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Abstract. We propose an accurate and robust Roe-type scheme applied to the com-
pressible Euler system at all Mach numbers. To study the occurrence of unstable modes
during the shock wave computation, a shock instability analysis of several Roe-type
schemes is carried out. This analysis approach allows to propose a simple and effective
modification to eliminate shock instability of the Roe method for hypersonic flows. A
desirable feature of this modification is that it does not resort to any additional numer-
ical dissipation on linear degenerate waves to suppress the shock instability. With an
all Mach correction strategy, the modified Roe-type scheme is further extended to solve
flow problems at all Mach numbers. Numerical results that are obtained for various
test cases indicate that the new scheme has a good performance in terms of accuracy
and robustness.
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1 Introduction

Due to their physical background, Godunov-type schemes become one of the most ef-
fective techniques for shock-capturing. They play a fundamental role in modern CFD
methods for compressible flows at moderate Mach numbers. However, it has been well
demonstrated that Godunov-type schemes are not always reliable in cases where the
flow speed is hypersonic or the Mach number tends to zero. The high speed flow prob-
lems usually involve complex flow phenomena, such as strong shock waves, shock-
vortex interactions, shock-boundary layer interactions and shear layers. Prediction of
these problems requires robust, efficient and accurate numerical methods. Unfortunately,
Godunov-type schemes that involve minimal dissipation on linear degenerated waves
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are vulnerable to shock instability problems, including the carbuncle phenomenon [1].
In [2], the authors present a wide-ranging survey of numerical experiments on a large
collection of flux functions for hypersonic flow computations, the results have demon-
strated that none of the tested schemes is able to balance the low dissipation and the
high robustness well at the same time, all the tested solvers exhibit numerical shock in-
stabilities to some extent. The reliability of these methods will become even worse for
hypersonic flow computations in cases where the computational grid is complex [3] or
the schemes are extended to their higher order versions [4]. Meanwhile, it is common
that compressible and weakly compressible flow regimes coexist in the domain of inter-
est. Even in high speed flows, there are still low Mach number regions such as boundary
layers, stagnation regions and the wake behind bodies. Special attention should also be
paid to the accuracy of numerical methods at low speeds, for example, the aerodynamic
heating predictions [5, 6] and the turbulence flow simulations [7]. This explains the need
for solvers that are able to deal with problems where the flow regime may vary from low
to high Mach values.

The Roe scheme [8] is perhaps one of the most famous approximate Riemann solvers.
Due to its good performance for moderate Mach number flows, the Roe scheme has been
widely studied and applied to simulations of engineering problems. However, the origi-
nal Roe method has several shortcomings, for example, the violation of the entropy con-
dition and non-positivity in low density flows. These deficiencies have been fixed prop-
erly [9–11], but there is still a challenging problem that has not been well explored or
clearly understood. As other low-diffusion flux functions, the Roe approach also suffers
from shock anomalies at strong shock cases such as the carbuncle phenomenon, which
significantly reduces its reliability in hypersonic flow computations. Since its first dis-
covery by Peery and Imaly [12], the carbuncle phenomenon has been widely studied by
researchers and engineers. A large variety of work has been devoted to understanding
and curing this problem. Readers are suggested to refer to [1, 13–15] and the references
therein for detailed reviews of this problem. We remark that there is still no a clear con-
sensus on the mechanism of the carbuncle phenomenon. Quirk [16] may be the first to
systematically analyze the unfavorable pathologies of Godunov-type schemes for flows
at high Mach numbers. He finds that dissipative numerical fluxes, which smear entropy
waves and shear waves severely, are endowed with high resistance against shock anoma-
lies. To cure the shock instability of the Roe scheme, he suggests to combine it with a
more dissipative HLLE scheme [17]. Following Quirk, many works are devoted to im-
proving the robustness of the Roe method by introducing additional numerical or phys-
ical dissipation. These modifications include the hybrid technique which combines two
different schemes with different dissipative properties [16, 18], the entropy fix technique
that includes additional dissipation via modifying eigenvalues of the related dissipative
matrix [19–21] and the rotated Riemann solver approach that introduces more numerical
dissipation by a rotated manner [22–24]. These methods are all effective in suppressing
shock instabilities of numerical methods at strong shocks. However, although these mod-
ifications are implemented by different strategies, they usually rely on certain switching
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function to control the numerical dissipation. To avoid compromising the accuracy of the
numerical method, special attention should be paid to the switching function used in the
hybrid strategy, especially for unstructured grids. For example, Zhang et al. [24] find that
the rotated strategy, which helps improve the robustness of low diffusive schemes against
strong shocks, will introduce additional numerical dissipation for viscous flows. To cure
this deficiency, a pressure-weighted rotation strategy is proposed. In [25], the authors use
the hybrid technique to improve the shock stability of SLAU scheme [26] on unstructured
grids. Believing that the momentum perturbation in numerical fluxes is the main source
of shock instability, the authors only apply the hybrid dissipation terms on the momen-
tum fluxes of the numerical flux function with the help of a multidimensional pressure-
weighted function. In some circumstances, it can not be guaranteed that these additional
dissipation will not influence the high resolution of the original solver especially in cases
where complex flow patterns are involved. Thus, how to cure the carbuncle phenom-
ena of Godunov-type schemes without resorting to additional dissipation becomes an
attractive issue. In our previous work [14], we found two useful conclusions concerning
the shock instability of Godunov-type schemes. By a shock instability analysis of a sim-
plified carbuncle problem (i.e., a stationary normal shock problem in two dimensions),
we are able to clarify that the perturbed errors that trigger the shock instability originate
from the numerical shock structure. Moreover, it was found that the shock instability
would be suppressed if the mass flux across the normal shock was correctly preserved.
Such conclusions allow to clarify the connection between the numerical dissipation and
the shock instability. That is, the added numerical dissipation will damp perturbed er-
rors generated inside the numerical shock structure and help maintain the correct mass
flux across the normal shock. However, in the current study, we will demonstrate that
these conclusions can also be used to help propose cures for the shock instability without
introducing additional numerical dissipation on linear degenerate waves. Furthermore,
by a shock instability analysis of the Roe-type schemes, we can also justify a modified
Roe-type scheme, i.e., RoeM [28] that is endowed with improved resistance against shock
anomalies. The RoeM scheme proposed by Kim et al. [28] features several desirable prop-
erties such as the entropy satisfaction property, the robustness in low density flows. It is
also able to suppress the shock instability at least to some extent. Contrasting to other
modified Roe-type schemes, the RoeM approach is able to improve the robustness of the
numerical method without including additional numerical dissipation on linear degen-
erate waves. The authors base their modification on Liou’s conjecture [29] which argues
that the root of causing the shock instability is the pressure difference in the dissipative
term that appears in the numerical evaluation of convective fluxes. However, it has been
found that Liou’s conjecture does not identify correctly the source of the numerical shock
instability [30, 31]. That is may be the reason why the RoeM solver also produces the
carbuncle phenomenon in certain cases. In the current study, we will demonstrate that
the robustness of the RoeM scheme can be enhanced without compromising its high res-
olution and desirable features.

Another deficiency of the Roe scheme is the lack of accuracy in the low Mach
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regime [32]. As other Godunov-type schemes, the Roe solver may generate spurious
numerical diffusion in simulations of low Mach flows in spite of its good performance at
capturing shocks. The accuracy problem of Godunov-type schemes in low Mach regime
has been widely investigated in the literature, see [32–36] and the references therein. In
order to capture the low Mach limit, several modifications are proposed to recover a
proper convergence toward the incompressible limit. They include, but are not limited
to the preconditioned methods [32, 39], the all-speed scheme [35, 40, 41] and the Rieper’s
fix [34, 42]. Herein, we have a particular interest in the all Mach correction method pro-
posed by Dellacherie et al. [36, 43]. Different from other common cures that are specified
to certain numerical schemes, the all Mach correction method is general and can be ap-
plied to many numerical schemes more than the Godunov-type ones. Although these
modifications may rely on different arguments, the main ingredient of these techniques
will usually be to modify the artificial viscosity in the momentum equation for low Mach
number values [44]. However, there is still one noteworthy problem with these all Mach
schemes. They usually cannot avoid numerical instabilities near strong shocks in hyper-
sonic flow regime. Some work also concerns the shock instabilities of low Mach schemes,
for example, the low-Mach Roe-type scheme proposed in [42], but the method also resorts
to additional numerical dissipation on linear degenerate waves to avoid shock instabili-
ties. When it comes to a true all Mach Godunov-type scheme, the flux function should not
only maintain its robustness at fairly high Mach numbers without compromising its high
resolution of different waves, but also produces accurate solutions at low Mach numbers.
That is what we are striving for in the current study.

The outline of the rest of this paper is as follows. In Section 2, governing equations of
compressible flows and their related finite volume discretization are presented. Several
Roe-type schemes are also reviewed in the same section. In Section 3, we conduct a
stability analysis of the Roe-type methods. A shock-stable enhanced Roe-type scheme is
also given. In Section 4, we extend the Roe-type scheme to simulate flows at low Mach
numbers. The accuracy and robustness of the proposed method are tested in Section 5.
Finally, concluding remarks are made in Section 6.

2 Governing equations and discretization

We first consider the two-dimensional Euler equations that model inviscid, compressible
flows

∂U
∂t

+
∂F(U)

∂x
+

∂G(U)

∂y
=0, (2.1)

where U is the vector of conservative variables, F(U) and G(U) are the vectors of conser-
vative fluxes, they are defined as
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U=


ρ

ρu
ρv
E

, F(U)=


ρu

ρu2+p
ρuv

u(E+p)

, G(U)=


ρv

ρuv
ρv2+p

v(E+p)

, (2.2)

where ρ is the density, p is the pressure, u=(u,v) is the flow velocity, E is the total energy
per unit volume. This set of equations is closed using the perfect gas law, for which the
equation of state is in the form

p=(γ−1)
[

E− 1
2

ρ
(
u2+v2)] (2.3)

with γ=1.4 being the specific heat ratio.
We consider solving the system (2.1) numerically in the framework of a structured

cell-centered finite-volume method

dUi

dt
+

1
|Ωi| ∑

Γij⊂∂Ωi

∣∣Γij
∣∣Φij =0. (2.4)

In Eq. (2.4), it is assumed that the domain Ω is discretized by some structured quadrilat-
eral cells Ωi. The volume is denoted by |Ωi|. Γij denotes the common edge of two neigh-
boring cells Ωi and Ωj and nij represents the unit vector normal to Γij pointing from Ωi
to Ωj, i.e., nij =

(
nx,ny

)
ij. Φij is a Roe-type scheme, which is a numerical approximation

to the normal flux Hnij =[F,G]·nij at the interface.

2.1 Roe-Pike method

Since its first presentation, the Roe scheme [8] has been studied extensively and also
applied to a large variety of physical problems. Whereas, the original Roe approach
requires explicitly the computation of the Roe averaged Jacobian matrix, which is not
easy to deal with for complicated sets of hyperbolic conservation laws. To simplify the
Roe scheme, Roe and Pike [45] made refinements to the original approach. The numerical
flux of Roe-Pike method is used as an approximation to the normal flux at the interface
between the constant left and right states. It can be written as follows:

ΦRoe=
1
2
[Hn (UL)+Hn (UR)]−

1
2

4

∑
i=1

α̂i

∣∣∣λ̂i

∣∣∣R̂i, (2.5)

where Hn(UL/R) denotes the left or the right normal flux at the interface (the subscript
ij of the unit vector is omitted for clarity). α̂i represent the wave strengths, λ̂i are the
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eigenvalues and R̂i are the right eigenvectors, they are given by

α̂1=
∆p− ρ̂â∆qn

2â2 , α̂2=∆ρ−∆p
â2 , α̂3= ρ̂∆qt, α̂4=

∆p+ ρ̂â∆qn

2â2 , (2.6a)

λ̂1= q̂n− â, λ̂2= q̂n, λ̂3= q̂n, λ̂4= q̂n+ â, (2.6b)

R̂1=


1

û− ânx
v̂− âny

Ĥ− âq̂n

, R̂2=


1
û
v̂

1
2 |q̂n|2

, R̂3=


0
−ny
nx
q̂t

, R̂4=


1

û+ ânx
v̂+ âny

Ĥ+ âq̂n

. (2.6c)

Herein, (̂·) denote the Roe averaged values, qn = (u,v)·n is the velocity component in
the normal direction n=(nx,ny), qt =(u,v)·(−ny,nx) denotes the velocity component in
the tangential direction. a denotes the speed of sound and ∆ represents the difference
between the right and left quantities, i.e., ∆(·)=(·)R−(·)L.

2.2 Roe scheme in an alternative form

The Roe scheme can also be further rewritten into an alternative form that is much
simpler. Einfeldt [17] showed that the Roe scheme could be considered as a HLL-type
method with an anti-diffusion term in the linear degenerate fields. The methodology
was followed by Kim et al. [28] to develop a shock-stable enhanced Roe solver. The new
formulation of the Roe scheme does not require the full computation of the right eigen-
vectors and the Roe linearization approach. Thus, extension to more general nonlinear
systems of conservation laws can be implemented in a simpler way. The alternative Roe
scheme can be written as

ΦRoe=
S+

R Hn (UL)−S−L Hn (UR)

S+
R−S−L

+
S−L S+

R
S+

R−S−L
∆U−

S−L S+
R

S+
R−S−L

1

1+
∣∣∣M̂∣∣∣B∆U, (2.7)

where ∆U denotes the difference between the right and left conservative variables, B∆U
represents the compact form of the summation α̂2R̂2+α̂3R̂3, they are expressed as follows:

∆U=∆


ρ

ρu
ρv
E

, B∆U=

(
∆ρ−∆p

â2

)
1
û
v̂

1
2
|q̂n|2

+ ρ̂


0

∆u−∆q̂nnx
∆v−∆q̂nny

û∆u+ v̂∆v− q̂n∆qn

, (2.8)

the numerical wave speeds S−L and S+
R are approximations of the physical wave speeds

from the Riemann problem at the cell interface. For the Roe scheme, they are defined as

S−L =min(0, q̂n− â), S+
R =max(0, q̂n+ â). (2.9)
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2.3 RoeM scheme

The Roe scheme defined in (2.5) or (2.7) is known to suffer from several nonphysical
problems, such as the violation of the entropy condition, failure to preserve positivity
and numerical shock anomalies with strong shocks [9, 10, 16]. To cure these numerical
defects, Kim et al. [28] proposed a modified version of the Roe scheme in the form of the
numerical flux function defined in (2.7). The resulting scheme denoted as RoeM can be
written as follows:

ΦRoeM=
S+

R Hn (UL)−S−L Hn (UR)

S+
R−S−L

+
S−L S+

R
S+

R−S−L
∆U∗−

S−L S+
R

S+
R−S−L

1

1+
∣∣∣M̂∣∣∣B∆U, (2.10)

with

∆U∗=∆


ρ

ρu
ρv
ρH

, B∆U=

(
∆ρ− fRoeM

∆p
â2

)
1
û
v̂
Ĥ

+ ρ̂


0

∆u−∆qnnx
∆v−∆qnny

∆H

, (2.11)

where the function fRoeM is used to reduce the rate at which pressure perturbation feeds
density field, which is claimed to be effective in improving the robustness of the Roe
scheme. The function fRoeM is defined as

fRoeM=

1, û2+ v̂2=0,∣∣∣M̂∣∣∣h , otherwise,
(2.12)

with
h=1−min

(
pi,j+1/2,pi−1/2,j,pi+1/2,j,pi−1/2,j+1,pi+1/2,j+1

)
, (2.13)

and
pi,j+1/2=min

(
pi,j/pi,j+1,pi,j+1/pi,j

)
. (2.14)

It should be noted that the conservative variable in the energy equation has been mod-
ified to preserve total enthalpy. For the RoeM approach defined in (2.10)-(2.14), the fol-
lowing wave speeds estimate is used

S−L =min(0, q̂n− â, (qn)L−aL), S+
R =max(0, q̂n+ â, (qn)R+aR). (2.15)

It has been argued in [17] that the above estimate introduces the least amount of nu-
merical dissipation for isolated shocks and can introduce enough numerical dissipation
to avoid the occurrence of the nonphysical expansion shock. In some circumstance, the
wave speeds estimate also helps preserve positivity. A simpler but more diffusive esti-
mate [27] can also be applied

S−L =min(0, (qn)L−aL, (qn)R−aR), S+
R =max(0, (qn)L+aL, (qn)R+aR). (2.16)



W. J. Xie, Y. Zhang, Q. Chang and H. Li / Adv. Appl. Math. Mech., 11 (2019), pp. 132-167 139

The RoeM method is a desirable modified version of the Roe scheme, because it elim-
inates most of the defects of the original Roe approach including the violation of the
entropy condition, the non-positivity and the shock anomalies in some circumstance.
Meanwhile, it still preserves the high resolution of all kinds of discontinuities as the orig-
inal Roe scheme does. However, we have found that the RoeM method still exhibits
some numerical shock anomalies in the vicinity of strong shocks. The limited robustness
of the RoeM scheme at strong shocks can be attributed to the unreliable explanation of
the cause of shock instability. To further enhance the robustness of the RoeM scheme at
strong shocks, the authors in [28] propose another modified version of the Roe scheme,
i.e., RoeM2, it is written by

ΦRoeM2=
S+

R Hn (UL)−S−L Hn (UR)

S+
R−S−L

+
S−L S+

R
S+

R−S−L
∆U∗−g

S−L S+
R

S+
R−S−L

1

1+
∣∣∣M̂∣∣∣B∆U, (2.17)

where the function g can be defined as

g=

|M̂|1−min
(

pj
pj+1

,
pj+1

pj

)
, M̂ 6=0,

1, M̂=0.
(2.18)

It can be observed that the function g that appears at interfaces normal to the shock will
become a small value, thus the dissipative term B∆U corresponding to contact and shear
waves will be reduced. As a result, the flux function defined in Eqs. (2.17) and (2.18) will
approach the HLLE solver at shocks. The improved robustness of the RoeM2 scheme is
due to the introduced additional multidimensional numerical dissipation corresponding
to the linear degenerate waves. In contrast, the technique used in RoeM scheme does
not include such numerical dissipation. In the next section, we will conduct a shock
instability analysis of these Roe-type schemes. This analysis approach allows to propose a
more reliable and robust Roe-type method without introducing any additional numerical
dissipation on linear degenerate waves.

3 A shock instability analysis

In this section, we make efforts to improve the robustness of the Roe method for captur-
ing strong shocks in hypersonic flows. Contrasting to other common cures for the shock
instability such as the hybrid techniques [16, 23] or entropy fix methods [12, 20, 46], the
proposed cure for the Roe solver does not depend on additional numerical dissipation on
linear degenerate waves. Thus, the high resolution of the original Roe flux is preserved.
To carry out the numerical analysis of the shock stability, we start with a simplified shock
instability problem.
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3.1 A simplified shock instability problem

Numerical flux functions with minimal dissipation on linear degenerate waves are
known to produce shock anomalies for high Mach number flows. To explore the cause
and analyze the behaviors of shock instability, it is wise to resort to a simplified problem
which preserves the essence of shock instability. The numerical test problem considered
here is the stationary normal shock wave problem in a two-dimensional rectangular do-
main. This test case, which was proposed firstly by Sanders et al. [21] and modified by
Dumbser et al. [30] and Kitamura et al. [2], has been widely used to evaluate the robust-
ness of various shock-capturing schemes. Here, we repeat the setup of this numerical
test for self-containedness. Readers are referred to references [2,14] for the more detailed
description.

0
M

i

j

shock
12i ε= +

Figure 1: Computational grid and conditions for Kitamura’s steady normal shock test.

As shown in Fig. 1, the computational domain is discretized into 50×25 uniform cells
without perturbations. The initial conditions are prescribed for left (L : i≤ 12) and right
(R : i≥14) following the Rankine-Hugoniot conditions across the normal shock as

UL =


1
1
0

1
γ(γ−1)M2

0
+

1
2

, UR =


f (M0)

1
0

g(M0)

γ(γ−1)M2
0
+

1
2 f (M0)

, (3.1)

where

f (M0)=

(
2

(γ+1)M2
0
+

γ−1
γ+1

)−1

, g(M0)=
2γM2

0
γ+1

− γ−1
γ+1

. (3.2)

The freestream Mach number is set as M0 =6.0 which is a critical value of the carbuncle
for ideal gases [47]. The Roe scheme captures the shock with only one-internal point
that belongs to a Hugoniot curve. The internal shock conditions (M : i = 13) are set as
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intermediate states taken from the Hugoniot curve, as in [48]:

ρM =(1−αρ)ρL+αρρR, (3.3a)
uM =(1−αu)uL+αuuR, (3.3b)
pM =(1−αp)pL+αp pR, (3.3c)

where

αρ = ε, (3.4a)

αu =1−(1−ε)

(
1+ε

M2
0−1

1+(γ−1)M2
0/2

)−1/2(
1+ε

M2
0−1

1−2γM2
0/(γ−1)

)−1/2

, (3.4b)

αp = ε

(
1+(1−ε)

γ+1
γ−1

M2
0−1
M2

0

)−1/2

. (3.4c)

The inflow boundary conditions are set to freestream values. According to [49], the mass
flux at the ghost cell of the outflow boundary is prescribed as

(ρu)imax+1,j =(ρu)0=1 (3.5)

in order for the mass in the whole computational domain to remain constant and to fix
the shock at the same position. Meanwhile, other values are simply extrapolated. The
periodical condition is imposed on the boundaries of j direction. The computations are
conducted for 80,000 steps with CFL = 0.5. If a scheme is able to produce stable and
converged solutions for all the shock positions ε, the scheme can be considered as shock-
stable for this test.

3.2 Cures for the shock instability of Roe-type schemes

3.2.1 Cause of the shock instability

To propose a reliable cure for the shock instability of the Roe-type scheme, we need to
know the underling mechanism of the occurrence of unstable modes during the shock
wave computation. Unfortunately, there is still no general consensus on some facets
of this complicated problem and the issue is still actively debated. In our previous
study [14], we found two useful conclusions that may be helpful to further the under-
standing of the shock instability of Godunov-type schemes. By carrying out numerical
stability analysis of several Godunov-type schemes through systematic numerical exper-
iments and a linear perturbation analysis, we are able to clarify that the spatial location
of the shock instability originates from the intermediate states inside the shock structure.
Furthermore, it is demonstrated that if the mass flux across the normal shock is correctly
preserved during the computation, then the shock wave can be captured stably. In Fig. 2,
we plot the diagram of the numerical shock structure. As shown, when the instabil-
ity happens, the perturbed errors will be generated inside the cell M, then they will be
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L M R… L’ …R’

Figure 2: Numerical shock structure and wave patterns.

transported downstream on right-going waves. The perturbed errors will lead to erro-
neous mass flux in cell R, i.e., (ρu)L 6=(ρu)R, which is considered to be the cause of the
shock instability. We remark that the mentioned two conclusions have been validated
through numerical experiments and further justified by a perturbation analysis. Also,
they pave ways to suppressing the shock instability of Godunov-type schemes for strong
shocks. For example, the robustness of numerical schemes can be improved by intro-
ducing multidimensional dissipation to damp perturbation errors inside the numerical
shock structure and then help maintain the correct mass flux across the normal shock.
Such a strategy is commonly used to cure shock instabilities by hybrid flux functions.
Alternatively, we can control the transportation of the erroneous perturbations from the
intermediate states to the downstream cells. The later technique has an advantage over
the former one because it does not introduce additional multidimensional dissipation on
shear waves to enhance the stability. Next, we will demonstrate that the robustness of
the Roe method can be improved by controlling the perturbed errors that are transported
from the intermediate states inside the shock structure to the downstream regions.

3.2.2 A linear perturbation analysis

In this section, we carry out a linear perturbation analysis of the Roe-type schemes pre-
sented in Eqs. (2.7) and (2.10). This method was first used by Quirk [16] and followed
by the authors in [14, 28, 50, 51] to explore the mechanism of shock instability. With the
perturbation analysis method, it is convenient to study the unstable behaviors of the per-
turbed errors and their propagation. Here, we combine this analysis method with the
two useful conclusions mentioned above to study the occurrence of unstable modes dur-
ing the shock wave computation. Readers are referred to the reference [14] for a more
detailed description of the procedure.

Considering the numerical shock structure shown in Fig. 2. At time tn, it is assumed
that the instability happens and the intermediate states in cell M are perturbed. The
corresponding perturbation errors can be expressed as

ρn
M =ρ∗,nM +δρn

M, (ρu)n
M =(ρu)∗,nM +δ(ρu)n

M, pn
M = p∗,nM +δpn

M, (3.6)

where δ(·) denote the perturbation errors which represent small discrepancies from the
stable steady states. (·)∗ denote the stable steady solutions that are assumed to locate at
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a Hugoniot curve. They have the following relationship with states in cell L and cell R,

ρ∗,nM =(1−αρ)ρ
∗,n
L +αρρ∗,nR , u∗,nM =(1−αu)u∗,nL +αuu∗,nR , p∗,nM =(1−αp)p∗,nL +αp p∗,nR , (3.7)

where the coefficients αρ, αu and αp are defined in Eq. (3.4).
To explore how the perturbation errors generated in cell M influence the mass flux

perturbation in cell R, we need to consider the following conservative scheme

(ρu)n+1
R =(ρu)n

R−
∆t
∆x

[(
ρu2+p

)n
R,R′−

(
ρu2+p

)n
M,R

]
. (3.8)

The subscript R, R′ denotes the interface between the cell R and the cell R′, the subscript
M, R denotes the interface between the cell M and the cell R. For the flux functions
defined in Eqs. (2.7) and (2.10), the numerical fluxes at the interfaces in Eq. (3.8) can be
written as(

ρu2+p
)n

R,R′=
(
ρu2+p

)n
R , (3.9a)(

ρu2+p
)n

M,R =
S+

R
S+

R−S−M

(
ρu2+p

)n
M−

S−M
S+

R−S−M

(
ρu2+p

)n
R+

S−MS+
R

S+
R−S−M

[
(ρu)n

R−(ρu)n
M
]

−
S−MS+

R

S+
R−S−M

[(
ρn

R−ρn
M− fX

pn
R−pn

M
â2

)
û

1+|M̂|

]
, (3.9b)

with

fX=

{
1, X=Roe,
fRoeM, X=RoeM,

(3.10)

where the subscript M denotes the cell M, the subscript R denotes the cell R that is at
the right side of M. (̂·) are Roe averaged variables between states in cells M and R.
X represents a Roe-type scheme defined in Eqs. (2.7) or (2.10). Inserting Eq. (3.9) into
Eq. (3.8), after some calculations we will obtain that

δ(ρu)n+1
R −δ(ρu)n

R = θρ ·δρn
M+θu ·δun

M+θp ·δpn
M (3.11)

with

θρ =
S+

R νM0(
S+

R−S−M
)
(1+M0)

(
ω2

f 2 −
S−Mω

f
+

S−M
f (1+|M̂|)

1+ω
√

σ

1+
√

σ

)
, (3.12a)

θu =
S+

R νM0(
S+

R−S−M
)
(1+M0)

(
2σω−S−Mσ f

)
, (3.12b)

θp =
S+

R νM0(
S+

R−S−M
)
(1+M0)

(
1− fX

S−M
â2 f (1+|M̂|)

1+ω
√

σ

1+
√

σ

)
, (3.12c)
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where the coefficients ω and σ are defined as

ω= f− f ·αu+αu, (3.13a)

σ=
1−αρ+ f ·αρ

f
. (3.13b)

In Eq. (3.12), ν denotes the Courant number and the coefficients θρ, θu and θp are functions
of the freestream Mach number M0 and the shock position parameter ε, fX is defined in
Eq. (3.10).

In our previous work [14], we have demonstrated that the erroneous mass flux behind
the shock (i.e., the cell R) leads to the inconsistency of mass flux across the normal shock
(i.e., (ρu)L 6= (ρu)R), which is found to be the cause of the shock instability. It can be
observed from Eq. (3.11) that the perturbation errors of density, velocity and pressure all
contribute to the mass flux perturbation error. The reason why the RoeM solver is able
to improve the robustness of the original Roe scheme in the vicinity of strong shocks can
also be clarified in the context of the linear perturbation analysis. That is the function
fRoeM defined in Eq. (2.12) will become a small value, which plays a role in reducing the
coefficient of the pressure perturbation θp and then a reduced mass flux in cell R will be
obtained. This simple cure for the shock instability of Roe scheme has an advantage over
other improved Roe-type schemes, because only the pressure term in numerical flux is
modified which will not introduce additional numerical dissipation on contact and shear
waves. Actually, pressure is usually constant for the stationary contact discontinuity or
the region normal to the wall in the boundary layer. However, the function fRoeM may
be not enough to stabilize strong shocks. Table 1 shows the numerical results of the
Roe-type schemes for stationary normal shock tests. Compared with the original Roe
approach, the RoeM solver produces a larger stability spectrum, but it still exhibits shock
instability for certain shock positions. In Fig. 3, we also provide the computed results
from the Roe-type schemes. It shows that the normal shocks computed by the Roe and
RoeM schemes are severely distorted. For the Roe scheme, the shock cannot even be fixed
to its original position. The RoeM scheme is able to preserve the shock position but the
profile is severely distorted. In the next section, we will propose a new modification to
improve the robustness of the Roe approach, the main technique is to properly control
the pressure perturbation by a new control function.

3.2.3 An improved Roe-type scheme: RoeM+

In the above section, we have demonstrated that the robustness of the Roe scheme for
strong shocks can be improved by properly controlling the pressure perturbation as the
RoeM does. Here, we propose a new improved Roe-type scheme which can be consid-
ered to be an enhancement of the RoeM solver. Thus, we denote the proposed method as
RoeM+. The numerical flux function of the RoeM+ can be written as follows

ΦRoeM+=
S+

R Hn (UL)−S−L Hn (UR)

S+
R−S−L

+
S+

R S−L
S+

R−S−L
∆U−

S+
R S−L

S+
R−S−L

1

1+
∣∣∣M̂∣∣∣B∆U, (3.14)
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with

∆U=∆


ρ

ρu
ρv
E

, B∆U=

(
∆ρ− fRoeM+

∆p
â2

)
1
û
v̂

1
2 |q̂n|2

+ ρ̂


0

∆u−∆q̂nnx
∆v−∆q̂nny

û∆u+ v̂∆v− q̂n∆qn

,

(3.15)
where the function fRoeM+ is used to control the pressure perturbation and it is defined
as

fRoeM+=min
(

pi,j+1/2,pi−1/2,j,pi+1/2,j,pi−1/2,j+1,pi+1/2,j+1
)3 , (3.16)

with pi,j+1/2 defined in Eq. (2.14). Furthermore, the numerical flux function defined in
Eq. (3.14) and Eq. (3.15) can be modified to preserve total enthalpy in inviscid steady
flow. This can be implemented by modifying the state vector and the dissipative terms
in Eq. (3.15) as

∆U=∆


ρ

ρu
ρv
ρH

, B∆U=

(
∆ρ− fRoeM+

∆p
â2

)
1
û
v̂
Ĥ

+ ρ̂


0

∆u−∆q̂nnx
∆v−∆q̂nny

∆H

. (3.17)

As argued by authors in [28,60], the conservation of total enthalpy is preferred to predict
hypersonic heating. Thus, we use (3.17) to evaluate the numerical flux ΦRoeM+ in the
current study. Compared with the function fRoeM defined in (2.12), the fRoeM+ further
reduces the perturbation coefficient of pressure θp and thus the perturbed mass flux will
be suppressed more efficiently. The coefficient of pressure perturbation θp for the RoeM+
scheme can be obtained from Eq. (3.12) by replacing the fX with fRoeM+. In Fig. 4, we
give the coefficients of pressure perturbation θp of the Roe-type schemes as function of
upstream Mach number M0. As shown, the RoeM scheme produces smaller θp than the
original Roe solver, but the coefficients exceed the stability threshold that is obtained
from the matrix stability analysis in the next section. Contrasting to the Roe and RoeM
method, the RoeM+ approach produces small enough θp, they all lie inside the stable
region. The numerical results in Table 1 show that the RoeM+ method is stable for the
steady normal shock problem. In Fig. 3, it can be obtained that the RoeM+ solver is able
to capture the shock without suffering any shock instability. In the following section, we
will have a further study of the stability of these Roe-type schemes and demonstrate the
validity of the improved method.

3.3 A matrix stability analysis

We have argued in the above section that the robustness of the Roe scheme can be im-
proved by controlling the erroneous pressure perturbations that are transported down-
stream. To further justify this modification, we use a matrix-based stability analysis to
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Figure 3: Mach number contours for steady normal shock problem (grid with 50×25 cells, upstream Mach
number M0 =6.0, shock position ε=0.3).
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Figure 4: Coefficients of pressure perturbation vs. Mach number for different Roe-type schemes.

study the unstable behaviors of the Roe-type methods during the shock wave computa-
tion. To facilitate a further discussion, we briefly review the matrix-based method recom-
mended in [30], and see more details in references [30, 31].

Suppose the flow field is computed on the domain defined in Section 3.1, the numer-
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Table 1: Results of the steady normal shock problem for Roe-type flux functions at M0 = 6.0 (S: stable and
converged, U: unstable).

Roe-type schemes ε=0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Roe U U U U U U U S S S

RoeM U U U U U S S S S S
RoeM+ S S S S S S S S S S

ical setup is also used. For the stability analysis of a steady field, we assume that the
domain is submitted to small numerical random errors as

Ui =U0
i +δUi, (3.18)

where U0
i is the steady mean value and δUi represents the small numerical random per-

turbation. The flux function can be linearized around the steady mean value as follows

Φij
(
Ui,Uj

)
=Φij

(
U0

i ,U0
j

)
+

∂Φij

∂Ui
δUi+

∂Φij

∂Uj
δUj. (3.19)

A linear error evolution model can be obtained by combing Eqs. (2.4), (3.18) and (3.19), it
is written by

d(δUi)

dt
=− 1
|Ωi| ∑

Γij⊂∂Ωi

∣∣Γij
∣∣(∂Φij

∂Ui
δUi+

∂Φij

∂Uj
δUj

)
. (3.20)

The first term on the right hand side of (3.20) contains the influence of the error in the
cell i itself, and the second term contains the influence of the errors in the neighbour cells
j. For the computational domain of the stationary normal shock problem, there is j= 4.
Eq. (3.20) holds for all cells in the computational domain and so we finally get the error
evolution of all i cells in the domain

d
dt

δU1
...

δUi

=S

δU1
...

δUi

, (3.21)

where S is the stability matrix. When considering only the evolution of initial errors, the
solution of the linear time invariant system (3.21) isδU1

...
δUi

(t)=expSt

δU1
...

δUi


t=0

, (3.22)

and remains bounded if the maximum of the real part of the eigenvalues of S is non-
positive

max(Re(λ(S)))≤0.
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Figure 5: Distribution of the eigenvalues of stability matrix in the complex plane for Roe-type schemes (grid
with 50×25 cells, upstream Mach number M0 =6.0, shock position ε=0.3).

The stability of the Roe-type schemes in the current study has been analyzed. In Fig. 5, we
present the distribution of the eigenvalues of the stability matrix in the complex plane for
different schemes. It can be observed that the original Roe scheme has a maximum eigen-
value of 0.2666, which is responsible for its shock instability. For the RoeM approach, the
maximum eigenvalue is reduced to 0.0671, which corresponds to its improved robust-
ness for strong shocks, but it is still unstable. With our new modification, the maximum
eigenvalue of the proposed scheme RoeM+ is −0.006086, demonstrating its stability.

In Fig. 6, we present the maximal real parts of the eigenvalues of the Roe-type schemes
as functions of the freestream Mach number. It can be observed that the Roe and RoeM
schemes are always unstable when the upstream Mach number is greater than about 2.
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Figure 6: Maximal real part of eigenvalues of stability matrix vs. Mach number.

However, the RoeM+ scheme is always stable for all Mach numbers. These results show
that the pressure perturbation-control technique is efficient to suppress the numerical
shock instability and this further justifies the above linear perturbation analysis.

4 Low Mach number extension

Godunov-type schemes developed for compressible flows usually encounter the accu-
racy problem in the low Mach number limit. It has been well demonstrated in [32] that
the Roe scheme fails to handle low Mach number flows. This problem can be cured
by applying an all Mach correction to the numerical flux. Here, we extend the RoeM+
scheme defined in Eqs. (3.14)-(3.16) and Eq. (2.16) to simulate low Mach number flows.
The essential ingredient of the extension is the all Mach correction technique proposed
by Dellacherie et al. [36].

We consider the following Godunov-type scheme that solves the compressible Euler
equations

dUi

dt
+

1
|Ωi| ∑

Γij⊂∂Ωi

∣∣Γij
∣∣ΦAM,X

ij =0, (4.1)

where X denotes a Godunov-type scheme. According to Dellacherie et al. [36], the all
Mach flux function ΦAM,X

ij can be expressed as

ΦAM,X
ij =ΦX

ij+(1−θij)
ρijaij

2


0

∆qnnx
∆qnny

0

, (4.2)
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where ΦX
ij represents the unmodified flux given by the X scheme. The θij is the weight

function that is defined as

θij = θ
(

Mij
)

with θ(M)=min(M,1). (4.3)

In Eqs. (4.2) and (4.3), Mij, ρij and aij are the calculated Mach number, density and sound
speed at the interface and ∆qn denotes the normal velocity difference, i.e., ∆qn =(qn)j−
(qn)i. Following [37, 38], the local Mach number is defined as

Mij =max
(√

u2
i +v2

i

/
ai,
√

u2
j +v2

j

/
aj

)
. (4.4)

Here, we use the all Mach correction defined in Eqs. (4.2)-(4.4) to cure the accuracy prob-
lem of RoeM+ scheme at low Mach numbers and add some improvements. The resulting
all Mach Roe-type scheme denoted as AM-RoeM+ can be written by

ΦAM−RoeM+
ij =ΦRoeM+

ij + fRoeM+(1−θij)
ρijaij

2


0

∆qnnx
∆qnny

0

, (4.5)

where θij is defined in Eq. (4.3) and Eq. (4.4), fRoeM+ is defined in Eq. (3.16). Here, (·)ij
are calculated by Roe averaged method. As argued by Oßwald et al. [42], the modified
term for low Mach flow may trigger small disturbances in the vicinity of shocks. To
avoid this anomaly, the function fRoeM+ is added to the correction term to turn off the
low Mach correction in the vicinity of strong shocks. Note that the resulting all Mach
Roe-type scheme does not involve any cut-off reference Mach number and user-defined
parameters.

5 Numerical results

In this section, we present numerical results of the proposed Roe-type scheme for differ-
ent kinds of test cases to demonstrate the capabilities. The first two test problems focus
on the entropy satisfaction and the positivity preservation properties of the numerical
methods. The following two test cases are selected to demonstrate the robustness of the
numerical schemes against strong shocks. In the next two tests, the accuracy of the all
Mach Roe-type scheme in the low Mach number regime is demonstrated. In the last two
cases, we present results for viscous flow problems, a focus is on accuracy for resolving
shear layers.

5.1 A modified Sod’s shock tube problem

We first consider a modified version of the popular Sod’s shock tube problem [52]. The
solution consists of a right shock wave, a right traveling contact wave and a left sonic
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Figure 7: Modified Sod’s shock tube problem at time t = 0.2s, (a) density profiles, (b) velocity profiles, (c)
pressure profiles and (d) Mach number profiles.

rarefaction wave. This test is very useful in assessing the entropy satisfaction property of
numerical methods. The initial conditions are

(ρL,uL,pL)=(1.0,0.75,1.0) and (ρR,uR,pR)=(0.125,0.0,0.1).

The discontinuity is set at the position x = 0.3. The computational domain is equal to
[0,1], which contains N=1000 regular cells. The Courant number coefficient is CFL=0.9,
non-reflecting boundary conditions are used at the boundaries. In Fig. 7, we compare all
the Roe-type schemes in the current study to the exact solution at time t=0.2s.

The solutions of these Roe-type schemes are presented in Fig. 7. One can see that the
Roe scheme produces a nonphysical expansion shock as anticipated, the RoeM, RoeM+
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and AM-RoeM+ schemes show a correct agreement with the exact solution without ad-
mitting any discontinuity in the left rarefaction wave. The resulting Mach number varies
from 0 to 1.28, so both low Mach and order one Mach values exist in the whole compu-
tational domain. The all Mach Roe-type scheme, i.e., AM-RoeM+, is stable and produces
right numerical solutions.

5.2 Double rarefaction problem

In our second test case, we use the double rarefaction problem [10] to assess the perfor-
mance of numerical methods for low density flows. This test consists of two rarefaction
waves and a trivial contact wave of zero speed. The region between the two nonlinear
waves is close to vacuum. The initial conditions are

(ρL,uL,pL)=(1.0,−2.0,0.4) and (ρR,uR,pR)=(1.0,2.0,0.4).

The spatial domain is the interval [0,1], which is discretized with N = 1000 computing
cells. The Courant number coefficient is set as CFL=0.9, boundary conditions are trans-
missive.

In Fig. 8, we compare the Roe-type schemes to the exact solution at time t = 0.15s.
The resulting Mach number varies from 0 to 2.7, so we have both low Mach and order
one Mach values. The original Roe solver fails on this test, so its results are not shown.
The AM-RoeM+ approach produces almost the same solutions as the RoeM and RoeM+
schemes do. All these schemes show a correct agreement with the exact solution and they
preserve the positivity of the solution.

5.3 Hypersonic inviscid flow past a cylinder

Hypersonic inviscid flow past a cylinder is a typical problem to assess the robustness
of Godunov-type schemes against shock anomalies such as the carbuncle phenomenon.
Here, we use the numerical setup of this problem from Ohwada et al. [53]. It has been
shown in [53] that this simple setting poses a challenge to many Godunov-type schemes,
including the AUSM+ scheme [54], the AUSM+-up scheme [55], the SLAU scheme [26],
the HLLC scheme [56], etc. The setting of the problem is as follow. A cylinder with
a radius of the reference length is located in a uniform gas where the upstream Mach
number is set as 8. The axis of the cylinder is at the origin (x,y)= (0,0). The following
mesh system is used to define and discrete the computational domain,

x̄=−(3.8−2.8ξ)cosη, (5.1a)
ȳ=(3.8−2.8ξ)sinη, (5.1b)
1
2
≤ ξ≤1, −2π

5
≤η≤ 2π

5
, (5.1c)

where the spatial coordinates are normalized by the radius of the cylinder and the in-
tervals for ξ and η are uniformly divided into 120 and 320 sections. The computational
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Figure 8: A vacuum test problem at time t=0.15s, (a) density profiles, (b) velocity profiles, (c) pressure profiles
and (d) Mach number profiles.

domain has been initialized with values ρ=1.4, p=1, u=8 and v=0. At the wall, the slip
condition is used and the other two are taken as outflow. The simulations are conducted
in first-order accurate schemes with CFL=0.5.

In Fig. 9, the density contours by three Roe-type schemes and the HLLE scheme are
illustrated, where 20 contour levels varying from 2.0 to 8.0 are used. The computational
result from the HLLE scheme with the wave speeds estimate defined in (2.16) is taken as
a reference solution due to its reliability and robustness in capturing strong shocks. The
original Roe scheme fails this test case thus its result is not shown. As shown in Fig. 9, the
RoeM scheme exhibits the carbuncle phenomenon, a spurious bump is clearly demon-
strated near the stagnation streamline. Both the RoeM+ and the AM-RoeM+ schemes
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(a) RoeM (b) RoeM+

(c) AM−RoeM+ (d) HLLE

Figure 9: The density contours for hypersonic flow over a cylinder, (a) RoeM, (b) RoeM+, (c) AM-RoeM+,
(d) HLLE.
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Figure 10: The pressure profiles along the stagnation line for different schemes.

produce clean shock profiles and their post shock regions are free from any shock anoma-
lies. They show a fairly high level of robustness as the HLLE scheme does. In Fig. 10, the
pressure profiles along the stagnation line for different schemes are plotted. As shown,
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Figure 11: Convergence histories for different schemes with the inflow Mach number 8.

the RoeM solver is not able to provide a correct pressure profile, the RoeM+ scheme and
the AM-RoeM+ scheme produce almost identical results to that of the HLLE scheme. A
comparison of residual convergence histories from different schemes is given in Fig. 11.
The improved Roe-type schemes, i.e., RoeM+ and AM-RoeM+ both display well-behaved
convergence histories. In particular, the AM-RoeM+ scheme is able to produce the almost
identical convergence rate to that of the HLLE scheme.

5.4 Double Mach reflection problem

Many numerical schemes are claimed to produce kinked Mach stems in the double Mach
reflection problem. It is first studied by Woodward and Colella [57] and followed by
many other scholars. The problem describes a planar shock wave propagating in inviscid
fluid which is reflected by a 30◦ ramp. The computational domain is [0,4]×[0,1] which
has been divided into 480 cells along the length and 120 cells along the width. The shock
with a Mach number of 10 is initially set up to be inclined at an angle of 60 with the
bottom reflecting wall. The domain in front of the shock is initialized with pre shock
values given as ρ=1.4, u=0, v=0, p=1. The domain behind the shock is initialized to post
shock values. The computations are performed by first-order numerical schemes and the
third-order TVD Runge-Kutta time discretization [58] with CFL=0.5 up to t=0.2s. The
density contours computed by different schemes are shown in Fig. 12, where 30 contour
levels varying from 2.0 to 20.0 are used. As shown, the Roe scheme produces a visible
kinked Mach stem. The density contour computed by the RoeM scheme demonstrates
an improved result, but the kinked Mach stem is still clearly visible. In contrast to the
above two Roe-type schemes, the RoeM+ and the AM-RoeM+ schemes produce almost
identical solutions, the kinked Mach stems shown in their density contours are barely
noticeable.
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Figure 12: The density contours for double Mach reflection problem at t=0.2s.

5.5 Gresho vortex

To exhibit the low-speed performance of the Roe-type schemes, we consider a rotating
flow in form of the Gresho vortex [59]. Here, we follow the setup of this test case in [34]
closely. The computational domain is Ω = [0,1]×[0,1] with an initial background state
given by

ρ0=1.0, u0=(u0,0)T , p0=1.0, a0=
√

γp0/ρ0=
√

γ, u0=M0a0,

where M0 is the global Mach number. At the initial time, a vortex of radius R = 0.4 is
centered at (x0,y0)=(0.5,0.5). The initial condition is given as:

ur (r)=u0


2r/R, if 0≤ r<R/2,
2(1−r/R), if R/2≤ r<R,
0, if R≤ r,

and the initial pressure field is set as

p(r)= p0+u2
0


2r2/R2+2−log16, if 0≤ r<R/2,

2r2/R2−8
r
R
+4log

r
R
+6, if R/2≤ r<R,

0, if R≤ r,

where the radius r is written by

r=
√
(x−x0)2+(y−y0)2.

Periodic boundary conditions are imposed on the left and right boundaries. At lower
and upper boundaries, far-field boundary conditions are imposed by setting the initial
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conditions to the ghost cells. The simulations of the test case are carried out on a 100×100
Cartesian mesh for the Mach numbers M0 =10−2. The forward Euler scheme is used for
the temporal discretization. The CFL number is set as 0.9.

We use a normalized pressure field defined as

pN (x,y)=
p(x,y)−pmin

pmax−pmin

to characterize the order of pressure fluctuations in the incompressible limit. The Gresho
vortex as set up here is a stationary solution to the incompressible Euler equations. Thus
the normalized pressure field should not change with time. We therefore use this prob-
lem to check the quality of different Riemann solvers in the regime of low Mach numbers.
In Fig. 13, the normalized pressure fields for Gresho vortex at M0=0.01 after one period
are shown. Due to the excessive numerical dissipation of the Roe-type schemes, the vor-
tices are highly inaccurate and completely dissipated after one period. However, the
improved solver AM-RoeM+ provides better accuracy than the Roe solver. The normal-
ized pressure contour of the AM-RoeM+ scheme for M0 =10−2 is almost identical to the
initial state. The normalized pressure distributions along the horizontal centerline for
Gresho vortex are extracted shown in Fig. 14. It is observed that the proposed method
AM-RoeM+ is able to resolve the vortex with less numerical dissipation and achieve bet-
ter accuracy compared to the other Roe-type schemes.

5.6 Low Mach number flows around the NACA0012 airfoil

In order to further examine the performance of numerical schemes in the regime of low
Mach number flow, we present inviscid flows around NACA0012 airfoil at a sequence of
low Mach numbers. An O-type mesh with 241 (circumferential)× 121 (normal) cell num-
ber is used for all the computations. The outer boundary is 19 chord lengths away from
the airfoil wall. The slip boundary conditions are used on the wall. The simulations are
conducted at a 0 angle of attack, where four Mach numbers: M0 = 0.1,0.01,0.001,0.0001
are set as inflow conditions. The computations are conducted for 50,000 time steps with
a CFL number of 10 using the LU-SGS approach. At least five orders of density-residual
reduction is achieved.

Fig. 15 shows the normalized pressure contours of the test case. It can be observed
that the original Roe scheme, the RoeM scheme and the RoeM+ scheme all fail to simulate
the low Mach number flows accurately, whereas the modified scheme AM-RoeM+ con-
verges to a solution that approaches the incompressible flow. Fig. 16 shows the behaviour
of the pressure fluctuations with the inflow Mach number. As we know, first order Rie-
mann solvers for compressible flows usually support pressure fluctuations in space of
order M0, whereas the physical pressure fluctuation should scale as M2

0. As shown in
Fig. 16, the original Roe solver gives the incorrect scaling of the pressure fluctuations.
With the improved Roe-type scheme AM-RoeM+, the pressure fluctuations exactly scale
with M2

0.
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Figure 13: The normalized pressure isolines for Gresho vortex with the explicit first-order schemes for M0=0.01
after one period: (a) Initial condition, (b) Roe, (c) RoeM, (d) RoeM+, (e) AM-RoeM+.



W. J. Xie, Y. Zhang, Q. Chang and H. Li / Adv. Appl. Math. Mech., 11 (2019), pp. 132-167 159

X

p
N

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 14: Normalized pressure distributions along the horizontal centerline for Gresho vortex with M0 =0.01
after one period.

5.7 Laminar boundary layer

To further demonstrate the ability of the proposed method to resolve shear layers ac-
curately, a laminar boundary layer is tested over a flat plate with length L = 100. The
freestream Mach number is Ma=0.3 and the Reynolds number is Re=Uin f L/ν= 105, ν
is the viscous coefficient. This problem is simulated using a second-order Navier-Stokes
code for a rectangular mesh with 120×30 non-uniform grid points. Fig. 17 presents the
computational mesh. As shown, the non-slip adiabatic boundary condition is imposed at
the plate and a symmetry condition is used at the bottom boundary before the flat plate.
The non-reflecting boundary condition based on the Riemann invariants is adopted for
other boundaries. The computations were conducted for 50,000 steps with CFL=0.5, and
all the computations achieved at least three orders of magnitude reductions of the den-
sity residuals. The results of different schemes are compared in Fig. 18, as well as Blasius’
analytical solution for a laminar boundary layer. As shown, the proposed scheme AM-
RoeM+ can successfully reproduce the analytical velocity profile just as the Roe scheme
and the RoeM scheme do. Actually, the results of these three solvers are almost identical.
The result of the HLLE scheme is also included in Fig. 18 for comparison. As expected,
the HLLE scheme produces a very dissipative and inaccurate solution due to its dissipa-
tive property.

5.8 Hypersonic viscous flow past a cylinder

In the last test case, we will conduct numerical computations of a hypersonic viscous
flow past a cylinder to examine the performance of the proposed AM-RoeM+ solver.
The numerical setup is the same as that in references [53, 60]. The freestream conditions
are given as Min f = 8.1, Pin f = 370.7pa, Tin f = 63.73K for the far field, and the Reynolds
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Figure 15: The normalized pressure isolines for inviscid flows around NACA0012 airfoil at Mach 0.001 by the
first-order schemes: (a) Roe; (b) RoeM; (c) RoeM+; (d) AM-RoeM+.

number based on the radius (r=20mm) of the cylinder and the far field flow parameters
is 1.3×105. The non-slip and isothermal conditions with the wall temperature Tw =300K
are imposed at the wall; the Prandtl number of the gas is taken as 0.72; the temperature
dependence of the viscosity is taken into account by using the Sutherland formula. The
computational mesh adopted here is the same as that in the inviscid case (see Section
5.3), but the grids are refined near the cylinder surface to resolve the boundary layer
well. Following Ohwada et al. [53], the non-uniform grid for ξ is introduced in the mesh
defined in Eq. (5.1) as

ξ=
81−41exp(−s)

80
, 0≤ s≤ ln(41), (5.2)
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Figure 16: Pressure fluctuations with the inflow Mach number for the Roe scheme and the AM-RoeM+ scheme.
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Figure 18: Non-dimensional velocity profile for the laminar boundary layer problem.

and the interval for s is divided into nξ uniform sections.
The following flux functions are employed: Roe scheme with Harten’s entropy fix (E-

Fix) [19], RoeM and AM-RoeM+. To compute the left and right values at cell interfaces,
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Figure 19: Comparison of density fields in Mach 8.1 viscous flow past a cylinder (Roe (E-Fix)). Left:
(
nξ ,nη

)
=

(120,160); middle:
(
nξ ,nη

)
=(180,240); and right:

(
nξ ,nη

)
=(240,320). The range of the isolines is [1.05≤

ρ/ρinf≤6.9].

Figure 20: Comparison of density fields in Mach 8.1 viscous flow past a cylinder (RoeM). Left:
(
nξ ,nη

)
=

(120,160); middle:
(
nξ ,nη

)
=(180,240); and right:

(
nξ ,nη

)
=(240,320). The range of the isolines is [1.05≤

ρ/ρinf≤6.9].

the 2nd order accurate MUSCL reconstruction with the min mod limiter is employed. The
second-order central difference scheme is used to discrete the viscous term. For temporal
discretization, the LU-SGS approach is employed. All the computations are conducted
for 100,000 steps with CFL= 200. The residuals defined as the L2-norm of density drop
at least three orders of magnitude for all the cases. In Fig. 19-Fig. 21, the density fields of
different flux functions for three meshes (nξ ,nη)= (120,160),(180,240),(240,320) are de-
picted. As shown, the density fields computed by the Roe (E-Fix) flux function are overall
good due to excess dissipation introduced by the entropy fix, but there are still some vis-
ible post-shock wrinkles. The density fields produced by the RoeM scheme exhibit shock
anomalies, i.e., the carbuncle phenomenon and the post-shock wrinkles. These patholo-
gies become even worse in finer meshes. However, the proposed AM-RoeM+ scheme
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Figure 21: Comparison of density fields in Mach 8.1 viscous flow past a cylinder (AM-RoeM+). Left:
(
nξ ,nη

)
=

(120,160); middle:
(
nξ ,nη

)
=(180,240); and right:

(
nξ ,nη

)
=(240,320). The range of the isolines is [1.05≤

ρ/ρinf≤6.9].
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Figure 22: The temperature distribution in the boundary layer (y=0).

still produces clear and symmetrical density fields and shock anomalies are not seen.
The profiles of the nondimensional temperature T/Tin f along y=0 in the boundary layer
for different flux functions are demonstrated in Fig. 22. It can be seen that only the tem-
perature profiles produced by the AM-RoeM+ scheme are nearly identical. In Fig. 23,
we provide the profiles of the nondimensional heat flux q/qin f along the cylinder sur-
face for different schemes. As shown, the results computed by the Roe (E-Fix) are mesh
dependent and very inaccurate, the value of q/qin f at the stagnation point (θ = 0) is un-
derpredicted compared with the theoretical value q/qin f = 2.46, which is predicted by
Fay-Riddell [61]. The RoeM scheme produces poor heat flux distributions due to shock
anomalies. However, the results of the AM-RoeM+ scheme are nearly mesh independent
and the value of q/qin f at the stagnation point is in good agreement with the theoretical
value. The above results demonstrate that the proposed AM-RoeM+ is able to produce
accurate and reliable results for hypersonic heating computations.
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Figure 23: The distribution of the heat flux along the cylinder surface.

6 Conclusions

In this paper, we have developed a Roe-type scheme that is able to produce both accu-
rate and robust solutions for all Mach number flow problems. In particular, by a linear
perturbation analysis of the Roe-type scheme, we have shown that the shock instability
of the original Roe method can be suppressed by a simple pressure perturbation-control
technique without compromising its high resolution of linear degenerate waves. The
main ingredient of this modification is based on the new understanding of the carbuncle
mechanism that is first discussed in our previous work [14]. With an instability analysis
of a simplified stationary normal shock problem, we are able to clarify that the pressure
perturbation-control technique plays a part in reducing the perturbed mass flux behind
the normal shock via limiting the propagation of pressure perturbations from inside the
numerical shock structure to the downstream region. This makes it possible to cure the
shock instability of Godunov-type schemes without resorting to any additional numeri-
cal dissipation on linear degenerate waves. We have also extended the Roe-type scheme
to handle low Mach number problems accurately. Moreover, the resulting all Mach Roe-
type scheme does not involve any cut-off reference Mach number and user-defined pa-
rameters. Numerical results show that the proposed method is able to produce accurate
and stable results across a large Mach number range. Finally, we remark that the pressure
perturbation-control technique is also supposed to be applied to curing the shock insta-
bility of other Godunov-type schemes. Exploring such issues is left as a future work.
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