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Abstract. We consider a phase field model based on a generalization of the Maxwell
Cattaneo heat conduction law, with a logarithmic nonlinearity, associated with Neu-
mann boundary conditions. The originality here, compared with previous works, is
that we obtain global in time and dissipative estimates, so that, in particular, we prove,
in one and two space dimensions, the existence of a unique solution which is strictly
separated from the singularities of the nonlinear term, as well as the existence of the
finite-dimensional global attractor and of exponential attractors. In three space dimen-
sions, we prove the existence of a solution.
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1 Introduction

The Caginalp phase-field model

aa—”t‘—Aqug(u) o, (1.1)
00 ou
C—ao=-2, (1.2)

has been proposed to model phase transition phenomena, for example melting-solidi-
fication phenomena, in certain classes of materials. Caginalp considered the Ginzburg-
Landau free energy and the classical Fourier law to derive his system, see, e.g., [1,2].
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Here, u denotes the order parameter and 6 the (relative) temperature. Furthermore, all
physical constants have been set equal to one. For more details and references we re-
fer the reader to [2—4]. This model has been extensively studied (see, e.g., [5] and the
references therein). Now, a drawback of the Fourier law is the so-called "paradox of
heat conduction”, namely, it predicts that thermal signals propagate with infinite speed,
which, in particular, violates causality (see, e.g., [5]). One possible modification, in order
to correct this unrealistic feature, is the Maxwell-Cattaneo law. We refer the reader to
[3,5,6] for more discussions on the subject.
In this paper, we consider the following model

u Ju

a5 —Au+g(u)= 5 (1.3)
Zn  Jda ou

W‘FE—AIX——g—M, (14)

which is a generalization of the original Caginalp system (see [2]). In this context « is the
thermal displacement variable, defined by

t
zxz/ 0T +ap. (1.5)
0

As mentioned above the Caginalp system can be obtained by considering the Ginzburg-
Landau free energy

Y (1,0) :/ (%]Vu]z—l—(}(u) —9u>dx, (1.6)
Q
the enthalpy H =u+6 and by writing
10u
FET: =-0d,Y, (1.7)
oH .
W = —leq, (18)

where d > 0 is a relaxation parameter, d, denotes a variational derivative and g is the
thermal flux vector. Setting 4 =1 and taking the usual Fourier law

g=-Vo, (1.9)
we find (1.1)-(1.2).
The Maxwell-Cattaneo law reads

0
(1+17§)q:—V6, (1.10)

where 7 is a relaxation parameter; when # =0, one recovers the Fourier law. Taking for
simplicity # =1, it follows from (1.8) that

J\ oH
(1+2) %0
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hence the following second-order (in time) equation for the relative temperature

0?0 96 ou d%u
W-l-g—AG——g—W. (1.11)
Integrating finally (1.11) between 0 and ¢, we obtain the equation
az—a—l-a—a—Aoc——a—u—u—i— (1.12)
otz ot T f '
where f depends on the initial data (for u and ), which reduces to (1.4) when f vanishes.
Furthermore, noting that 6 = E;_z;c’ (1.1) can be rewritten in the equivalent form (1.3).

We endow this model with Neumann boundary conditions and initial conditions.
Then, we are led to the following initial and boundary value problem (P):

Jdu on )

o~ dutg(u) == in Q, (1.13)

%a  ox Ju .

W—l-g—mx——g—u in Q, (1.14)

Ju Jdu

5—5_0 on dQ), (1.15)
on

u(0)=uo, a(0)=ao, —-(0)=wm, (1.16)

in a bounded and regular domain Q) CIR"” (n is to be specified later), with boundary 0Q).
We assume here that g= G', where

G(s)=—xos? +x1[(14s)In(1+s)+ (1—s)In(1—s)],

se(—1,1), 0<x<ko, (1.17)
ie.,
1
g(s):—zxos-l—xlln(l—i), se(—1,1). (1.18)

In particular, it follows from (1.18) that

g (s)>—2r), se€(-1,1), (1.19)
—c0<G(s)<g(s)s+co, se(—1,1). (1.20)
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Concerning the mathematical setting, we introduce the following Hilbert spaces

P:Hl(Q)le( YxL2(Q), F=H?*Q)xH?*(Q)xHY(Q),
H3(Q) x H3(Q) x H2(Q)), F=(H*Q))*xH3*(Q),

— aoc
at at> O}’
{( 2R, ||u||Loo<1} F = H2(Q) x FE(Q) x H'(Q),

_ . — on
‘I’o—{(u,zx,g)e‘F( +at> O},

Y= {(u,E,g—t:) €h, |lu|-< 1}, E=H3(Q)x H3(Q) x H*(Q)),

and |.||y denotes the norm on the Banach space Y. Throughout this paper, the L2-inner
product and the associated norm will be denoted by ((.,.)) and ||| respectively.

Our aim in this paper is to prove the existence of a solution in the case of the log-
arithmic nonlinearity (1.18). The main difficulty is to prove that the order parameter is
separated from the singularities of g. In particular, we are only able to prove such a prop-
erty in one and two space dimensions. In three space dimensions, we prove the existence
of a solution.

Throughout the paper, the same letter ¢ (and, sometimes, ¢') denotes constants which
may change from line to line.

2 A priori estimates

The singularities of the potential g lead us to define the quantity

D(v)= vel®(Q), |v||L~#1.

1— o]’

We a priori assume that ||uo[r~ <1 and [|u[| o+ 0y <1.
We set

Bu:=—Au+u, with D(B)=H%(Q)= {ueHZ(Q), g—zzo on aQ}.
Otherwise, we set ||ul[; = ((B%u,B%u))% for all u € H'(Q)) and we have that this norm is
equivalent to the usual norm of H!(Q)).

We rewrite (1.13) in the form

0 J
S Butf(u) =5,

= 2.1)
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where f (s) = g(s) —s. Note that f and g satisfy the same properties. We set F(s) =
S
Jof( . .
We multlply (2.1) by u+—- 5 , (1.14) by — 5 . Integrating over () and summing the two

resulting equations, by (1.20) we obtain

(Pl +2 [ P 5 \\2+rrVarr)

: o, / 2.2)
+e([[ulli+2 Jo F(u)dx+ [ = | +H H )<c, >0
We then rewrite (1.14) in the form
aa—H+H Aa=0, (2.3)
where 3
«
H=u+ g .
Integrating (2.3) over (), we obtain
d(H
4H) ey —o, (2.4)
dt
In particular, we deduce from (2.4) that
(H(t))=e " (H(0)), (2.5)
hence
lim H(t)=0. (2.6)
Furthermore, if (H(0)) =0, i.e., (up+a1) =0, we have conservation of the enthalpy,
(H(t))=0,  Vt>0. 2.7)
Setting ¢ =¢— (¢), we then have
M H_az—o0. (2.8)
ot
on
We multiply (2.8) by — to find
(|| B 121 9al) + I P <l 2 2). 2.9)
We also multiply (2.8) by & and have
o ol o
2 2 _may (P8 o 9% 2
22 (P2 ) + Vel = @) (5 + o P,
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which yields, noting that ||¢|| <c||V¢|, ¢€HY(Q), c>0,

on
ot’

We first sum (2.9) and 61 x(2.10) to have

d /.
& (124205 m) + 19l <e (lul+ | 2 P+ 2212).

ow

2 2 2 2

L (1valP+ 1 2o +250 () +e (1 12+ 9 a?)
<c(nuu2+|| ), >0,

where 41 >0 is small enough so that, in particular,

ow
2 2 > 2
1251 o2 4261 () > e (JmIP+I SR, e,
and then sum (2.2) and 6, x(2.11), where &, > 0 is small enough, to obtain

dEq

T re(B+IGI7) <€, e>0,

where
Ex = [[ul|*+[Jull}+2 [ F( derHWHZJrH H
+5z(nwu2+n—||2+51Ha|\2+251<aa"‘ 7).
We now multiply (1.13) by —Au, and have, owing to (1.19),

L IFulP Al <e (| Vul+ | o2 ).

Summing (2.13) and J3 x(2.15), where d3 >0 is small enough, we finally obtain

] 12) <
— +c(Ext | Au] +151 )<c, >0,
where
E2:E1+53||Vu|\2,
satisfies
aﬂ( ’
e (Il o+ [ )+ +H—H2)—c§Ez
<" (Il +/ w)dx+ 12 +|| SIP)+c", o >0and " >0,

We differentiate (1.13) with respect to time to find, owing to (1.14),

0 ,ou Jou o, . ou o ou

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)
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We then multiply (2.19) by aa_u Holder’s inequality and (1.19) yield

d ou
AL N (R P L L)

We multiply (1.14) by —Ag—a. Integrating over (), we get

2 2 2
& (1wl +HIV L) 192 P < ([Tl + [T o ).

Finally, we multlply (1.14) by —Aa and we integrate over () to have

ow 0
Va2 +2(V5, Va) ) + [ aa]? = (u,A0) + (5,

2dt< ot’ ot

which implies

d 2 du 2 2 2
L (190l +207 % V0 18l <e (4 2 2+ 7 22 2).

We sum (2.21) and d4 X (2.22), where J4 >0 is small enough, to get

o o
2 2 ol 12 2
IV 22+ (1 ValP+2(9 5 T0)) 2 eIV 55 P+ V), €0
We then have
dE
T (ISP aalP) < (o 1 2 o) >0,
where

o
= a9 o2+ 84 [Vl +2(V 2, V) ).

Now we sum (2.20) and 65 x (2.24), where 05 >0 is small enough, to get

dE
(v |\2+||v F 2+ A H)
] (N e Y R L

where
ﬂ—H H+%&

Finally, we sum(2.16) and J¢ % (2.26), where (56 >0 is small enough, to get

== ZI12) <
= +C(E5+Hvat I )_c, c>0,

o 5
pa)+[V I,

343

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)
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where
Es=E;+0¢Ey, (2.29)
satisfies
ox I
e(I5; 1% (Q>+|\Aa\lz+\| 12+l (Q>+/ w)dx+ |73 +\| H)—cgES
" a
<" (155 B o+ 1812+ 15 12+ [ o + [ G+ @ gy + IS IP) +” (230)

Using (2.16), (2.20) and Gronwall’s lemma, we deduce

o t ou
2 — 2 o 2 —c(t—s) 2 22
(8 B+ 1RO+ 155 1P+ [ e (w411 57 12) ds

<Q(D (o) + o3 + @2+ aa |2) e +¢, >0, (2.31)
and
B+ [T o as
tfctfs — 2 2 —ct Ju 2
Sc/oe (I N PN Pt ) ds e Do @2 @32)
Note that
du 2 2 2
157 ()12 < QDo) + o2 + 11 ). (233)

Using (2.31) and (2.33), we deduce from (2.32) the following inequality
du 2 ! —c(t—s) du 2
15 O+ [ 05 s
<Q(D(uo)+ o3+ 7|3 + e |2 ) e+, e>o0. (2.34)

We rewrite (1.13) in an elliptic form for t >0 fixed,

Ju ow
—AM—Fg(M)——g"F a (235)
ou

We multiply (2.35) by —Au. Using (1.19), Holder and Young’s inequalities, we obtain
2 2 2 .
8wl <c(IulP+1 22+ 22 P). 237)
Using now (2.31), (2.34) and (2.37) we find

1 (#) |22 < Q(D () + [0 |2 + 1@ |21 + laa [|P)e ™+, >0 (2.38)
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Applying Gronwall’s lemma to (2.28) and using (2.30) we have

_ alX _ o ’
@) [+ 1155 ()l < Q(D(wo) + [[uollz + [@7p + laa [Fp)e™ +¢, e>0. (239)

By (2.34), (2.38) and (2.39) we get

on ou t ou
2 ()12 2 2 —c(t— 2
(e IE 15 O+ 5 O+ [ 015 ds
<Q(D(uo)+ ol + 172+ a3 )e = +¢,  e>o0. (2.40)
Our aim now is to prove that u a priori satisfies
[u(t) ||y <1=0, Vt>0, (2.41)

where J >0 is to be specified later.
In one space dimension, we have, owing to the embedding H!(Q) C C(Q), an esti-
d
mate on 8_1: in L®(R* x Q). It is then not difficult to prove the separation property (2.41)
for solutions to the parabolic equation

ou

g—Au—i-g(u) =h, (2.42)
with right-hand side h € L*(R* x Q).
Indeed, by (2.40), h satisfies
ou _ _ /
155 13 < Q(D(w0) + 10ll2pq)+ Il )+t 2 o e/ +¢, >0, (249)

Let . (t) be the solutions of the following ODEs : v, +g(y+)=1+(t); v+ (0)==%]uol|~.
where 1y () ==||h(t)|| L.
We prove (see [16] and [20]):

Y+ (DI <1=0(D(uo) + = llL01)),  0<E<T, (2.44)
Y+ (B D) <T=0([[ [ Lot 441)), £>0. (2.45)

Thus, due to the comparison principle, we deduce the following inequalities :
y-(t) <u(xt)<y.(t), (xt)eQxR™. (2.46)
Estimates (2.43)—(2.46) imply that

D(u(1)) < Q(D(ut0) + [tz gy Ty + ot B o )~ ¢ 247)
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Combining (2.40) and (2.47), we obtain

_ on ou
D(u(t))+ [[u(B) Iz + @O [[Fe+ 1157 (D1 1+|| H2+ S Ml ds
<QD (1) + 0l g0y + 15 22y + a1 1 e s (2.48)
In particular
Ju(t)||L= <1-6, V>0, (2.49)

where 6 >0 depends on D (), ||| p2(0), 1#0 || 22y and [Jaa [ g1 )
We now turn to the two-dimensional case. To this end, we derive further a priori
estimates.

We multiply (1.14) by Azg—i‘. Using the Holder and Young inequalities, we have

o u
(IIA—||2+HVMII )+2[[ A= H2 (HAMIIZJrIIAa 1) +2¢ IIA—H2 (2.50)

We then multiply (1.14) by A%« to get

d ow ’ ’
E(z@g,m)ﬂymu )+2/|Vaq|

<L (IVulPH IR |2) 420 A% |2+ 2¢ Va2 @51)

Summing (2.50) and € x (2.51), where € >0 is small enough such that 1-2e>0 and 1—-e>0,
we have

dEs(t) 2
< .
S0 ekg() < (laul+[4252), (252)
where 5
e
Eo(t)= A2 |24 |V Al (202, an) [ Aa?)
and

e (| aa >+ [V Ax|2+ HA F1?) <Ee<c ([l + [ Vax|+ HAg—‘f 2. @5
Applying Gronwall’s lemma to (2.52), we have
Eg,(i)gcl/ote_c(t_s)[||Au|\2+|\Aaa—L;||2}ds+E6(O)e_Ct. (2.54)
Furthermore, by (2.40) we get

t ’
/0 eic(tis)HAunzds < Q(D(”0)+ ||”0||%{2(Q)+ ||‘X_0H%—12(Q) + |l Hip(g))eid‘i‘c . (2.55)
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Now, we differentiate (1.13) with respect to time to have, owing to (1.14),
0 ,du ou

573 A=

where
o Ju o+, .ou

q)Z—E-I-Aa—u—g—g (u)g

Multiplying (2.56) by _A?)_Zl’

using Young and Holder’s inequalities, we obtain

HV ||2+HA H2<||<0||2

We apply Gronwall’s lemma to (2.58) to have
IV P+ [ a e s

s) —c Ju
<C/0 et !!90!!2+HV CP)ds+e [V (0) .

347

(2.56)

(2.57)

(2.58)

(2.59)

Hence we have to estimate the term fo e=<(t=5)|| ¢||?ds. To do so, we first prove the follow-

ing lemma.

Lemma2.1. VM >0:
/ MIS00) | gt
(Lt+1)xQ
SQ(D(”O)"'””OH%JZ(O)'i'”“_0”%2(0)"‘H“1||%{1(Q))e*“+c’,

where ¢ only depends on M.

Proof. We can assume, without loss of generality, that
¢'(s)>0, se(-1,1).
We fix M >0 and multiply (2.42) by g(u)eM8()| to have :

d 2,/ Mig(w)|
% || Gutwyda+ [ [VuPg’ () (1+ Mgl e ax

+/ |g(”)|2€M‘g(u)‘dx:/h~g(u)eM‘g(”)‘dx,

(2.60)

(2.61)

(2.62)

where Gy (s f 7eMITldt, which yields, integrating between t and t41, and using (2.48)

and (2.61) the following estimate

2,MI8(1)] gt
/(t,t+1)><0|g(u)| ‘ g

(2.63)

<Q(D(wo) + ol e+ 1Tl et el Je e+ [l g0,
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In order to estimate the second term in the right-hand side of (2.63), we use the following
Young's inequality
ab<¢(a)+y(b), ab>0, (2.64)

where
p(s)=e*—s—1, P(s)=(1+s)In(1+s)—s, s>0. (2.65)

Taking a=N|k| and b=N"1|g(u) M), where N >0 is to be fixed later, in (2.64), we
obtain

1] () M1 <Nt (14N g ) M5 ) n (14N g () M),
Now, if |g(u)| <1, then
11| (1) ]eM8 )‘<eN|f‘—|-<1+N’16M>1n<1+N’1eM).
Furthermore, if [g(1)| > 1, then |g(u)|eM8()>1 and

11| | g (1) eMIs (s ‘<eN‘h‘+<1+N U g(u)]eMlsts \) (1+N g (1) M8 )\)

= NI MN7Y g (u) [PeMIs0) 4 N~ 1ln(1+N 1) g(u) |eMIs)]
+N g () [In(|g(u)] ) e+ Mg (u)|+1In(|g(u)]) +In(1+N)
SeN”"-i—N‘l(M-l—l-l-ln(l-l-N ))yg(u)yzeMlg 4 (14 M) |g(u)|[+In(1+N1)

< MHENTH (M4 141N ) fgw) yzeMlg<u>l+§yg<u) 2eMls®)l 4,

because (1+M)|g(u)|< i lg(u)]?+(1+M)*< \g (u)|2eMI8)] 1 (14 M)?, where ¢ depends
on N and M. Choosing finally N =N (M) large enough, we find, in both cases

g (e) IS <Nt 2 g 2eMIst0) ., (2.66)

where c only depends on M. We thus deduce from (2.63) and (2.66) the following inequal-
ity

Lo iny 800 M5 e < QUD () [0 + 1

2 —ct /
B e e +2/W+1)XQexp(Nym)dxdt, (2.67)

where ¢’ only depends on M.
To conclude, we use the following Orlicz’s embedding inequality

2
/ N1l gy < o Il o) * D) Yoe H(Q), (2.68)
0
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where ¢ only depends on () and N. It then follows from (2.43), (2.67) and (2.68) that

2,MI8(W)] g dt
/(t,t+l)><0‘g(u)‘ ‘ ¥

<Q(D (o) + |01 () + 11T 120y + a3 ) e +c (2.69)
Noting finally that
/ Mgl gy < / MIg()| gy 1 / oMIZ()] 5 (2.70)
(Lt+1)xQ )<1 )[>1
<c—|—/ 1) [2eMis \dx<c+/ Ig() PeMsla,
ti+1)x
where ¢ only depends on M, (2.69) yields the desired inequality (2.60). O

It is not difficult to show, by comparing growths, that the logarithmic function g sat-
isties

]g/(s)|§ec‘g(s)|+c/, se(—1,1), c,c >0. (2.71)
Therefore,
/ ]g’(s)|pdxdt</ P8 Py, (2.72)
(tt+1)xQ T J (1) X0

whence, owing to (2.60),

1" (1)1l ((,41) x2) SQ(D (o) + ol o) + 1T 112 )
+laa [Fpq))e ¢, Vp>1. (2.73)

Thus ¢ in (2.57) satisfies, owing to (2.60) (for p=4) and the above a priori estimates (which
imply that ?}—”t‘ €L®(bt+1,12(Q))NLA(Lt+1,HY(Q)) C LA(tt+1,H2 (Q)) C LA((£,£+1) X
Q)),

H(PHLZ((t,H—l)XQ)SQ<D<u0)+HuOH%—Iz(Q)—i_Ha_OH%—IZ(Q)—i_H“l“%{l(g)>6_d+0/, (2.74)
hence,
LD 1 o2
| lolPas <1 liz 10

SQ(D(M())—I- HMOH%-Iz(Q)‘F HIX_OH%_IZ(Q)—F Hoq H%—I] (Q))efct—kcl)
SQ(D(UO)‘i‘ HuOH%-p(Q)‘F Ha_OH%_IZ(Q)‘i' HtXl ||%_p (Q))e*ct_i_cl. (2.75)

Furthemore, we have

ou
95 O Q(D(wo)+ ol g+ o o ) (2.76)
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Using (2.75) and (2.76) in (2.59) and by (2.48), we deduce

IS 3+ [ e S
SQ( (u0)+HMOHH3(Q)+H‘X_OHHZ(Q)—'_““1”%—11(0))6_Ct+c/' (2.77)

By (2.48), (2.53), (2.55) and (2.77), we deduce from (2.54)
_ ow
& (8) 130y + Hg(f) [
< QD (1u0) + [0l 00+ 11125 )+ 11 2 e~ ¢ 2.78)

Rewriting again (1.13) in the form

at —Au+g(u)=h, (2.79)
we have, owing to the above estimates,
he L= ((tt+1)x Q) (2.80)

and the separation property follows as in the one-dimensional case.

3 Existence of solutions

We have the

Theorem 3.1. (i) In one space dimension, we assume that

D (o) +||uo | 7 + @ | 7 + |t | 7 < +00,  D(uo)>0. 3.1)

Then, (1.13)-(1.16) possesses a unique solution (u,oc,g—ié) such that

_ o B
D))+ (t) [+ 7)1 S (]2 1 2 u2+/ et &
<Q(D (o) + [0 I3 ery + [Tl 32 0y + 11 3 3y Je ™ ¢, c>0,t20. (32)
(ii) In two space dimension, we assume that

D(ug)+||uo|| 3+ @I 3 + llaa |32 < +o0,  D(ug) >0. (3.3)

0
Then, (1.13)-(1.16) possesses a unique solution (u,« o

5 ) such that

_ o
D(u(t))+||u(t)||§{3+|\a(t)|\§3+||§(t)|\ z+|| 1+/ Igl\ 2ds
SQ(D<uo)+HuoH%s(Q)JrHa_oH%s(erHMHHz(Q))e ff+c, c>0420. (4
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(iii) In three space dimension, we consider the set K= {@ € L?(Q), —1<¢ <1, ae. in Q}
and we assume that (ug,n,a1) € Fx=(KNHY(Q)) x H'(Q) x L2(Q)). Then, (1.13)-(1.16)

. . «
possesses a unique solution (u,a,g) such that

(u,®) eL*(RT,HY(Q)?), (u,g—”t’) € L*(0,T,H*(Q) x L2(Q))),
x€L®(0,T,H(Q))  and g—‘;‘eLw(ﬂthZ(Q)), VT >0.

Moreover for all t >0, |[u(t)||r~(q) <1and the set {x€Q/|u(x,t)|=1} has measure zero.

Proof. In one and two space dimensions, the proof of existence is standard, once we have
the separation property (2.41), since the problem then reduces to one with a regular non-
linearity. Indeed, we consider the same problem, in which the logarithmic function g is
replaced by the C! function

§(—6)+8 (=0)(s+6), s€(—o0,—d[,
gs(s)=q 8&(s), se[—6,0],
8(6)+g (6)(s—9), s€]6,+00),

where ¢ is the same constant as in (2.41).

This function meets all the requirements of [25] to have the existence of a regular

ox
solution (ugs,ay, —t‘s)

Furthermore, It is not difficult to see that ¢ and g, satisfy (1.19), (1.20) and (2.71), for
the same constants. We can thus derive the same estimates as above, with the very same
constants.

Since g and g5 coincide on [—4,0], we finally deduce that u; is solution to the original
problem.

In three space dimension, following an idea of Debussche and Dettori [7] we consider
the approximation of the function g by a polynomial of odd degree gy, and the boundary
value problem (Py) that one obtains by replacing g by gy in problem (P)

ou o
a—tN—AuN-i‘gN(uN) = a—tN (35
aleN asz auN

TR TR e TR (3.6)
auN . aaN .
v o Y (3.7)

aaN
MN(O)IM(), WN(O)IIX(), 7<O)Ia1. (38)
aaN

The existence and uniqueness of a solution (uy,a N,F) to problem (3.5)-(3.8) have
been proved in [25]. We then construct the solution of problem (1.13)-(1.16) as the limit
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ox
of (un,an, 8—:]) as N — +o0. Indeed, we first derive uniform estimates with respect to N

for problem (3.5)-(3.8). Replacing (u,«) in (2.16) by (uy,an), we write

dE
d2N+c<E2N+||AuN||2+H—|| )<c, >0,
where
2 2 a"‘N
Eon=|lunl +H”NH1+2/ Fy(un)dx+|[Vay [+ =~
oaN aa _
482 (194 128 2y 24261 P2 ) ) 405
satisfies
ou ’
e (IR o+ [ B (i) + 15 s )+ Nn)—csm
o
< (HuNHHl v+ [ EnGn)dx-+ @1 )+ 15 1) +¢

! n

c,c '>0 and c,c >0.

Using Gronwall’s Lemma we have

_ Jux
sl[lp]{nuN<t>H%{l(m+||ocN<t>||%p HISEOIP} <,
tel0, T

oy
where ¢ is independent of N. Hence there exists a subsequence of (uy,&N, —=—

0
denote again by (uy,&y, i which satisfies as N — 400

at)

— X

uy—u weakly starin L%(0,T,H'(Q))),
AN —~& weaklystarin L*(0,T,H(Q))

7
aaN

ow
AN ok TR 1 . 00 2 .
5 ¥ weakly starin  L*(0,T,L*(Q)))

Moreover, integrating (3.9) over (0,t), we obtain

Ew()+ [ (Jaunl+| 522 )ds<c, veeoT], 20,
where c is independent of N. We then deduce

auN au . 2 2
R TR weakly in L%(0,T,L°(Q))),

Auy—Au weakly in L*(0,T,L*(Q)).

ot

(3.9)

(3.10)

(3.11)

(3.12)

V) that we

(3.13)
(3.14)

(3.15)

(3.16)

(3.17)
(3.18)
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Replacing H by Hy in (2.5), we write

(Hy(t))=e""(Hn(0)), (3.19)
which can be written as
d(w .
N (1) = e~ (H (0) — un (1) (.20
Integrating (3.20) over (0,t) we obtain
t
(06N(t)>=<Déo>+<HN(0)>(1—€_t)—/0 (un(s))ds. (3.21)
We then deduce ,
(an () <c(Ean(0)+ o) +c #2. (3.22)
Using the equivalent norm in H!(Q) we get
sup H"‘NH%ﬂ(Q) <¢ (3.23)
te[0,T]

where c is independent of N. We deduce that
any—a weaklystarin L*(0,T,H(Q)). (3.24)
We now multiply (3.5) by gn(uy) and integrate over Q using gy, (s) > —c to have

dun

on
R+ SE ). (3.25)

2 2
lgn en) 2 <e ([ Vun 2+ -

Integrating (3.25) over (0,t), we deduce
lgn () 1720y < (3.26)

where ¢ is independent of N and Q=Qx (0,T).
By (3.26) and for a subsequence we obtain

gn(un)—g¢* weaklyin L*(Q). (3.27)
Letting N — +c0 in the equation (3.5), we deduce from (3.15), (3.17), (3.18) and (3.27) that

)
(u,a, —“) satisfies

ot
ou - on . 2
E—Au—i—g =5 In L*(Q). (3.28)
From (3.6) we deduce (setting fn = ag—tN) :
dun

a,BN asz o N
<7+71X>+<VWN/VX>—_< P +uN/X>/ VXED«O/T)XQ)/

t
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where (.,.) denote the duality product between D'((0,T) x Q) and D((0,T) x 2).
Then letting N — 4-00, using (3.13), (3.15), (3.17) and (3.24) we deduce
Pa  ow

ou .
sat —da=—5-—u in L*(Q). (3.29)

Moreover using [12], (3.13), (3.17) on the one hand and (3.15), (3.24) on the other hand
implies that as N — o0

uy—u in  C([0,T],L3(QY)), (3.30)
ay—a in C([0,T],L2(Q))), (3.31)

so that in particular u(x,0) =up and a(x,0) =g in Q.
Furthermore we deduce from (3.15) that ag—tN € L*(0,T;H 1(Q)). On the other hand

we have ag—tN € L*(0,T;H (Q)), so that

o _
a—tNEC([O,T],H LQ)).

0
Using Strauss Theorem, we get % € Cw([0,T],L2(Q))) and there exist a subsequence

day

gt} € Cw([0,T],L?(Q))) such that in particular as  — +oco we have
day, on . »
5 (0) 5(0) weakly in  L(Q)).

0
Since %(O) —ay in L2(Q)), we deduce that aa—f(x,O) =u.
Note also that using Lions” Theorem and (3.13)—(3.15), (3.17) and (3.24), we get

ueL®(0,T,H (Q)), %ELZ(O,T,LZ(Q)), € L®(0,T,H(Q)),

acL™®(0,T,HY()), Z;—‘;‘eL""(o,T,LZ(Q)), u,a € C([0,T],L*(Q)).

on i

Hence (u,oc,g) satisfy

ou . ox Y
E—Au-l—g == in L°(Q), (3.32)
’x  ow ou .o
Jou o«
g = g =0 on 0Q) x <O,T), (334)
u(0)=uo, w(0)=ay, a—IX(O):le in Q). (3.35)



A. Miranville and C. Wehbe / J. Math. Study, 51 (2018), pp. 337-376 355

We now prove that ¢* = ¢(u#) and the set {x € ), |u(x,t)| =1} has measure zero. To do
so we adapt a method introduced by Debussche and Dettori [7]. For an arbitrary small
7€(0,1) and for all t€ (0,T), we set

E,fyu):{xen/\uN(x,t)\ >1—;7},

and we denote by |E,I]V(t)] its measure namely ]E,I;](t)| =meas(EN (t)) =

p fE’?,(t)dx and by

XﬂN (t) its characteristic function :

1 if xeEN(t)
N _J L n \t)s
Xy (1) { 0, elsewhere.

Integrating (3.9) over (t,t+r), we obtain

auN

t+r ,
EzN(t—l—r)—l—/t Ean+ | SR ) ds <c (1) + Ean(t), V420, ¥r>0. (3.36)

To continue the proof of the theorem we state the following two lemmas.

Lemma 3.1. There exists a constant c such that for all r >0

auN

=57 )HZSC(%‘FU(EZN(O)-FD, V> r>0. (3.37)

Proof. Replacing (u,«) in (2.20) by (uy,an), we write

auNHz auN ||2

Applying the uniform Gronwall’s Lemma to (3.38), using (3.11) and (3.36) we deduce that
Vs >0,

i

e MR G

aMN
HIV=- ||2<C<HuN||2+H0¢NIIH1 )t

0 1
IS (+8) P Sc(+1)(Ean(0) 1), ¥E=0, (3.39)

which completes the proof of (3.37). O

Lemma 3.2. There exists a constant c such that for all r >0

I8 (un (D) <c(+1) (Ean(0)+1), V2730, (3.40)

Proof. Applying Gronwall’s lemma to (3.9), using (3.11) we deduce that

aaN

|\wN()||2+|| ()||2 Eon(0)+c, VE>r>0. (3.41)

By (3.37) and (3.41), we get from (3.25) the inequality (3.40). O
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Using Lemma 3.2 we deduce that
tlgn (un (1)) <c(T+1), vte(0,T), (3.42)

and thus

N|—

> EN (1) 2 { In frcpyn (2N OM)Z}%

2k+1
> ’Eil;[(t)’%'lnfer,;\’(t) Yilo

’u ( )‘2k+1
( )2k+1 2k+1
1—

{ny(t)g%v(“N)dx}

which implies that

1 C
E) (1)]7 < (3.43)

(1 17)2k+1
VLo 2k+1

Thus letting N — +-co we deduce from (3.30), (3.43) and Fatou’s Lemma that

= Hdx< [ i £
Ei01= [ (014 [ liming)

4C
2(2=1\’
tin ( 7 >
where |E, (t)| and x,(t) respectively stand for the measure of the set {x € Q), |u(x,t)| >
1—n} and for its characteristic function. Letting then 77— 0, it follows that for all t € (0, T)

.. .. N
gk’gﬁf/ﬂxﬂ (t)dx <liminf|E," (#)[ <

Meas{x€Q), |u(x,t)|>1}=0. (3.44)
It follows respectively from (3.30) and (3.44) that for all t € (0,T) and almost every x € ()
on(x,t) — g(x,1). (3.45)

Then using Lions ([8], lemma 1.3, p.12) it follows from (3.26) and (3.45) that
gn(un) —g(u) weaklyin L?(Q), (3.46)

so that ¢* =g(u).

Concerning the uniqueness, let (u(l),oc(l),a"g(;) and (u(z),rx(z),aat > be two solutions

with initial data (u(()l),a(()l),agl)) and (uéz),aéz),a§2)>, respectively. We set

o )i 05

(uo,txo,fxl) _ (u(()l) _u(()Z),a(()l) —oc(()Z),ocgl) _“gz))_
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We then have

which is equivalent to

ou o
o (Y _ (2)y 2%
oy~ Autg(u) —g(u®) ==,
az—a-l-a—a—Arx——a—u—u
o2 ot ot
ou ou
o

Ju
u(0)=up, «(0)=uno, g(O):oq,
ou Ju
g—AM"l‘l(t)u—g,
o2 ot ot
du_on _
o v

o

u(0)=ug, «(0)=uno, e (0)=uaq,

where I(t) = [)'¢'(su® (£)+(1—s)u@ (t))ds.
In one space dimension, by (2.41) we have for all t >0,

D () ee <1=3;, 6:=8:(D @), 11 & |2 108 ), i=1,2.

We set §p =min(41,d7) and then deduce

IsuM ()4 (1—5)u® ()| <1—dp, V0<s<1,

hence

[1(£) [ L= < C(=C(bp))-

Remark 3.1. In two space dimension, we have

8= 61 (D) g ol o Nl N ), =12,

357

(3.47)
(3.48)
(3.49)

(3.50)

(3.51)
(3.52)
(3.53)

(3.54)

(3.55)

Multiplying (3.51) by u+ aa—btl and (3.52) by g—?, integrating over () and summing the re-

sulting equations, we obtain (note that this is where (3.55) is used)

dE,
957 < E
ar =7

(3.56)
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where
—||u||2+||WH2+H H2+||W||2 (3.57)
This yields, owing to Gronwall’s lemma,
E;(t) <e“E;(0). (3.58)
Integrating then (3.52) over (), we have, as above,
(H(t))=e '(H(0)), (3.59)
where, again, H=u+ gt hence
(@(t))? <er([ul22 o1y + E7(0) o], £€(0,T]. (3.60)

Noting that it follows from (3.58) that

Jx
Hu(t)H%-p(Q)'i'||V‘X(t)||2+”§(t)”2SC(HuOH%-Il(Q)'i'H‘XOH%-p(Q)'i'H‘XlHZ)/ (3.61)
where ¢ depends on T and Jy, which yields, in particular,
ulZ2 (e 0,7y S (o7 + o[ +llaa[?),  £€[0,T], (3.62)
we finally deduce from (3.60)-(3.62) that
ou
1ae(0) By + 1) By + 15 (O < oy + ol By +lloa ), (3.63)

where ¢ depends on T and dy, hence the uniqueness, as well as the continuous depen-
dence with respect to the initial data. O

Thanks to Theorem 3.1(i), we can define the dissipative semigroup S(t) associated
with problem (1.13)-(1.16) on the phase space ®;.

Taking D (uo)+||uo||2, + |@0[|3 +[|a1 ]2 <R, R>0, we obtain that B} is a bounded
aborbing set for S(t), where

Bh={ (08, 2%) € B, D(u(t))+ e+ 73+ o 3 <R ).
Indeed, by (3.2) we have
D)+ (Ol + 70 B+ I e (0) 2 <R, W2 o, G.64
Concerning the two-dimensional case, we have that
Br={ (0 5) B, D(u(t) + [l + T3+ o2 <R}
is a bounded absorbing set for S() in ¥y. Indeed, we have

D@ () + [(6) s + () B 55 () B <R, Vi (.65
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4 Global attractor

We have the

Theorem 4.1. (i) If n=1, we take the initial conditions in BL. Then the semigroup S(t), t>0,
defined from @ to itself possesses the connected global attractor Ay in ®q.

(ii) If n=2, the initial conditions belong to By. Then S(t) defined from ¥ to itself possesses the
connected global attractor Aj.

Proof. We use a semigroup decomposition argument (see, e.g., [6]) consisting in splitting

the semigroup S(t), t >0, into the sum of two families of operators : S(t) =S (t)+S(t),

where operators S;(t) go to zero as t tends to infinity while operators S,(t) are compact.
This corresponds to the following solution decomposition

_ow, o g— ond ¢ — 0a°
<M,IX,§)—<M S /w)—i_(u S /j)/

d

o
o, — n ——) is solution to

where (u,

ou’ o’

W-I-u —Aut= TR 4.1)
%ad  ouf p ut
E T T (42)
oul  oat
W Y *3)
d d ale
u(0)=uo, a“(0)=unyo, W(O):l’él, (4.4)
— oa
C c _
and (u€,ac, 5 ) solves
ou’ c _ oaf
Cw—i—u —Au +f<u)—¥, (45)
%ac  oac ¢ out .
Ty A= (46)
Ju®  da‘
e @)
c c o’
u'(0)=0, a%(0)=0, —-(0)=0, (4.8)

where f(s)=g(s) —s (f and g satisfy the same properties) and with initial data belonging
d

d
to BL. Multiplying (4.1) by —Aud—AaaLt, (4.2) by —Aaait and summing the resulting
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equations, we have

1d

d)2 d)2 2 d
L4 2w Pt 8 P+ [V 2 )

+HWdHZ+HAudHZ+HV HZ+HV H2

o

We set Hy =u+ aa—t and by analogy with the relation (2.8), we write

oH;
A H - A =0.
or 1T AR

d

Multiplying (4.10) by —Aa?— Aai, using Holder and Young’s inequalities and

ot
1P17e0) <clldgll?,  YoeH*(Q), >0,

we get

ot
(HAwdeH!V C[P-+eal| T P+ 26 (VS

d
& 12 a2\ </ dp2 L 2
eIV 2 an ) <& (1T P+IVES ), e,

Vocd))

where €3 >0 is small enough, and we have in particular

u ol
Hv ]!2—1-63]]V04d]!2+2€3(V— sz)>c<”szdH2—|—HV%H2>, c>0.

d

Summing (4.9) and e4x(4.11) where €4 >0 is small enough, we have

dEg
I +c E8+HV H) c>0,

where
ZHW”’||2+HAM"’||2+HV H2+HA0¢"ZH2
out
—I—e4<HAo¢dHZ—|—HV |t es Va2t 26 (VS vah)).

Applying Gronwall’s lemma to (4.13), we write

— aad ro_ _
AP+ ot [Fp + IV =12 < c e (JluollF + 1@0lIFe + laa [1F)-

(4.9)

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)
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d d

Now, we multiply (4.1) by ul+ aait and (4.2) by aait and summing the resulting equa-
tions we get

d d2 d|2 dy|2
= (2 24 |V |2+ V| +H <) )
2 P[9P+ | 2 4 ) =0 (4.16)
Considering equation (4.10) and repeating exactly the estimates that gave (2.13), we

get
dEg

T (Eg-l-H H )< c>0, (4.17)

where
d2 d2 d2 on’ 2
Eo=2[[u"|*+||Vu H Va7l =]
ad 2 a2 —q12 dad _d
o125 24+ |V [P P+ 2( ), @.18)

and €5 >0 and € >0 are small enough so that we have in particular
o
2 dl12 > dl2
1% H s (4205 a) ) 2 e a2+ H) ¢>0. (4.19)
Applying Gronwall’s lemma to (4.17), we have
|+ Nl 1+H HZ<Cf”(HMoHHerH“oH i+ llaalfFp)- (4.20)
Combining (4.15) and (4.20), we obtain
Hud<f)H§z+H“d<)HH2+H ()H e M (lluollte+ @l + laalFp).  @21)

We can see that S_l(t) tends to zero as t tends to infinity.
Now, we consider system (4.5)-(4.8).
We multiply (4.5) by —Au‘. Integrating over () we have

on’
ulI? c||2 c||2
I T P [ () ) = (9 e T, (422)
We multiply (4.5) by —Aaalt. Integrating over () we obtain
ou’ on’ _ duf
2 u° 2 s c||2 —
HV H +2dtHv | ZdtHA "= ( ), ot ) (V ot v ot ) (423)
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We finally multiply (4.6) by —Aaait. Integrating over () we find

2
”V ” +2dt 2t

Summing the resulting equations, we get

ot ot ot

(zuwrrZ+HAuCHZ+HMH2+Hv Ll )

+C(HWCH2+HAMCH2+HV H2+HV H) <c|lf Vul?, e>o.

c
We multiply (4.5) by Azaait. Integrating over (2 we have

(HAuCHZJrHVAuCH )+HA H2<HAf )HZ+HA H-

c
We then multiply (4.6) by Azaait and by integrating over () we obtain

(IIA H2+IIVMC|| )+||A ||2<C(||Aucl\2+||A H)

Summing (4.25), (4.26) and €7 x (4.27) where €7 > 0 is small enough, we have

W1 < e IAf @I+ () TulP),
where
1 =2[| A2+ || VAU P 4+2]| Ve |+ || Aac |2
ou’ ’ o2 ou’ »
VS P +er (11780 P+ A5 2).
By (3.2), we deduce that

IAF@)IP+f () Vul* <e, VE20,

where ¢ depends on D(uy), ||uo|| g2, ||®0]| 2 €t [Ja1 || g1
By (4.30), we deduce from (4.28) the following estimate

dir

<
T, ClP1+C

[V 4 8|2 = - (Vo 95 ) — (Vue, T o).

(4.24)

(4.25)

(4.26)

(4.27)

(4.28)

(4.29)

(4.30)

(4.31)

Applying Gronwall’s lemma to (4.31) (noting that ¢ (0)=0) and by using (4.29) we obtain

— o’
|7 80 [P+ [ s+ A2 < Cor

, uo,ﬂTo,Dé])lefB}q

(4.32)
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c

Multiplying (4.5) by u°+ aait and (4.6) by aait' summing the resulting equations, we have

(ZHuCHZ+HWCHZ+HWCH2+H Ll )
el PV 24 o | 5 2 < ) 2 (4.33)
Summing now (4.23), (4.33) and eg x (4.24), where €5 >0 is small enough, we deduce that
¢2<C(¢z+|\f( WP+ () Vul?), (4.34)
where
o =2 P 2V 4 [V 2+ S |2+ 40 e 180 P+ 5 [P (435)

Applying Gronwall’s lemma to (4.34), using (3.2) and (4.35) we have

|3 z+||A“C||2+H H Cr gl 2. [0l 2 et ] 1, B (4.36)
Combining (4.32) and (4.36), we get
[ (#)[13 + Nl ()13 + H H Cr uoll 2,1l g2t ] 1, B (4.37)

Hence, the operator S,(t) is asymptotically compact in the sense of the Kuratowski mea-
sure of noncompactness (see [18]), which concludes the existence part of Theorem 4.1
().
In order to prove part (ii) of Theorem 4.1, we now take the initial data in B%, then
d

d
multiply (4.1) by A2yt A2 aait and (4.2) by A? aait' Summing the two resulting equations,
we end up with

1d

d2 a2 2 d
L4 o o [V a0 P |2 | FIvae] ?)

+HAM”’IIZJrHVAudIIZJrHA ||2+||A H2 (4.38)

d
We multiply (4.10) by Azaait. Integrating over (), we have

d
L (1v8a |+ 2% H)+HA—HZ<c(HAudHZ+HA 12). (4.39)
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We multiply (4.10) by A2a“. Integrating over Q, and using |‘¢H%‘IS(Q) <c||VAg|? Ve e

H3(Q),c>0, we have

1d 42 dn? d a2
5 (l18a?] +2(A—a Aa)) + | Vet
1 di2 2 an? ,
—2 (||A” | +||A || >+C€9||VA‘X | +HA_at .

Summing (4.39) and eg x (4.40) where €9 >0 is small enough, we deduce that

dac!
(Hm d||2+||A |\2+€9|\Arxd|\2+2€9(Aa— Aa))

(HA—H2+deH )< (w2 + 125 2),

and we have, in particular,

da
HA Hz+egumdu2+2eg Aa— An )>c(HAo¢dHZ—|—HA H ) c¢>0.

Summing then (4.38) and €3¢ x (4.41), where €19 > 0 is small enough, we obtain

lPs aud 2
<
——|—c(1,b3—|-|\A 5 | ) 0, ¢>0,

where
¥s 2\\AudH2+!!VAud!!2+HA H2+HVM‘1H2
d)2 2 d2 9a’
—|—€10<HVA1X | —i—HA H +e9||Aa’||*+2¢9 AW Aw ))
Applying Gronwall’s lemma to (4.43), using (4.42) and (4.44) we get
N2, 1 edn2 on? 2 —ct 2 —2 2
IV A+ [lat [ +[| A== 17 < e e (lluoll e + @01 + llaa [F2)-

By (4.21) and the continuous injection F, C F;, we have

d
d —
1%+ ||‘XdHH2+H =l <c'em (Jluol s + |[@al3p + Nt 13).

We then deduce from (4.45) and (4.46) the following estimate

! — [—
10 2 B ) 2 2 < ol e+ o [ 2)

ot HH2

(4.40)

(4.41)

(4.42)

(4.43)

(4.44)

(4.45)

(4.46)

(4.47)
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Concerning system (4.5)-(4.8), we multiply (4.5) by A%uc. Integrating over (), we get
1d |
2 dt

Summing (4.26), (4.27) and (4.48) we obtain

ob
| A4 | A |2 [V Auf 2+ (Af (u), Au) = (A= Au). (4.48)

d
(ZHAMCH2+IIVAuCIIZJrHVAwCHZJrIIA il )

+c(nAuC||2+HVAuCHZH\A ||2+HA ||)<c’nAf<u>n2, c>0.  (449)

c
We multiply (4.5) by A3 ot and we integrate over () to have

ot
o

(HVAuCHZJrIIAz I )+||VA H2<||VAf( WE+IVA—-|2. (4.50)

We then multiply (4.6) by A3aai. Integrating over () yields

Cc a“ Cc
L (1982 24 a2 ) + VA% <o van P +[Va%e2). sy

Summing (4.49), (4.50) and €11 x (4.51) where €11 >0 is small enough, we obtain

W VAF(u)|?+]A 452
St VAL [P+ IAf(w)]?), (4.52)

where
1/14=2HVAMCHZ+HA2 CH2+2HAuCHZ+HVMH2
A% 2 e (A% P+ VA% 2). (453)
Furthermore, we have

IAF N =1f" () [V f () b

<(by (34))
= Cb(uo), ol 3,181 5.1 2 (4.54)
IVAF) | =" () [Vul + £ (u) Vudu+ f (u)VAu|
<(by (34))
< CD (ug), 1ol .1l .l ] 2 (4.55)

Inserting (4.54) and (4.55) in (4.52) and applying Gronwall’s lemma to the resulting esti-
mate, we deduce by (4.53) that

(4.56)

U, g, &1 ) HFZ,B%

on*
1470+ || A%+ VA== I><Cr,(
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Combining (4.37) and (4.56) we have

c e on’ 2
1,0, =1 < Cr g .0 15y B2 (4.57)
which completes the proof of the theorem. O

We define for what follows the following invariant sets: in one space dimension, X; =
Ur>1,S(t) By, where B} is the bounded absorbing set for S(t) in @y and in two space

dimensions, X, = U, S(t)B%, where B% is the bounded absorbing set for S(t) in Y.
In what follows, we will work in these two subspaces X; and X, which are positively
invariant for S(t),t>0.

Now that the existence of the global attractor is proven, one natural question is to
know whether this attractor has finite dimension in terms of the fractal or Hausdorff
dimension. This is the aim of the final section.

5 Exponential attractors

The aim of this section is to prove the existence of exponential attractors for the semi-
group S(t), t >0, associated to problem (1.13)-(1.16) in one and two space dimensions
using the separation property (2.41). To do so, we need the semigroup to be Lipschitz
continuous and satisfy the smoothing property, but also to verify a Holder condition in
time (see [18], [19], [28-30]). This is enough to conclude on the existence of exponential
attractors, but before going further, let us recall the definition of an exponential attractor
which is also called inertial set.

Definition 5.1. A compact set M is called an exponential attractor for ({S(t) };>0,X), if
(i) AC M C X, where A is the global attractor,
(ii) M is positively invariant for S(t), i.e. S(t) M C M for every t >0,
(iii) M has finite fractal dimension,
(iv) M attracts exponentially the bounded subsets of X" in the following sense :
VBCX bounded, dist(S(t)B,M)<Q(||Bllx)exp(—at), >0,

where the positive constant « and the monotonic function Q are independent of B,

and dist stands for the Hausdorff semi-distance between sets in X, defined by

dist(A,B) =supinf|ja—Db|| y.
acA beB

We start by stating an abstract result that will be useful in what follows (see [18]).
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Theorem 5.1. Let ¥ and Yy be two Banach spaces such that Y, is compactly embedded into 'Y
and S(t):Y — Y be a semigroup acting on a closed subset Y of ¥. We assume that
(i)
Vx1,x2€Y, V>0, S(t)x1—S(t)x2=_51(t,x1,%2)+S2(t,x1,%2),
where
151(£x1,5%2) [[¥ <d(8) |21 — 22|y,
d is continuous, t >0, d(t) — 0 as t — +o0, and

|S2(t,x1,%2) ||w, <h(t)||x1—x2|lw, t>0,h continuous,
(ii) (t,x) — S(t)x is Lipschitz/Holder continuous on [0,T|x B,YT >0,YB CY bounded.
Then S(t) possesses an exponential attractor M on'Y.

In order to get the existence of exponential attractors in our case, we will use Theorem
5.1. We have the following result

Theorem 5.2. (i) In one space dimension, the semigroup S(t), t >0, corresponding to equations
(1.13)-(1.16) defined from X; to itself satisfies a decomposition as in Theorem 5.1.

(ii) In two space dimension, S(t), t >0, defined from X to itself also satisfies such a decomposi-
tion.

Proof. Let (ul,le,%) and (uz,az,%) be two solutions to the problem (1.13)-(1.16) and

(mo1,0001,011) and (u02,&02,412) be their respective initial data. Set
(e aoc)_ (u & onq azxz)
1%y at — 1 2,081 27 at at s
(uofﬂéo,lxl) = (M01 —Up2,001 —&02,411 —0612)~

Thus (u,oc,g—ié) is a solution to
ou o
g—Au—i—K(t)u—i—u—g, (56.1)
?a  ou ou
ou ow
2y, (5.3)
on

M(O) = Uy, ‘X(O) =&, (0) =, (5.4)

ot
where x(f) = folf/ (suq1(t)+(1—s)ua(t))ds. Note that «(t) and I(t) verify the same proper-
ties, hence

(B~ <c  (=c(Bk)). (5.5)
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Now decompose the solution (u,oc,g—?) as follows :
oo, on o¢
(u,a,g) - <l9/77/§) + (v/é’/g)/
where (19,17,3—7) and (v,(j,a—g) are solutions to
v _Jy
S —ao+o=31, (5.6)
o’ Iy 09
1A + = o5t —An= 5—19, (5.7)
0 dn
=5r=0, (5.8)
o7
9(0)=up, n(0)=uny, 3 (0)=uaq, (5.9)
and
v _dg
g—Av-i—K(t)u-l—v—g, (5.10)
9’¢ 3C
v ag B
=5 =0, (5.12)

d
w(0)=0, £0)=0, L(0)
respectively. We start with the proof of (i). In that case the initial conditions belong to
X;. Repeating for (5.6)-(5.9) the estimates which led to (4.13) and (4.17), we then write
(noting that f =0)

0, (5.13)

d
W5 (g5 VL) <0, c>0, 5,14
where
0
1IJ5=2||V19H2+HA19||2+IIV—WIIZJrHA’?HZ
2 2 2 an
+e(||An||+||v Pre(ivnP+2(vELYm)),  615)
ﬂ+c(¢6+”—” )<0, ¢>0, (5.16)
where

Ve 2Hl9HZ+HVl9H2+HWHZH\ H2

a7
+8 (1P + v+ (lmP+2(SL ) ). (517)
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Here € >0 and 6 > 0 are small enough so that we have in particular

an _
[ \\2+5(rrnHZ+z<a’Z,n>)>cHnumw TIp), c>o,
0 /
IV te(IoniP+27 2L vm) =< (1041922, ¢ >0

An application of Gronwall’s lemma to (5.14) and (5.16) respectively yields

IIMH2+H17HH2+HV NP <ce (luollfp + 1@ 3 + ),
||l9||H1+H17HH1+H H2<C€*“(Iluoll 1@ | e+l [1F)-

Combining (5.20) and (5.21), we get

_d __
II(ﬁ,ﬂ,a—z)H% <d(t) || (uo, @, 1) |17, -

OW we consider . —(D. . e multi . v+ — an .
N ider (5.10)~(5.13). We multiply (5.10) by A2 AZ?;; d (5.11) by

Summing the resulting equations, we get

1d
o (2||Av|\2+|\VAvH2+IIVACH2+HA 12)+lav)P+ [ Vav|?
av ov
NN <V<x<t>u>mv>—(A<x<t>u>,A§).

Noting that
c ce
(V) V20) | < ol + 5 VAP,

due to the continuous embedding H2(Q)) C L®(Q), and by (3.2), we have

(8|12 < QU (o1, @01, a11) [l + [ (102, W0z 011 [[557) <.

Thus,
(A, a2))| < a2

— Jul

369

(5.18)

(5.19)

(5.20)

(5.21)

(5.22)

9g
296
A 5

(5.23)

(5.24)

(5.25)

(5.26)

Choosing € >0 small enough and using (5.24) and (5.26), we deduce from (5.23) the fol-

lowing inequality

2 (20180l 9 80l + |V ag>+ A% H)

(Ao + VAo 4 A% A% ) <l >0

(5.27)
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Integrating (5.27) over (0,t), by (5.13) we have

d ;o
HAv(f)H2+\\VAv(f)\\2+!!VAé(f)\\2+HAa—f(f)HZSC/0 1]/ dis. (5.28)

d
It only remains to estimate fot |||3,2ds. To do so we multiply (5.1) by —Au—Aa—z and (5.2)

by _A?)_{:' Summing up, we have

d
d—(zuwuuumrr%uv P+ lAal) +[[Vu >+ [ A

N~

+HV H2+HV H2 (V(K<f)u),W)—(V(K(f)u)lvaa—?)- (5.29)
Holder’s inequality, (3.2) and (5.5) yield
|(V(r(t)u), V)| cllul3s. (530)
Analogously, we have

(V). T2) | <elullin IV < Sl + 1022 631

Choosing € >0 small enough and recalling (5.30) and (5.31), we obtain

d ,
W0 e (Ivul P+ IV P+ IV ) <l >0, 632

where
Pr(t)= 2\\Vu!!2+!!Au\\2+!!V H2+HA [ (5.33)

Integrating (3.61) over (0,t), we get
/ ()13 ds < e (fJuo |3 + @0 3+ 1t 13- (5.34)
Integrating then (5.32) over (0,f) and using (5.34) we deduce that
t ) o
[ lBieds < e o 5,00) 1, (5.39)
hence (5.28) yields

- d C
18v(8) |2+ IV Av(D[2+ 15 (1) 76+ HAa—f(t)HzSc e (o, %o, a1) I3, - (5.36)
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Multiplying (5.10) by —Av—Aa—v and (5.11) by —Aa—g, summing up we obtain

ot ot
1d
zdt<2”VU||2+HAvH2+HA¢H2+||V 1)+ Vo]2+] A0 (5.37)
ov :
+HV HZ+HV -1 =—(V(x(u ),Vv)—(V(K(t)u),Vg)
Holder’s inequality and (5.5) yield
d !
l/’;f( ) (”VUHZ"FHAUHZ‘FHV Hz‘i‘HV H ><C HquZI c>0, (5.38)
where :
s =2[[Vo[[*+ || Av* + A1 + IV 52 (5.39)
In particular
dys(t /
5E) < cyo(t) |V 540

Applying Gronwall’s lemma to (5.40) and using (5.39) we deduce that

Vo) [P+ 1A+ HV (DI < e (o, mo,a1) I, (5.41)

Finally, multiplying (5.10) by v+ aa—lt) and (5.11) by %, and proceeding exactly as above
we deduce that

lo(®) 7 +1VE(E )H2+H ()HZScledHWOIDTO,M)H%]- (5.42)

Combining (5.36), (5.41) and (5.42), we obtain

- d
()1 +IE D1+l a—f(t) 2 < h(B)[| (o, @, 1) 7, (5:43)

where h(t) =c ¢!, with ¢ and ¢’ depending on X;. We can see that & is continuous.

We now turn to the two-dimensional case, and prove part (ii) of Theorem 5.2. To do
so we take here the initial data in X,. Repeating for (5.6)-(5.9) the estimates which led to
(4.43), we then write

a9
W (ot 102017 <0, >0, (5.44)

where
d
o =2[|A8|*+ | VAB|*+ HA—’7 [EaZViE

8
+¢ (Ivan+ 1820 2 +e(larP +2a5L ap)),  (545)
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and € >0 is small enough so that

0
1821 e(aniP+20 2L ) ze(lagP+IAZLE), e>0.  (s46)
In particular
¢9+c1p <0. (5.47)
An application of Gronwall’s lemma yields
_ d r __
HVMHZJrHWH?{erHAa—Z(f)HZSCe “(luo I+ 1@ 3 + llaa [1F2)- (5.48)
Furthermore, by (5.22) and the continuous embedding F, C F;, we get
_ 0 r __
||l9||%{2+”’7(t)”%42+||a_;Z(t)||%{1Sce (101 + 1017 + et 1 72) - (5.49)
By (5.48) and (5.49) we have
_ d r __
||l9||§3+|\'7(t)|\%3+IIa—Z(t)II?{zSC€ (ol + 1@+ llaa [1F2)- (5.50)
3 390 398
Concerning problem (5.10)-(5.13), we multiply (5.10) by A°v+4A o and (5.11) by A 5
Summing the resulting equations, we then obtain
1d 2 2,112 272 2 2112
(2 AP+ A2 A+ VAR ) + [V av] + A%
Y Y
HIVAL 24 [ 9A% 2= (A(x(tyu), A%0) — (VA(s(t)), VA% ). (551
Analogously to (5.26), we write
ce c
(AG(tyu),8%0)| < 1820l P+ 2. (552)
By (3.4) and the continuous embedding H3(Q) C C(Q)), we have
[ (E) | s < QU (w01, @01, @11) |y + || (w02, oz, 212) [|95) <, (5.53)
so that 3 3
v ce UVig. € 12
<= — |2+ = . :
[(Vatu), VaS)| < SIVAS IR +oluls (5:54)

Choosing € > 0 small enough and recalling (5.52) and (5.54), we deduce from (5.51) the
estimate

d
& (21l + a2 P+ |4+ [ VAL )

+C(HVAUHZ+HszHerHVA !!2+HVA H><CHuHH3’ c>0. (5.55)
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Integrating (5.55) over (0,¢) and by (5.13) we get

2 Vau()|?+ A% ()] + (1A% ()IIZ+HVA H2<C/ [ (s) I3 ds. (5.56)

By (5.35), we have

) s e -+ ol s+ o ). 557)

Multiplying (5.1) b Azu—i—AZa and (5.2) b Aza— and summing the resulting equations,
plymg y pY; Yo o g &¢€q

we obtain

1d

S (ZHA 24 7 Al A 24| ) + a2 ¥

FIAZE 24 A% = (e, 020) - (0, 4750, 5.58)

As above we have

‘((WK(f)u)IVAu))(SEHVAquJriHuH%u (5.59)
0
(A0, 02 < Cha% i L uff (5.60)

Choosing € >0 small enough and by recalling (5.59) and (5.60), we deduce from (5.58) the
estimate

d
L (2wl + | aul? + 42 |\2+||wn)
e(laulP+ VAU AR 2+ A% ) < fuln, >0, e
Integrating (5.61) over (0,t) and by (5.57) we have
t 2 ! et 2 =2 2

/OHVM<S)H ds < c e ([[uo [ + &+l [[2)- (5.62)
Combining (5.57) and (5.62), we get

) B < ol + a3+ s 3 569
Inserting (5.63) in (5.56) we obtain

d :
IVAV()]2+A%0(8) |2+ A% (1) [+ VA C( BII? < c el (uo, o, 1) 1% (5.64)
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Noting that (Z) =0, from (5.64) we deduce that

_ d :
IVAv(DI2+1A%0(8) [+ IS0 I + VA C( BII? < c el (uo, o, a1) 13- (5.65)

Combining (5.43) and (5.65), we obtain

_ oE : _
o)1+ GO+ 57 (D17 <c e (uollfp + 1@l Es + e Fp),  (5.66)
which completes the proof. O

Lemma 5.1. The semigroup S(t), t >0 generated by the problem (1.13)~(1.16) is Holder contin-
uous on [0,T| x By, i=1,2 (i depending on the space dimension).

Proof. We consider the one-dimensional case (the two-dimensional case can be treated
similarly). The Lipschitz continuity in space is a consequence of (3.63). It just remains
to prove the continuity in time (actually, a Holder condition in time for the semigroup
g(t),t >0). We assume that the initial data belong to B}z. For every t; >0 and t, >0, owing
to the above estimates, one gets :

IS (t1) (0,8, 21) — S (t2) (vt0, 80,1 |
:wm»ﬂwwm+wmrwwum+ﬁﬁn—%ww

tr 15}
<| 715 @ lmaet+| 7|5 nmeUHm2|mr

< clh—t)+ (/ Hatz ||2dT|) i~ a2,

2
where ¢ depends on T. We multiply (1.14) by ?)T‘; to obtain
2 (v v 2) L 28 <d (pe 12+ 1vER). 6o
ot ot? ot

Integrating (5.67) between t; and t,, we deduce from the above estimates that

)|IPdt| <c, (5.68)
1o

where ¢ depends on T and B}, which concludes the proof. O
We deduce from Theorem 5.2 and Lemma 5.1 the following result.

Theorem 5.3. The dynamical system (S(t),X1) (respectively (S(t), Xz) ) associated to (1.13)-
(1.16) possesses, in one space dimension, an exponential attractor My in Xq (respectively, in two
space dimensions, an exponential attractor M, in Xp).
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