisfying (1). Moreover, if the map
(ξ, v) → f(ξ, v, x) is strictly convex for a.e. x ∈ Ω, then the minimizer u is unique.
We refer the interested reader to [4] for the detailed proofs of these results.

We also note that the above structure assumptions exclude the case p = 1 and
p = ∞. Since the spaces W 1,1 and W 1,∞ are non-reflexive, these two cases are
expected to be difficult to deal with and must be considered separately. On the
other hand, we would like to mention that Stamm and Wihler in [14] developed a
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DG method for the total variation energy, which is a special problem for the case
p = 1. They directly discretize the TV -energy as

Jh(vh) =
αh

2

∫
Ω

√
|∇hvh|2 + β dx+

1

2
∥f − vh∥2L2(Ω),

where f is the given noisy image function and∇h is the DG-FE numerical derivative
introduced in Section 4. As we will see later, this work is in the same spirit as ours,
and the numerical tests given in [14] are quite promising.

3. The choice of discrete derivatives

Since functions in the discontinuous Galerkin space Vh are discontinuous across
element edges, the energy functional J is not defined on Vh. To extend its domain
to Vh, we define the following discrete energy functional:

J ∗
h (vh) =

∑
T∈Th

∫
T

f(∇∗vh, vh, x) dx+
∑
e∈EI

h

∫
e

γeh
1−p
e

∣∣[vh]∣∣p dS(8)

+
∑
e∈EB

h

∫
e

γeh
1−p
e |vh − g|p dS,

we note that the last two terms, which are called penalty terms, are used to weakly
enforce the continuity and the Dirichlet boundary data. Here ∇∗ denotes an under-
determined discrete gradient defined on Vh or more generally on W 1,p(Th).

Below we shall show that the construction of this discrete gradient ∇∗ is crucial
to the convergence of the numerical method, even when penalty terms are added,
it must be defined judiciously to ensure the convergence. We note that the discon-
tinuous nature of DG functions allows us to have flexibility in choosing the discrete
gradient and to take into consideration of the properties such as simplicity and ease
of implementation.

The simplest approach is to define ∇∗ to be the piecewise gradient, that is,
(∇∗v)|T = ∇(v|T ) for any T ∈ Th. Obviously, such a discrete gradient is very easy
and cheap to compute. This gives us the following discrete energy functional:

J pw
h (vh) =

∑
T∈Th

∫
T

f(∇∗vh, vh, x) dx+
∑
e∈EI

h

∫
e

γeh
1−p
e |[vh]|p dS(9)

+
∑
e∈EB

h

∫
e

γeh
1−p
e |vh − g|p dS.

However, it is mentioned in [2] that the above approach does not always give a
convergent scheme. Indeed, this is true even for nice f . To see why it is so, let
p = 2, g = 0, and f(ξ, v, x) = 1

2 |ξ|
2 − F (x)v, it is easy to check that the Euler-

Lagrange equation of (1) is the following Poisson problem:

−∆u = F in Ω,(10a)

u = 0 on ∂Ω.(10b)

Requiring the Gâteaux derivative of J pw
h to vanish at a potential minimizer

uh ∈ Vh, that is, for every vh ∈ Vh

d

dt
J pw
h (uh + tvh)

∣∣∣∣
t=0

= 0 ∀vh ∈ Vh,
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we arrive at the following problem: find uh ∈ Vh such that

apwh (uh, vh) = (F, vh) ∀vh ∈ Vh,(11)

where

apwh (uh, vh) :=
∑
T∈Th

∫
T

∇uh · ∇vh dx+
∑
e∈EI

h

∫
e

γe
he

[uh][vh] dS

+
∑
e∈EB

h

∫
e

γe
he

uhvh dS.

It is easy to verify that the bilinear form apwh (·, ·) is coercive and continuous on
Vh for any γe > 0, which immediately implies the existence and uniqueness of a
solution uh to problem (11). However, it is not hard to prove that scheme (11) is
not consistent to the PDE problem (10), because if u is the weak solution to (10),
there is a vh ∈ Vh such that

apwh (u, vh) ̸= (F, vh).

Instead we have

apwh (u, vh) = (F, vh) +
∑
e∈EI

h

∫
e

{∇u · νe}[vh] dS ∀vh ∈ Vh.

We emphasize that the penalty terms are not the cause for the inconsistency, since
the regularity and boundary data of u forces them to vanish. It is in fact the
discretization of the gradient that causes the inconsistency. The inconsistency in
this example, being O(γ−1

e ), leads to a non-convergent method. To show this,
we let d = 2, Ω = (−1/2, 1/2)2 and choose F such that the solution u(x, y) =
(1/4− x2)(1/4− y2). Table 1 shows the piecewise H1 errors and rates for varying
values of γe. As we can see, the method is not converging to u as h → 0.

Table 1. The piecewise H1 errors and rates of convergence with
various γe for the piecewise gradient discretization. Here the poly-
nomial degree k = 2 is used in the test.

γe = 10 γe = 100 γe = 1000
1/h H1 Error Rate H1 Error Rate H1 Error Rate
2 1.69e-02 - 1.16e-02 - 1.53e-02 -
4 1.18e-02 0.52 2.75e-03 2.08 3.59e-03 2.09
8 1.11e-02 0.09 1.31e-03 1.07 8.60e-04 2.06
16 1.11e-02 -0.00 1.31e-03 -0.00 2.21e-04 1.96
32 1.12e-02 -0.01 1.34e-03 -0.04 1.32e-04 0.75
64 1.12e-02 -0.01 1.36e-03 -0.01 1.35e-04 -0.04
128 1.12e-02 -0.00 1.36e-03 -0.00 1.38e-04 -0.03
256 1.12e-02 -0.00 1.36e-03 -0.00 1.39e-04 -0.01

We also note that the piecewise gradient discretization has the ability to produce
a consistent scheme if we include additional terms to the discrete energy functional.
For example, for the Poisson problem, the standard symmetric interior penalty DG
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bilinear form is

aSIPDG
h (uh, vh) =

∑
T∈Th

∫
T

∇huh · ∇hvh dx

−
∑
e∈EI

h

∫
e

[uh]{∇vh · νe}dS −
∑
e∈EI

h

∫
e

[vh]{∇uh · νe}dS

+
∑
e∈EI

h

∫
e

γe
he

[uh][vh] dS +
∑
e∈EB

h

∫
e

γe
he

uhvh dS.

It can be shown that aSIPDG
h (·, ·), being symmetric, is induced by the following

discrete energy functional (cf. [8]):

J SIPDG
h (vh) =

∑
T∈Th

1

2

∫
T

|∇vh|2 dx−
∑
e∈EI

h

∫
e

[vh]{∇vh · νe}dS

+
∑
e∈EI

h

1

2

∫
e

γe
he

|[vh]|2 dS +
∑
e∈EB

h

1

2

∫
e

γe
he

|vh − g|2 dS.

However, this energy is specific to the Poisson problem and cannot be extended to
the class of density functions f discussed in this paper.

While defining the numerical gradient as the piecewise gradient does not give a
convergent method, there are examples of successful discrete gradients. In [2], Buffa
and Ortner introduced a variational DGFEM. This method provided a consistent
discretization of the gradient that produces a convergent method for a class of
convex and coercive densities. Their discrete gradient is defined using the piecewise
gradient with help of the following lifting operator R : W 1,p(Th) → [Vh]

d:∫
Ω

R(v) · φh = −
∑
e∈EI

h

∫
e

[v]{φh · νe}dS ∀φh ∈ [Vh]
d.(12)

The motivation of using this lifting operator arises from accounting for the con-
tribution of the jumps of a discontinuous function to its distributional derivative.
They then defined the following discrete energy functional:

J BO
h (vh) =

∑
T∈Th

∫
T

f(∇vh +R(vh), vh, x) dx(13)

+
∑
e∈EI

h

∫
e

γeh
1−p
e |[vh]|p dS +

∑
e∈EB

h

∫
e

γeh
1−p
e |vh − g|p dS.

The bilinear form induced from this energy functional for the the Poisson problem
is

aBO
h (uh, vh) =

∑
T∈Th

∫
T

∇uh · ∇vh dx+

∫
Ω

R(uh) ·R(vh) dx

−
∑
e∈EI

h

∫
e

[uh]{∇vh · νe}dS −
∑
e∈EI

h

∫
e

[vh]{∇uh · νe}dS

+
∑
e∈EI

h

∫
e

2γe
he

[uh][vh] dS +
∑
e∈EB

h

∫
e

2γe
he

uhvh dS,
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which is continuous and coercive on Vh for sufficiently large γe > 0. Moreover,
aBO
h (·, ·) is consistent to the PDE problem since∫

Ω

R(u) ·R(vh) dx =
∑
e∈EI

h

∫
e

[u]{∇R(vh) · νe}dS = 0 ∀vh ∈ Vh,

which contributes to the convergence of the method for the Poisson problem.
Furthermore, it was proved in [2] that the lifting operator ensures compactness of

the discrete minimizers uh. Since the minimizer of J BO
h is sought in Vh, which is not

a subspace of W 1,p(Ω), the reflexive property of W 1,p(Ω) cannot be used to obtain
a weakly convergent subsequence. However, Vh is a subset of BV(Ω), the space
of functions with bounded variations, which does have a compactness property in
the weak∗ topology. This compactness alone only shows that a subsequence uhj

converges to a u ∈ BV (Ω), but Buffa and Ortner were able to prove a stronger
result: if the sequence of discrete minimizers uh is bounded in W 1,p(Th), then
a subsequence uhj converges to u ∈ W 1,p(Ω). Moreover, there holds the weak
convergence

∇∗uhj +R(uhj ) ⇀ ∇∗u in Lp(Ω) as h → 0,

where ∇∗uhj denotes the piecewise gradient of uhj . This compactness requires the
lifting operator to be present in the discretization in order to pass the week limit
and prove convergence of the method.

4. The DG-FE numerical derivatives and the discontinuous Ritz frame-
work

4.1. The DG-FE numerical derivatives. To define the DG-FE numerical deriva-
tives, we first introduce some notation used in [7]. Let i = 1, . . . , d. We define the
following trace operators Q+

i ,Q
−
i ,Qi on every e ∈ EI

h:

Q±
i (v) = {v} ± 1

2
sgn(νie)[v], Qi(v) =

1

2

(
Q+

i (v) +Q−
i (v)

)
,(14)

where νie denotes the ith component of the normal vector νe to e ∈ Eh, and

sgn(ξ) =

{
1 if ξ ≥ 0,

−1 if ξ < 0.

For e ∈ EB
h , we define Q+

i v = Q−
i v = Qiv = v. Using these trace operators, three

numerical partial derivative operators corresponding the left, right, and central
traces of v were defined in [7] as follows.

Definition 1. Let v ∈ W 1,p(Th) and i = 1, . . . , d. Define the numerical partial
derivative operators in the xi coordinate ∂+

h,xi
, ∂−

h,xi
, ∂h,xi : W

1,p(Th) → Vh by∫
Ω

∂±
h,xi

(v)φh dx =
∑
e∈Eh

∫
e

Q±
i (v)ν

i
e[φh] dS −

∑
T∈Th

∫
T

v ∂xiφh dx ∀φh ∈ Vh,(15)

∂h,xi(v) =
1

2

(
∂+
h,xi

(v) + ∂−
h,xi

(v)
)
.(16)

We call ∂h,xi(v) the central numerical partial derivative in the xi coordinate. The
motivation for these numerical derivatives is to require the standard integration by
parts formula to hold when tested against any discrete function φh ∈ Vh. This
allows many of the properties of the classical derivatives to hold for the numerical
derivatives; among them are the product rule, chain rule, and integration by parts
(cf. [7]). Because of this, a discrete energy built using the DG-FE derivatives
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should be consistent. In addition, the discrete gradient operators ∇+
h ,∇

−
h ,∇h :

W 1,p(Th) → [Vh]
d were also naturally defined in [7] by

∇±
h v = [∂±

h,x1
(v), ∂±

h,x2
(v), . . . , ∂±

h,xd
(v)],(17)

∇hv = [∂h,x1(v), ∂h,x2(v), . . . , ∂h,xd
(v)].(18)

We describe two convergent methods which were developed in [7] with the help
of the DG-FE derivatives. Both methods were formulated for problem (10). To
introduce these methods, we first define a jump operator jh : W 1,p(Th) → Vh as
follows:∑

T∈Th

∫
T

jh(v)φh dx =
∑
e∈EI

h

∫
e

γe
he

[v][φh] dS +
∑
e∈EB

h

∫
e

γe
he

vφh dS ∀φh ∈ Vh.

The first method seeks a function uh ∈ Vh such that∫
Ω

∇huh · ∇hφh dx−
∑
e∈EB

h

∫
e

∇huh · νeφh dS +

∫
Ω

jh(uh)φh dx =

∫
Ω

fφh dx(19)

for all φh ∈ Vh. This method is equivalent to the well-known local DG method for
the model problem [3] and converges provided γe > 0.

The second method, the symmetric dual-wind discontinuous Galerkin (DWDG)
method [10], is constructed from the ground up using the DG-FE gradients. The
DWDG method seeks uh ∈ Vh such that

1

2

∫
Ω

(
∇+

h uh · ∇+
h φh +∇−

h uh · ∇−
h φh

)
dx+

∫
Ω

jh(uh)φh dx =

∫
Ω

fφh dx(20)

for all φh ∈ Vh. Note that the sided gradients ∇+
h and ∇−

h , instead of the central
gradient, are used in the formulation. If γe > 0, then the method was proved to
be well-posed and convergent. Moreover, if Th is quasi-uniform and if each element
T ∈ Th has at most one boundary edge, then the method is well-posed and converges
provided γe > −C∗ for some h-independent constant C∗ > 0. Thus one could set
γe ≡ 0, that is, ignoring the penalty terms, and still achieve convergence.

We also note that besides their applications in solving PDEs, a complete DG-FE
numerical calculus was developed in [7], which is of independent interests as it pro-
vides an alternative approach for computing weak (and distributional) derivatives
of non-smooth functions. A Matlab Toolbox was recently developed in [13, 12]
for implementation of this DG-FE numerical calculus in one and two dimensions.
The toolbox provides a convenient software package for both teaching and research
related to numerical derivatives.

4.2. Formulation of the discontinuous Ritz method. With the DG-FE gra-
dients in hand, we are ready to introduce our discontinuous Ritz (DR) method.

Definition 2. The discontinuous Ritz method for problem (10) is defined by seek-
ing uh ∈ Vh such that

uh ∈ argmin
vh∈Vh

Jh(vh),(21)

where

Jh(v) =

∫
Ω

f(∇hv, v, x) dx+
∑
e∈EI

h

∫
e

γeh
1−p
e |[v]|p dS(22)

+
∑
e∈EB

h

∫
e

γeh
1−p
e |v − g|p dS,
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where ∇h is defined by (18).

To compute the numerical derivative ∂h,xiv, we note that the mass matrix in-
duced by the left-hand side of (15) is actually a block diagonal matrix which means
the computation of the derivatives can be done locally and in parallel. Moreover,
when determining the DG-FE partial derivatives of a discrete function, the linearity
of ∂±

h,xi
and ∂h,xi allows the action of taking the DG-FE partial derivatives to be

written as a matrix which can be computed off-line (cf. [12]).

5. Convergence analysis of the discontinuous Ritz method

Clearly, the definition of our DR method is quite simple, we simply replace the
differential gradient operator ∇ by the DG-FE (central) numerical gradient ∇h

in the the energy functional J to obtain our discrete energy functional Jh. On
the other hand, the convergence analysis of the proposed DR method is much less
straightforward. At a glance, it is not clear why this method would work. Thus,
the goal of this section is the show the convergence of the method. This will be
done indirectly by showing that the proposed DR method as defined in Definition 2
is actually equivalent to the variational DGFEM developed by Buffa and Ortner in
[2]. Specifically, we shall prove Jh ≡ J BO

h on Vh, thus giving equivalence of these
two methods when minimizing over Vh, the equivalence allows us to borrow many
technical results from [2]. We also present conditions to give the equivalence of
∥∇hvh∥ and |vh|W 1,p(Th) as well as a compactness result for the DG-FE derivatives.

First, we show the equivalence of J BO
h and Jh on Vh.

Lemma 5.1. Let J BO
h and Jh be defined by (13) and (22) respectively, then for

any vh ∈ Vh we have Jh(vh) = J BO
h (vh).

Proof. Let vh ∈ Vh, if we can show that ∇hvh = ∇vh + R(vh), where ∇vh is the
piecewise gradient, then the equivalence of the two methods follows. This property
was already proved in Proposition 4.2 of [7], but below we include the whole proof
for completeness.

We first state the DG integration by parts formula:∑
T∈Th

∫
T

τ · ∇v dx = −
∑
T∈Th

∫
T

v div τ dx(23)

+
∑
e∈EI

h

∫
e

[τ · νe]{v}dS +
∑
e∈Eh

∫
e

{τ · νe}[v] dS,

which holds for any v ∈ W 1,p(Th) and τ ∈ [W 1,p(Th)]d.
For any v ∈ W 1,p(Th), by the definition of ∇hvh and (23), we have∫

Ω

∇hv · φh =
∑
e∈Eh

∫
e

{v}[φh · νe] dS −
∑
T∈Th

∫
T

v divφh dx(24)

= −
∑
e∈EI

h

∫
e

[v]{φh · νe} dS +
∑
T∈Th

∫
T

∇v · φh dx

=
∑
T∈Th

∫
T

(∇v +R(v)) · φh dx

=

∫
Ω

(∇v +R(v)) · φh dx. ∀φh ∈ [Vh]
d.
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Thus we have∫
Ω

(
∇hvh − (∇vh +R(vh))

)
· φh dx = 0 ∀φh ∈ [Vh]

d,

by (24). Since ∇hvh,∇vh, R(vh) ∈ [Vh]
d, setting φh = ∇hvh − (∇vh + R(vh))

we obtain ∇hvh = ∇vh + R(vh) in Ω. Thus Jh(vh) = J BO
h (vh). The proof is

complete. �

With the equivalence we can borrow and take advantage of the convergence result
from Theorem 6.1 of [2].

Theorem 5.2. For h > 0, let uh ∈ Vh satisfy (21). Then there exists a sequence
hj ↘ 0 and a function u ∈ W 1,p

g (Ω) such that the following hold:

uhj → u in Lq(Ω) ∀q < p∗,

∇hjuhj ⇀ ∇u in [Lp(Ω)]d,

Jhj (uhj ) → J (u),∑
e∈EB

h

∫
e

h1−p
e |uhj − g|p dS +

∑
e∈EI

h

∫
e

h1−p
e |[uhj ]|p dS → 0

as j → ∞. Moreover, any accumulation point of the set {uh}h>0 is a minimizer of
J over W 1,p

g (Ω). If ξ → f(ξ, v, x) is strictly convex for all (v, x) ∈ R×Ω, then we
have

∥u− uhj
∥W 1,p(Th) → 0 as j → ∞.

If the minimizer u is unique, then the whole sequence {uh}h>0 converges.

The following results will be quite useful in later use of the DF-FE derivatives.
First, we sate conditions to guarantee equivalence of the semi-norms ∥∇h · ∥ and
| · |W 1,p(Ω) on Vh. To this end, we need to quote a discrete inf-sup condition from
Buffa and Ortner [2].

Lemma 5.3 (Lemma A.2 of [2]). Let 1 ≤ p < ∞ and q be its Hölder conjugate.
Then there exists a constant C > 0 independent of h such that

inf
vh∈Vh

sup
φh∈Vh

∫
Ω
vhφh

∥vh∥Lp(Ω)∥φh∥Lq(Ω)
≥ C.(26)

We first show that ∥∇hv∥Lp(Th) can be controlled by |v|W 1,p(Th) on W 1,p(Th).

Lemma 5.4. Let 1 < p < ∞. Then there exists a constant C > 0 independent of
h such that

∥∇hv∥Lp(Th) . |v|W 1,p(Th) ∀v ∈ W 1,p(Th),(27)



DISCONTINUOUS RITZ METHOD FOR VARIATIONS PROBLEMS 351

Proof. Let q be the Hölder conjugate of p and let v ∈ W 1,p(Th) and φh ∈ [Vh]
d.

From (24) we have∫
Ω

∇hv · φh dx = −
∑
e∈EI

h

∫
e

[v]{φh · νe}dS +
∑
T∈Th

∫
T

∇v · φh dx

≤
∑
e∈EI

h

∫
e

h
1−p
p

e |[v]| · h
1
q
e |{φh · νe}| dS +

∑
T∈Th

∥∇v∥Lp(T )∥φh∥Lq(T )

≤
∑
e∈EI

h

∫
e

(
h1−p
e |[v]|p

) 1
p (he|{φh · νe}|q)

1
q dS + ∥∇v∥Lp(Ω)∥φh∥Lq(Ω)

≤
( ∑

e∈EI
h

h1−p
e ∥[v]∥pLp(e)

) 1
p
( ∑

e∈EI
h

he∥{φh · νe}∥qLq(e)

) 1
q

+ ∥∇v∥Lp(Ω)∥φh∥Lq(Ω)

.
( ∑

e∈EI
h

h1−p
e ∥[v]∥pLp(e)

) 1
p

∥φh∥Lq(Ω) + ∥∇v∥Lp(Th)∥φh∥Lq(Ω)

. |v|W 1,p(Th)∥φh∥Lq(Ω).

Since ∇hv ∈ Vh, it follows from Lemma 5.3 that

∥∇hv∥Lp(Th) . sup
φh∈Vh

∫
Ω
∇hv · φh

∥φh∥Lq(Ω)
. |v|W 1,p(Th).

which is exactly (27). �

We next show that |vh|W 1,p(Th) can be controlled by ∥∇hvh∥Lp(Th) on Vh for
sufficiently large γ∗.

Lemma 5.5. Let 1 < p < ∞. Then there exists a constant C, γ∗ > 0 independent
of h such that for every vh ∈ Vh

|vh|W 1,p(Th) ≤ C∥∇hvh∥Lp(Th) + C

( ∑
e∈EI

h

γeh
1−p
e ∥[vh]∥pLp(e)

)1/p

,(28)

provided that γe > γ∗.

Proof. Let q be the Hölder conjugate of p and vh ∈ Vh. From (24) we have∫
Ω

∇hvh · φh dx = −
∑
e∈EI

h

∫
e

[vh]{φh · νe}dS +

∫
Ω

∇vh · φh dx(29)

for every φh ∈ [Vh]
d. Let Ph(∇vh|∇vh|p−2) where Ph is the local L2 projection

onto Th defined by∫
T

Ph(∇vh|∇vh|p−2) · φh dx =

∫
T

∇vh|∇vh|p−2 · φh dx

for all φh ∈ Vh and T ∈ Th. Choosing φh = Ph(∇vh|∇vh|p−2) in (29) yields∫
Ω

∇hvh · Ph(∇vh|∇vh|p−2) dx = −
∑
e∈EI

h

∫
e

[vh]{Ph(∇vh|∇vh|p−2) · νe}dS(30)

+

∫
Ω

∇vh · Ph(∇vh|∇vh|p−2) dx.
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By the stability of Ph we obtain∫
Ω

∇hvh · Ph(∇vh|∇vh|p−2) dx ≤ ∥∇hvh∥Lp(Th)∥Ph(∇vh|∇vh|p−2)∥Lq(Th)(31)

≤ ∥∇hvh∥Lp(Th)∥∇vh|∇vh|p−2∥Lq(Th)

≤ ∥∇hvh∥Lp(Th)∥∇vh∥p−1
Lp(Th)

.

By the standard trace and inverse inequalities for DG functions, there exists C1 > 0
independent of h such that

∑
e∈EI

h

∫
e

[vh]{Ph(∇vh|∇vh|p−2) · νe}dS

(32)

≤
( ∑

e∈EI
h

h1−p
e ∥[vh]∥pLp(e)

) 1
p
( ∑

e∈EI
h

he∥{Ph(∇vh|∇vh|p−2) · νe}∥qLq(e) dS

) 1
q

≤ C1

( ∑
e∈EI

h

h1−p
e ∥[vh]∥pLp(e)

) 1
p

∥Ph(∇vh|∇vh|p−2)∥Lq(Th)

≤ C1

( ∑
e∈EI

h

h1−p
e ∥[vh]∥pLp(e)

) 1
p

∥∇vh∥p−1
Lp(Th)

.

By the properties of Ph we have∫
Ω

∇vh · Ph(∇vh|∇vh|p−2) dx =

∫
Ω

∇vh · ∇vh|∇vh|p−2 dx = ∥∇vh∥pLp(Th)
.(33)

Thus by (30)-(33) and dividing by ∥∇vh∥p−1
Lp(Th)

we have

∥∇hvh∥Lp(Th) ≥ −C1

( ∑
e∈EI

h

h1−p
e ∥[vh]∥pLp(e)

) 1
p

+ ∥∇vh∥Lp(Th).

Choosing γ∗ = Cp
1 + 1 gives us the desired estimate. The proof is complete. �

We can also prove a compactness result using the DG-FE numerical derivatives.
For this, we use a discrete compactness result from Buffa and Ortner [2].

Lemma 5.6 (Theorem 5.2 and Lemma 8 of [2]). For 1 < p < ∞ and 0 < h < 1,
let vh ∈ W 1,p(Th) such that

sup
0<h<1

(
∥vh∥L1(Ω) + |vh|W 1,p(Th)

)
< ∞.(34)

Then there exists a sequence hj ↘ 0 and a function v ∈ W 1,p(Ω) such that

vhj → v in Lq(Ω) ∀ 1 ≤ q < p∗,(35a)

vhj → v in Lq(∂Ω) ∀ 1 < q < q∗,(35b)

∇vhj +R(vhj ) ⇀ ∇v in [Lp(Ω)]d,(35c)

where p∗ is the Sobolev conjugate of p defined in (6) and q∗ is defined in (7).

We are now ready to state our compactness result, which differs from Lemma
5.6 by controlling DG functions using the DG-FE numerical derivatives as well as
showing their DG-FE numerical derivatives weakly converge.
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Theorem 5.7. Let 1 < p < ∞. There exists γ∗ > 0 such that for any vh ∈ Vh with

sup
0<h<1

∥vh∥Lp(∂Ω) + ∥∇hvh∥Lp(Th) +

( ∑
e∈EI

h

γeh
1−p
e ∥[vh]∥pLp(e)

) 1
p

 < ∞.(36)

Then there exists a sequence hj ↘ 0 and a function v ∈ W 1,p(Ω) such that

vhj → v in Lq(Ω) ∀ 1 ≤ q < p∗,(37a)

vhj → v in Lq(∂Ω) ∀ 1 < q < q∗,(37b)

∇hjvhj ⇀ ∇v in [Lp(Ω)]d,(37c)

where p∗ is the Sobolev conjugate of p defined in (6) and q∗ is defined in (7).

Proof. From Lemma 5.5, we have

|vh|W 1,p(Th) . ∥∇hvh∥Lp(Th) +

( ∑
e∈EI

h

γeh
1−p
e ∥[vh]∥pLp(e)

) 1
p

.

which shows that vh is uniformly bounded in W 1,p(Th). By the Poincaré-Fredrichs
inequality, Theorem 10.6.12 of [1], we have

∥vh∥L1(Ω) . ∥vh∥Lp(Ω) . ∥vh∥Lp(∂Ω) + |vh|W 1,p(Th).

Therefore, the family {vh} satisfies the hypothesis of Lemma 5.6, which gives us
everything in the theorem except for (37c).

To show (37c), we use the ideas from the proof of Theorem 5.2 of [2]. Let
φ ∈ [C∞

c (Ω)]d, if we can show

lim
j→∞

∫
Ω

∇hjvhj · φdx =

∫
Ω

∇v · φ dx.(38)

then we are done. To the end, let φhj
∈ [Vhj

]d, from (24) we have∫
Ω

∇hj
vhj

· φ dx =

∫
Ω

∇hj
vhj

· φhj
dx+

∫
Ω

∇hj
vhj

· (φ− φhj
) dx

=

∫
Ω

(
∇vhj +R(vhj )

)
· φhj dx+

∫
Ω

∇hjvhj · (φ− φhj ) dx

=

∫
Ω

(
∇vhj +R(vhj )

)
· φdx

+

∫
Ω

(
∇vhj +R(vhj )

)
· (φhj − φ) dx

+

∫
Ω

∇hj
vhj

· (φ− φhj
) dx.

Lemma 7 of [2] and Lemma 5.4 imply the uniform boundedness of ∇vhj , R(vhj ),
and ∇hjv

hj in Lp(Ω). Thus, choosing φhj to be the piecewise constant average of
φ on T ∈ Thj forces the rightmost two terms to vanish as j → ∞. We then obtain
(38) from (35c). The proof is complete. �
6. Numerical experiments

In the section we present some numerical tests to show the effectiveness of the
proposed discontinuous Ritz method. Our prototypical example is the following
p−Laplace energy:

J p(v) =

∫
Ω

(1
p
|∇v|p − Fv

)
dx,(39)
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minimized over the space W 1,p
g (Ω). So the density function f(ξ, v, x) = (1/p)|ξ|p −

F (x)v, which satisfies all of the assumptions in the theory provided F ∈ Lq(Ω) for
some q > p. Moreover, the map (ξ, v) → f(ξ, v, x) is strictly convex for a.e x ∈ Ω.
Thus there is a unique minimizer u ∈ W 1,p

g (Ω). The Euler-Lagrange equation (4)
of J p yields the following p−Laplace problem:

− div(|∇u|p−2∇u) = F in Ω,(40a)

u = g on ∂Ω.(40b)

Note that p = 2 gives the standard Poisson problem; however, here p can be any
number such that 1 < p < ∞. We will test cases in both one and two-dimensions,
varying the value of p. We compute the discrete solution uh by minimizing the
discrete energy (21) with k = 1 and using the Matlab built-in function fminunc

with the initial guess 0 unless otherwise specified. We also let γe ≡ 10 for every
test unless otherwise stated.

Test 1 (d = 1, p > 2). Let p = 2.5, d = 1, Ω = (0, 1) and g = x. Choose

F (x) = −9
√
3x2 so that the exact solution is u(x) = x3. Table 2 shows the errors

and rates in the Lp and W 1,p-norm for u − uh, where uh ∈ Vh is the discrete
minimizer of (21). The numerical results clearly indicate that the proposed DR
method is converging to the correct solution and we have optimal order convergence
in the W 1,p semi-norm, but we have sub-optimal convergence rate in the Lp norm.

Table 2. The Lp and W 1,p(Th) errors and rates of convergence in
h for the discontinuous Ritz method (21) applied to J p from (39)
where p = 2.5 and γe ≡ 100.

1/h ∥u− uh∥Lp(Ω) rate ∥∇u−∇huh∥Lp(Ω) rate iterations
10 5.12e-03 - 1.10e-01 - 72
20 3.06e-03 0.74 5.51e-02 0.99 137
40 1.67e-03 0.88 2.76e-02 1.00 276
80 8.74e-04 0.93 1.38e-02 1.00 555
160 4.49e-04 0.96 6.92e-03 1.00 1104
320 2.28e-04 0.98 3.46e-03 1.00 2123

Test 2 (d = 1, p < 2). Let p = 1.5, d = 1, Ω = (0, 1) and g = 0. Choose F (x)
such that the exact solution is u(x) = sin(πx). Note that

w := |∇u|p−2∇u =

√
π cos(πx)√
| cos(πx)|

is not classically differentiable since cos(πx) is both positive and negative on (0, 1),
but w ∈ W 1,q(Ω) for all 1 < q < 2 with ∇w having a discontinuity at x = 0.5.
Table 3 shows the Lp and W 1,p errors and rates of convergence for the DR method.
We see that the rates of convergence are suboptimal for both the Lp and W 1,p

errors. This is most likely due to the degeneracy of the PDE since largest error
occurs at x = 0.5 where w is 0. This claim is supported by Figure 1.

Test 3 (Unknown solution case). Let p = 8.3, d = 1, Ω = (0, 1) and
g = x/2. We choose F (x) = 2000x

(100x2+1)2 . Since we do not know the exact solution

to this problem, we choose uFE such that

uFE = argmin
v∈S

J (vh)
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Table 3. The Lp and W 1,p(Th) errors and rates of convergence in
h for the discontinuous Ritz method (21) applied to J p from (39)
where p = 1.5

1/h ∥u− uh∥Lp(Ω) rate ∥∇u−∇huh∥Lp(Ω) rate iterations
10 8.50e-02 - 3.19e-01 - 79
20 5.77e-02 0.56 2.06e-01 0.63 142
40 4.03e-02 0.52 1.38e-01 0.57 242
80 2.85e-02 0.50 9.56e-02 0.53 415
160 2.02e-02 0.50 6.69e-02 0.51 713
320 1.43e-02 0.50 4.72e-02 0.51 1244
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Test 2: p = 1.5

exact
h=1/20
h=1/40
h=1/80
h=1/160

Figure 1. The plots of u and uh where u is the exact minimizer
for J p(·) from (39) with p = 1.5 and uh is the discrete minimizer
from (21). Here h = 1/20, 1/40, 1/80, 1/160.

where S ⊂ W 1,p(Ω) is the C0 conforming Lagrange finite element space with k = 1
and h = 1/640. Table 4 shows the errors and rates in the Lp and W 1,p-norm for
uFE − uh, where uh ∈ Vh is the discrete minimizer of (21). For this test we set an
initial guess of u0 = x/2. We see that the method is converging with a suboptimal
rate of convergence in the Lp-norm.

Table 4. The Lp and W 1,p errors and rates of convergence in h
for the discontinuous Ritz method (21) applied to J p from (39)
where p = 8.3

1/h ∥uFE − uh∥Lp(Ω) rate ∥∇uFE −∇huh∥Lp(Ω) rate iterations
10 1.95e-02 - 6.43e-01 - 95
20 9.28e-03 1.08 4.23e-01 0.61 255
40 4.46e-03 1.06 6.33e-02 2.74 1026
80 2.21e-03 1.01 2.76e-01 -2.12 1618
160 1.10e-03 1.01 2.27e-01 0.27 2763
320 5.50e-04 1.00 1.77e-01 0.35 4930

Test 4 (d = 2, p > 2). Let p = 2.5, d = 2, Ω = (0, 1)2. Choose F, g such that
the exact solution is u(x, y) = ex+y. For this test we choose γe ≡ 100. Table 5
shows the errors and rates in the Lp and W 1,p-norm for u − uh, where uh ∈ Vh is
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the discrete minimizer of (21). Again for problems with smooth solutions that lack
degeneracy in the interior, the table indicates that the DR method is converging to
the correct solution and we have an optimal order convergence rates in the W 1,p

semi-norm with a sub-optimal convergence rate in the Lp-norm.

Table 5. The Lp and W 1,p errors and rates of convergence in h
for the discontinuous Ritz method (21) applied to J p from (39)
where d = 2, p = 2.5, and γe ≡ 100.

1/h ∥u− uh∥Lp(Ω) rate ∥∇u−∇huh∥Lp(Ω) rate
4 2.01e-02 - 2.79e-01 -
8 1.04e-02 0.94 1.33e-01 1.07
16 5.32e-03 0.98 6.36e-02 1.07
32 2.68e-03 0.99 3.06e-02 1.06

References

[1] S. C. Brenner and L. R. Scott. The Mathematical Theory of Finite Element Methods, vol-
ume 15 of Texts in Applied Mathematics. Springer, New York, third edition, 2008.

[2] A. Buffa and C. Ortner. Compact embeddings of broken Sobolev spaces and applications.
IMA journal of numerical analysis, 29(4):827–855, 2009.

[3] B. Cockburn and C.-W. Shu. The local discontinuous Galerkin method for time-dependent
convection-diffusion systems. SIAM Journal on Numerical Analysis, 35(6):2440–2463, 1998.

[4] B. Dacorogna. Direct Methods in the Calculus of Variations, volume 78. Springer Science &
Business Media, 2007.

[5] B. Dacorogna. Introduction to the Calculus of Variations. Imperial College Press, London,
third edition, 2015.

[6] L. C. Evans. Partial Differential Equations, volume 19 of Graduate Studies in Mathematics.
American Mathematical Society, Providence, RI, second edition, 2010.

[7] X. Feng, T. Lewis, and M. Neilan. Discontinuous Galerkin finite element differential calculus
and applications to numerical solutions of linear and nonlinear partial differential equations.
Journal of Computational and Applied Mathematics, 299:68–91, 2016.

[8] X. Feng and Y. Li. Analysis of symmtric interior penalty discontinuous Galerkin methods the

Allen-Cahn equation and its sharp interface limit the mean curvature flow. IMA Journal on
Numerical Analysis, 35:1622–1651, 2015.

[9] D. Furihata and T. Matsuo. Discrete Variational Derivative Method: A Structure-preserving

Numerical Method for Partial Differential Equations. CRC Press, 2010.
[10] T. Lewis and M. Neilan. Convergence analysis of a symmetric dual-wind discontinuous

Galerkin method. Journal of Scientific Computing, 59(3):602–625, 2014.
[11] R. H. Nochetto, S. W. Walker, and W. Zhang. A finite element method for nematic liquid crys-

tals with variable degree of orientation. SIAM Journal on Numerical Analysis, 55(3):1357–
1386, 2017.

[12] S. Schnake. A Matlab toolbox for the discontinuous Galerkin finite element numerical calculus,
2014. downloadable at https://bitbucket.org/stefanschnake/dgfenumericcalculus.

[13] S. Schnake. Numerical Methods for Non-divergence Form Second Order Elliptic Partial D-
ifferential Equations and Discontinuous Ritz Methods for Problems from the Calculus of
Variations. PhD thesis, The University of Tennessee, 2017.

[14] Stamm, B., Wihler, T.P.: A total variation discontinuous Galerkin approach for image

restoration. Int. J. Numer. Anal. Model. 12(1), 81C93 (2015)

Department of Mathematics, The University of Tennessee, Knoxville, TN 37996, U.S.A.
E-mail : xfeng@math.utk.edu

Department of Mathematics, The University of Tennessee, Knoxville, TN 37996, U.S.A., De-
partment of Mathematics, University of Oklahoma, Norman, OK 73019, U.S.A.

E-mail : sschnake@ou.edu


