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Abstract. The aim of this paper is to propose a fast meshless numerical scheme for the
simulation of non-linear Schrödinger equations. In the proposed scheme, the implicit-
Euler scheme is used for the temporal discretization and the localized method of ap-
proximate particular solution (LMAPS) is utilized for the spatial discretization. The
multiple-scale technique is introduced to obtain the shape parameters of the multi-
quadric radial basis function for 2D problems and the Gaussian radial basis function
for 3D problems. Six numerical examples are carried out to verify the accuracy and
efficiency of the proposed scheme. Compared with well-known techniques, numerical
results illustrate that the proposed scheme is of merits being easy-to-program, high ac-
curacy, and rapid convergence even for long-term problems. These results also indicate
that the proposed scheme has great potential in large scale problems and real-world
applications.
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1 Introduction

In this paper, we consider the following general form of the non-linear Schrödinger equa-
tion:

i
∂u(x,t)

∂t
+a∆u+w(x,t)u(x,t)+v(x,t)|u(x,t)|mu(x,t)=0, (1.1)
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under the following initial condition

u(x,t)=u0(x,t), x∈Ω, t=0, (1.2)

and boundary conditions

∂u(x,t)
∂n

= f (x,t), x∈ΓN, t∈ [0,T], (1.3a)

u(x,t)= g(x,t), x∈Γd, t∈ [0,T], (1.3b)

where i=
√
−1, T is the final time, t denotes the time history, u(x,t) is an unknown

wave function to be determined, ∆ is the Laplace operator, ω(x,t) and υ(x,t) are known
functions and m is a positive real constant, u0, g, and f are given functions, Ω denotes
the interest domain, ΓN and Γd represent boundaries under the Neumann and Dirichlet
boundary conditions respectively.

The Schrödinger equations describe various types of physical phenomena in science
and engineering. Korepin and Zhang utilized Schrödinger equations to depict wave-
corpuscle duality of microscopic particles in quantum mechanics [1, 2]. Onorato and
Osborne analyzed the water wave propagation using the Schrödinger equations [3, 4],
which can also be used on ocean environmental description and the design of ships and
shore structures [5, 6]. The Schrödinger equations have also been used to describe the
standing waves [7], electromagnetic fields [8], electro-optic wave propagation [9], as well
as the structures of biological materials [10, 11].

In recent years, various numerical algorithms have been proposed to solve the
Schrödinger equations. It is known to all that the tradition element-based methods
are very powerful and effective tools for solving problems in science and engineering
such as the finite difference method, the finite element method, and the boundary ele-
ment method [12, 13]. Anastassi has proposed the finite difference method in solving the
Schrödinger equations and related oscillatory problems [14]. Zhu employed the finite el-
ement method for the time-space-fractional Schrödinger equation [15]. To avoid the mesh
of the solution domain, the boundary element method reduces the dimension of the prob-
lem by one [16]. Zhao has improved the accuracy in solving the fractional Schrödinger
equation by the alternating direction implicit scheme [17]. Bhrawy introduced an effec-
tive spectral scheme to solve the multi-dimensional space-time variable-order fractional
Schrödinger equations [18]. Zhang has proposed the improved complex variable mov-
ing least-squares Ritz method and the improved complex variable element-free Galerkin
method for Schrödinger equations [19, 20].

In the last two decades, the radial basis functions (RBFs) based methods have at-
tracted great attention and enjoyed considerable success in solving partial difference
equations (PDEs) [21–24]. These approaches can be easily extended to solve high di-
mensional problems due to its spatial dimension independence, and applied to solve
high order differential equations due to the smooth characteristic of RBFs [25–28]. It
should be noted that there are some drawbacks for the radial basis functions based meth-
ods. For some RBFs, it is difficult to obtain the optimal shape parameters, such as the
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multiquadric radial basis functions (MQ-RBFs) [29] and the Gaussian radial basis func-
tions [30,31], which is crucial to the accuracy of the numerical algorithms. What’s worse,
the coefficient matrix can be highly ill-conditioned for large scale problems [32]. In order
to overcome these drawbacks, researchers come up with the localized approaches in-
cluding the compactly supported RBFs, the localized RBFs collocation method, the local
radial basis functions based differential quadrature collocation method [33, 34], and the
localized method of approximate particular solutions (LMAPS) [35]. However, the deter-
mination of shape parameters in RBFs remains an open issue [36] even for the localized
scheme.

In this paper, we propose the localized method of approximate particular solution
(LMAPS) to solve the 2D and 3D non-linear time-dependent Schrödinger equations. In
the proposed scheme, the multiple-scale technique (MST) is introduced for the deter-
mination of the shape parameters in MQ-RBF to solve 2D problems. The MST is first
proposed to determine the shape parameters of MQ-RBF in the Kansa’s method [37].
The MST requires the norm of all the rows or columns of an equilibrated matrix to be
the same. Thus, the shape parameters can be easily defined especially for the LMAPS
due to the characteristics of the localized scheme. Furthermore, we extended the MST
to 3D problems based on Gaussian radial basis functions. In the LMAPS, the k-d tree
algorithm [38] is applied for searching the neighboring points of each local center. Re-
cently, the LMAPS has been successfully applied for the simulation of heat conduction,
the molecular dynamics, the wave propagation, and the flow fields [39–42].

The layout of the rest of this paper is as follows: In Section 2, we present a localized
meshless scheme and its application for 2D and 3D non-linear Schrödinger equations. In
Section 3, numerical results for six examples are obtained and compared with analytical
results to test the accuracy, stability, convergence and efficiency of the proposed scheme.
Concluding remarks are given in Section 4.

2 A localized meshless scheme for Schrödinger equations

In this section, we employ the time stepping method to deal with the time derivative in
Eq. (1.1). Then, we introduce the LMAPS which is used for the corresponding spatial
discretization.

2.1 Time discretization of Schrödinger equation

Firstly, the time interval [0,T] is divided into S equally sub-intervals, with the time step
size dt = T/S and tn = n·dt, n = 0,1,··· ,S, where n is positive real number. Then the
implicit-Euler scheme is presented here to discretize Eq. (1.1) as follows:

i
un+1−un

dt
+a∆un+1+ωn+1un+1+υn+1|un+1|mun+1=0, (2.1)
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where un+1 is the approximation of u(x,tn+1), ωn+1 denotes ω(x,tn+1), and υn+1 denotes
υ(x,tn+1). Rearranging Eq. (2.1) by moving the parts including un to the right-hand-side
of the equation yields

−iun+1−adt∆un+1−dt·ω(x,tn+1)un+1−dt·υn+1|un+1|mun+1=−iun. (2.2)

2.2 The localized method of approximate particular solutions

In the LMAPS, the interest domain is divided into several sub-domains, and the localized
low-rank matrix is formed based on the local nodes in each sub-domain. Then a sparse
system of equations is built up by reformulating the localized form into globalized form.

For convenience, we first introduce the global approximation strategy and denote
{xj}N

j=1 as the interpolation points of the interest domain Ω. The value of u(x) can be
approximated by a linear combination of N function values in the global form:

u(x)≈
N

∑
j=1

αjΦ(‖x−xj‖2), (2.3)

also we have

∆u(x)≈∆û(x)=
N

∑
j=1

αj∆Φ(‖x−xj‖2), (2.4)

where
∆Φ(‖x−xj‖2)=φ(‖x−xj‖2), (2.5)

where φ(‖x−xj‖2) are RBFs. In this paper, the MQ-RBFs are selected, since they have
been found to be able to provide very accurate approximations in the most of applications
and have been widely used by researchers [43, 44]. The MQ-RBF is defined as follows:

φij =
√
‖xi−xj‖2

2+c2, (2.6)

and the normalized Gaussian radial basis function is written as

φ̆ij =exp(−c‖xi−xj‖2
2), (2.7)

where c is the shape parameter.
For 2D problems, by direct integration from Eq. (2.6) with the notation ‖x−xj‖2 = r,

we have
Φ(r)=(4c2+r2)φ(r)/9−c3 log(c+φ(r))/3. (2.8)

For 3D problems, by direct integration from Eq. (2.7), we have

Φ(r)=


−
√

π

4c3/2r
erf(
√

cr), r 6=0,

−1
2c

, r=0,
(2.9)
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where the erf is a special function known as error function for each of p written as follows

erf(p)=
2√
π

∫ p

0
e−q2

dq. (2.10)

Then Eq. (2.3) can be rewritten in the following matrix form:

û=AΦα, (2.11)

where, using the notation Φ(‖xi−xj‖2) = Φij and û(xi) = ûi, AΦ = [Φij]n×n, α =

[α1,α2,··· ,αN ]
T, and û = [û1,û2,··· ,ûN ]

T. The coefficient vector α can be obtained from
Eq. (2.11) as follows:

α=A−1
Φ û. (2.12)

So the derivative of u(x) can be approximated by Dû(x)=∑N
j=1 αjDΦ(‖x−xj‖2), then

Dû(x)=ADα, x∈Ω, (2.13)

where D is the derivative operator, AD = [DΦ(‖x−x1‖2),DΦ(‖x−x2‖2),··· ,DΦ(‖x−
xN‖2)]. Substituting Eq. (2.12) into Eq. (2.13), we have

Dû(x)=ADA−1
Φ û. (2.14)

Then, the solution domain is divided into several sub-domains by setting a center point
in each sub-domain and selecting several points near the center point to support the sub-
domain. By applying the global MQ-RBF approximation strategy on each sub-domain,
the low-rank matrix is formed as follows:

Ai =[Φkj]ns×ns, xk,xj∈Ωi, (2.15)

where ns is the number of the support points in each sub-domain Ωi, xi is the selected cen-
ter point, k and j are the serial numbers of the points close to the center point xi. Using the
local Multiquadric approximation strategy and performing Eq. (2.15) into Eq. (2.14) with
the notation [A]−1=[Φ̄kj]ns×ns andDΦ(‖xi−xj‖2)=DΦij, the approximation ofDu(xi) at
the center point xi can be written as a linear combination of ns MQ-RBFs in the following
form

Dûi =Sij ·ûj, (2.16)

where Dûi and Dûj denote Dû(xi) and Dû(xj), xj ∈Ωi, and Sij =DΦik ·Φ̄kj. By setting
Sij =0, where xj /∈Ωi, we can reformulate the localized formulation into globalized form
as follows

Dûi =
N

∑
j=1

Sij ·ûj, (2.17)

where

Sij =

{
DΦik ·Φ̄kj, xj∈Ωi,
0, xj /∈Ωi,

(2.18)

and most of the elements in
{

Sij
}N

j=1 are zero. Thus, a sparse system of equations can be
constructed.
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2.3 Formulation of the LMAPS for Schrödinger equation

Substituting the localized form Eq. (2.17) into Eq. (2.2) for xi∈Ω, we have

−iûn+1
i −adt

N

∑
j=1

Sijûn+1
j −dt·ωn+1

i ûn+1
i −dt·υn+1

i |ûn+1
i |mûn+1

i =−iûn
i , 1≤ i≤ni, (2.19)

where

Sij =

{
∆Φik ·Φ̄kj, xj∈Ωi,
0, xj /∈Ωi,

(2.20)

|ûn+1
i |m can be replaced by |ûn

i |m in the computation, which is the latest approximation of
|ûn+1

i |m, and ni is the number of the interpolation nodes inside interest domain Ω. Then
we add that δij has the Kronecker delta function property, that is

δij =

{
1, i= j,
0, i 6= j. (2.21)

Then, the Eq. (2.19) can be written as

(−i−dt·ωn+1
i −dt·υn+1

i |un
i |m)Eiûn+1−adtSiûn+1=−iEiûn, 1≤ i≤ni, (2.22)

where Ei =[δi1,δi2,··· ,δiN ], Si =[Si1,Si2,··· ,SiN ], and ûn+1=[ûn+1
1 ,ûn+1

2 ,···ûn+1
N ]T. By using

the notation (−i−dt·ωn+1
i −dt·υn+1

i |un
i |m)Ei−adtSi =Li, Eq. (2.22) can be written as

Li ·ûn+1=−iEiûn, 1≤ i≤ni. (2.23)

To consider the Neumann boundary condition of Eq. (1.3a) for xi∈ΓN , we have

Si ·ûn+1= f n+1
i , ni+1≤ i≤ni+nb1, (2.24)

where f n+1
i = f (xi,tn+1),

Sij =


∂Φik

∂ni
·Φ̄kj, xj∈Ωi,

0, xj /∈Ωi,
(2.25)

and to consider the Dirichlet boundary condition of Eq. (1.3b) for xi∈ΓD, we have

Eiûn+1= gn+1
i , ni+nb1+1≤ i≤ni+nb1+nb2, (2.26)

where ni denotes the unit outward normal vector to the boundary node xi, gn+1
i =

g(xi,tn+1), nb1/nb2 is the number of the interpolation nodes on the Neumann/Dirichlet
boundary part.

Then, combining Eqs. (2.23)-(2.26), we can rewritten them in the following matrix
form:

B·ûn+1= ũn, (2.27)
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where

Bi =


Li, 1≤ i≤ni,
Si, ni+1≤ i≤ni+nb1,
Ei, ni+nb1+1≤ i≤N,

(2.28a)

ũn
i =


−iui, 1≤ i≤ni,
f n+1
i , ni+1≤ i≤ni+nb1,

gn+1
i , ni+nb1+1≤ i≤N.

(2.28b)

Thus, ûn+1 can be solved as follows:

ûn+1=B−1 ·ũn. (2.29)

It can be seen that most of the elements in B are equal to zero, so it can be represented by
a sparse matrix and solved efficiently.

2.4 Determination of the shape parameters

As the MST described in [37], considering the MQ-RBF, and according to Eq. (2.26), we
can acquire that the norm of every sparse system should be equal to 1, thus we have

ns

∑
j=1
‖xi−xj‖2

2+ns·c2
i =12, xj∈Ωi. (2.30)

Then, the ci can be determined as

ci =

√√√√ 1
ns

(
1−

ns

∑
j=1
‖xi−xj‖2

2

)
. (2.31)

As for the Gaussian function in Eq. (2.7), when the ‖xi−xj‖2
2 is close to be zero, the value

of the Gaussian function turns close to 1. Let us multiply both sides of Eq. (2.26) by
√

ns
written as √

nsEiûn+1=
√

nsgn+1
i , ni+nb1+1≤ i≤ni+nb1+nb2. (2.32)

Thus, the norm of every sparse system should be equal to
√

ns. We have

ns

∑
j=1

e−2ci‖xi−xj‖2
2 =ns. (2.33)

Here, using the notation of e−1/ns≈1 and considering the average value of the summation
of ‖xi−xj‖2

2, we have

ns·e−2ci
1
ns ∑ns

j=1‖xi−xj‖2
2≈ns·e−1/ns, (2.34)
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and taking the logarithm on both sides, it comes

−2ci
1
ns

ns

∑
j=1
‖xi−xj‖2

2=−
1
ns

. (2.35)

Thus the ci can be achieved as

ci =
1

2∑ns
j=1‖xi−xj‖2

2
. (2.36)

3 Numerical results

To illustrate the validity, convergence, stability and efficiency of the proposed scheme,
six examples of Eqs. (1.1)-(1.3b) with m = 2 are considered. The numerical results are
compared with the analytical solutions. For Examples 3.1-3.4, the analytical solutions
can be found in [45, 46]. The root mean square error (RMS) is reported to validate the
accuracy of numerical results which is defined as follows:

RMS=

√
1
nt

nt

∑
i=1

(ûi−ui)2, (3.1)

where nt denotes the total number of test points.

Example 3.1. In the first example, the accuracy of the proposed scheme is tested on a
linear Schrödinger equation with potential functions

ω(x1,x2,t)=−4x1
2+4x2

2−4x1−4x2+β2−4β+2
β2

with υ= 0 and a= 1. The computational domain is [x1,x2]∈ [0,1]×[0,1] with uniformly
distributed nodes where N=322. The analytical solution is

u(x1,x2,t)=exp
[
− (x1−0.5)2+(x2−0.5)2

β
−it

]
. (3.2)

In this example, β = 0.05, ns = 13, and dt = 0.005(s). Fig. 1 presents the comparison of
the analytical solutions and numerical solutions at T = 1(s), where real(u)/imag(u) de-
notes the real/imaginary part of analytical solutions and real (û)/imag(û) denotes the
real/imaginary part of numerical solutions. From this figure, it can be seen that the nu-
merical solutions are consistent with the analytical solutions. Then, Fig. 2 shows the
absolute errors at T = 1(s). The maximum errors of both parts are around 10−3. Fig. 3
presents the comparison of the analytical solutions and numerical solutions at T = 2(s)
and Fig. 4 shows more details about their difference. From the two figures, it can be
found that the numerical solutions are very close to the analytical solutions with errors
less than 10−2. All these results demonstrate the accuracy of the proposed scheme.
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Figure 1: The comparison of the analytical solutions and numerical solutions at T=1(s) for Example 3.1.
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Figure 2: The absolute errors in the interest domain at T=1(s) for Example 3.1.

Example 3.2. To further show the convergency of the proposed scheme, the second exam-
ple is designed with potential functions υ=q and ω(x1,x2,t)=0, where a=1. The results
obtained by the proposed method are compared with those by using the ”optimal” shape
parameter (coptimal) and the leave-one-out cross validation (LOOCV) algorithm. The ana-
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Figure 3: The comparison of the analytical solutions and numerical solutions at T=2(s) for Example 3.1.
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Figure 4: The absolute errors in the interest domain at T=2(s) for Example 3.1.

lytical solution of this problem can be written as

u(x1,x2,t)=Aexp[i(k1x1+k2x2−βt)], (3.3)

where A, k1, k2, and q are constants and β = k2
1+k2

2−q|A|2. The numerical experiment
is carried out on the bone region with irregular distributed nodes as shown in Fig. 5,
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Figure 5: The interest domain and the distribution of collocation nodes for Example 3.2.
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Figure 6: The comparison of the RMS versus ns obtained by using coptimal and MST at T=1(s) with dt=0.001(s),
where the coptimal versus ns is as shown in Table 1 for Example 3.2.

where Γ denotes the closed curve of the interest domain, the total number of collocation
nodes is N=767 containing 631 interior nodes and 136 boundary nodes. In this example,
A=k1=k2=q=1, we have β=1. In Fig. 6, the comparison of the RMS versus ns obtained
by using the coptimal and the proposed MST is shown, where RMSr/RMSi denotes the
real/imaginary part of the RMS and the coptimal versus ns is as shown in Table 1. It
can be seen that the MST can achieve accurate results as the coptimal with exponential
convergence. When ns is equal to 13 or 14, they achieve the similar RMS with RMSr
around 10−6 and RMSi around 10−5. It means that the proposed MST is good enough
for automatically determining the shape parameters. Fig. 7 makes the comparison of
their elapsed time. From this figure, it can be seen that the MST needs just 0.5 second
compared with coptimal . Fig. 8 presents the comparison of the RMS versus N obtained by
using the LOOCV and the MST at T=1(s) with dt=0.001(s). As shown in this figure, the
RMSr and RMSi decrease as the total number of collocation nodes N increases by both
of the LOOCV and the MST. Meanwhile, the results obtained by the MST are a bit more
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Figure 7: The comparison of the elapsed times versus ns obtained by using coptimal and MST at T=1 (s) with

dt=0.001(s) for Example 3.2.
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Figure 8: The comparison of the RMS versus N obtained by using LOOCV and MST at T=1(s) with dt=0.001(s)
for Example 3.2.

accurate than those obtained by the LOOCV. Fig. 9 shows their elapsed time respectively.
From this figure, we can find that the elapsed time of the MST or the LOOCV increases
as the total number of collocation nodes increase and the MST is faster than the LOOCV.
Moreover, Fig. 10 displays the RMS versus the time step dt obtained at T=1(s). It can be
found that the smaller dt is used, the higher accuracy can be achieved. All these results
demonstrate the convergency and efficiency of the proposed scheme.

Example 3.3. We consider a nonlinear Schrödinger equation with potential functions

Table 1: The optimal parameter c versus ns for Fig. 6, where dt=0.001 and d1 denotes the maximum distance
to center node in sub-domain.

ns 5 6 7 8 9 10 11 12 13 14
c(×d1) 500 200 50 50 19 19 20 20 14 14
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dt=0.001(s) for Example 3.2.
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υ=k2
1+k2

2−1 and ω(x1,x2,t)=(k2
1+k2

2−1)(1−cos2 k1x1·cos2 k2x2), where k1 and k2 are con-
stants. The computational region with regular nodal distribution is as shown in Fig. 11,
where N=446 containing 296 interior nodes and 150 boundary nodes. The exact solution
is u(x1,x2,t)= cos(ax1)cos(bx2)exp(−it). In the this example, dt=0.005 and ns=10 are
used and the coefficients are assumed as a=1, k1=2, and k2=3.5.

In Fig. 12, the numerical solutions versus time (s) on the test line x2 = 0.586 are re-
ported. Compared with the analytical solutions, the absolute errors are shown in Fig. 13.
From this figure, it can be seen that maximum absolute error is about 10−5 for both real
and imaginary parts. Fig. 14 displays the RMSs of real and imaginary parts versus time
(s) obtained by the LOOCV and the MST. From this figure, it can be found that although
the minimum value of the RMS by the proposed MST is close to that of the LOOCV, most
of the RMS obtained by MST is smaller than those by the LOOCV. It means the proposed
MST can achieve better results.
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Example 3.3.
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Example 3.4. In this example, we test a non-linear Schrödinger equation with a= 1 and
following potential functions

ω(x1,x2,t)=(x2
1−x2

2)
2exp(−2t)+(1+x1x2)

2

+
i(x2

1−x2
2)exp(−t)[(x2

1−x2
2)exp(−t)−i(1+x1x2)]

(x2
1−x2

2)
2exp(−2t)+(1+x1x2)2

, (3.4)

and
υ=−1. (3.5)

The analytical solution is

u(x1,x2,t)=(x2
1−x2

2)exp(−t)+i(1+x1x2). (3.6)

The numerical experiment is carried out on the region with randomly distributed nodes
as shown in Fig. 15, where Γ1 is the Neumann part of boundary, Γ2 and Γ3 denote the
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Figure 16: The real and imaginary parts of RMS versus time (s) for Example 3.4.
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Figure 17: The comparison of numerical solutions and analytical solutions versus time (s) on Neumann boundary
part Γ1 for Example 3.4.

Direchlet parts of boundary, the total number of collocation nodes is N=452 containing
293 interior nodes, 14 boundary-nodes of Neumann part, and 136/9 boundary nodes of
Direchlet parts Γ2/Γ3. In this example, dt=0.005(s) and ns=10 are used.

Fig. 16 displays the real and imaginary parts of RMS versus time (s) obtained by the
proposed MST and the LOOCV. It can be seen that the proposed scheme achieves bet-
ter results than the LOOCV. To further study the accuracy and stability of the proposed
scheme, Fig. 17 presents the comparison of numerical solutions and analytical solutions
and Fig. 18 shows the details about the relative error of |û| versus time (s) on the Neu-
mann boundary part (Γ1). From these figures, the accuracy of the proposed scheme with
small relative error less than (10−3) can be observed.

Example 3.5. In this example, the proposed scheme is compared with the approach de-
scribed in [31] applied to a 3D non-linear Schrödinger equation on the bumpy sphere
with regular distribution of collocation nodes, where a=1. The potential functions are as
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Figure 18: The relative error versus time (s) on Neumann boundary part Γ1 for Example 3.4.

follows

ω(x1,x2,x3,t)=(k2
1+k2

2+k2
3−1)(1−cos2(k1x1)cos2(k2x2)cos2(k3x3)), (3.7)

and
υ= k2

1+k2
2+k2

3−1. (3.8)

The analytical solution is given by [47]

u(x1,x2,x3,t)=cos(k1x1)cos(k2x2)cos(k3x3)exp(−it). (3.9)

Table 2 lists the comparison of RMS and elapsed time by the proposed MST and
the LOOCV at different time history with dt= 0.01 (s), ns= 16, nb= 1000 and ni= 3108.
It can be seen that the results obtained by the proposed scheme are good as those by
the LOOCV. It also shows that the proposed MST needs less computational time saving
about 20 seconds compared to the LOOCV. To further study the accuracy and efficiency
of the MST, Table 3 presents the comparison of the proposed MST and the LOOCV with
different ni/nb at T=1, where dt=0.01, ns=16. As listed in this table, we can find that the
proposed MST achieves good results with less computational cost. It can be found that

Table 2: The comparison of RMS and elapsed time by the proposed MST and the LOOCV at different time
history with dt=0.01(s), ns=16, nb=1000 and ni=3108 for Example 3.5.

MST LOOCV
Time RMSr RMSi Elapsed time RMSr RMSi Elapsed time
0.5 6.50e−5 7.69e−4 6.15e−0 s 7.04e−4 4.46e−4 2.28e+1 s
5 3.58e−4 8.97e−5 5.45e+1 s 2.36e−4 3.53e−4 7.24e+1 s
10 7.49e−5 4.13e−4 1.08e+2 s 4.05e−4 2.02e−4 1.28e+2 s

100 3.62e−4 2.29e−4 1.09e+3 s 1.13e−4 4.43e−4 1.12e+3 s
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Table 3: The comparison of the proposed MST and the LOOCV with different ni/nb at T=1, where dt=0.01(s),
ns=16 for Example 3.5.

MST LOOCV
ni/nb RMSr RMSi Elapsed time RMSr RMSi Elapsed time

748/500 2.16e−4 2.43e−4 1.95e−0 s 2.90e−4 5.23e−4 5.49e−0 s
3108/1000 8.80e−5 1.30e−5 1.44e+1 s 1.54e−4 1.52e−4 2.85e+1 s
5309/3800 5.07e−5 1.47e−4 2.61e+1 s 1.24e−4 4.33e−5 5.89e+1 s

the more collocation nodes are used, the more cost by the MST are saved. Figs. 19 and 20
present the RMS and elapsed time versus ns by the proposed MST and the LOOCV with
dt=0.01(s), nb=1000, and ni=3108. These results further demonstrate that the propose
MST is accurate.
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Figure 19: The real and imaginary parts of RMS versus ns by the proposed MST and the LOOCV with
dt=0.01(s), nb=1000, and ni=3108 for Example 3.5.
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Figure 20: The comparison of the elapsed time versus ns by the MST and the LOOCV for Example 3.5.
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Example 3.6. In last example, the proposed scheme is further compared with that in [31]
where a 3D non-linear Schrödinger equation on the bumpy sphere with regular distribu-
tion of collocation nodes with a=0.5 is considered. The potential functions are as follows

ω(x1,x2,x3,t)=
3

4(1−3K2)
sech2

(
x1+x2+x3−4Kt

2
√

3−9K2

)
, (3.10)

and

υ=0. (3.11)

The analytical solution [48] is as follows

u(x1,x2,x3,t)=
3
√

2
4
√

1−3K2
sech2

(
x1+x2+x3−3Kt

2
√

3−9K2

)
e(iK(x1+x2+x3+

t
2K

1−3K2+9K4

1−3K2 )). (3.12)

Figs. 21 and 22 display the RMS and the elapsed time versus time (s) by the proposed
MST and the LOOCV with dt=0.1(s), dt=0.01(s), nb=500, and ni=748. From Fig. 21, it
can be observed that both of the proposed scheme and the LOOCV achieve good results
with high accuracy (10−4) with dt=0.01. Good convergency of both of them can also be
found. In Fig. 22, we can find the proposed MST needs less computational time than the
LOOCV saving about 5 seconds. In details, Figs. 23 and 24 focus on a test node (-0.4412,
0.4412, -0.0882). The comparison of the analytical and numerical solutions on this test
node is as shown in Fig. 23 and the absolute error on the node is presented by Fig. 24.
From these figures, we can find that the obtained numerical solutions by both of the MST
and the LOOCV are quite consistent with the analytical solutions with small error below
10−3. It demonstrates that the proposed MST is accurate and stable.
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Figure 21: The real and imaginary parts of RMS versus time (s) by the proposed MST and the LOOCV with
dt=0.1(s), dt=0.01(s), nb=500, and ni=748 for Example 3.6.
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Figure 22: The comparison of the elapsed time versus time (s) by the proposed MST and the LOOCV with
dt=0.1(s), dt=0.01(s), nb=500, and ni=748 for Example 3.6.
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Figure 23: The comparison of the analytical and numerical solutions on a test node by the proposed MST and
the LOOCV with dt=0.01(s), nb=500, and ni=748 for Example 3.6.

4 Conclusions

In this paper, we apply the localized method of approximate particular solutions
(LMAPS) for 2D and 3D non-linear Schrödinger equations in irregular domain with com-
plex boundary conditions. In the proposed scheme, the multiple-scale technique (MST)
is applied in determination of the shape parameters of MQ-RBF and extended to deter-
mination of the shape parameters of Gaussian function for 3D problems. The matrices
obtained by the localized scheme can be a sparse system, which can save computational
cost. Examples are designed to validate the effectiveness of the proposed scheme with
regular or irregular distribution of collocation nodes. Compared with the LMAPS us-
ing the coptimal and the LOOCV for determination of shape parameters, numerical re-
sults demonstrate the accuracy and efficiency of the proposed MST. The obtained re-
sults also show that the proposed scheme preserves good stability and efficiency for the
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Figure 24: The absolute error on a test node by the proposed MST and the LOOCV with dt=0.01(s), nb=500,
and ni=748 for Example 3.6.

Schrödinger equations in arbitrary domain with complex boundary conditions and the
MST has good potential in solving three-dimensional problems.
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