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Abstract. A multistep collocation method on uniform grids for weakly singular Volterra
integral equations is considered. The initial integral equation is modified by a smoothing
transformation and then solved by a multistep collocation method on a uniform grid.
Convergence and linear stability are also studied. Numerical results demonstrate the
efficiency of the method.
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1. Introduction

Llet0O<a<1landD:={(t,7):0<7<t< T}. Linear weakly singular Volterra Inte-
gral Equations (VIEs)

t

y(t) = g(t) +J K(t,7)y(tr)dr, te][0,T], (1.1
0

where K(t,7) = (t — 7)"%k(t,7), arise in many practical applications, including combus-
tion, viscoelasticity, control theory, finance, biology, optics and so on — cf. [16,19,24,25].
Such equations are well-studied and numerous results for the Eq. (1.1) can be immediately
extended on nonlinear VIEs

)’(t)Ig(t)-i-J (t—7)%k(t,7,y(r))d7r, t€[0,T],
0

ifk:DxR—-Rand g:[0,T] — R are sufficiently smooth functions — cf. [5,7,11].
Various numerical methods for weakly singular VIEs have been also developed [10,18,

20,27]. In particular, while dealing with weak singularity the collocation methods exploit

two main ideas. Thus one can apply standard methods on suitable non-uniform meshes and
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this approach was used in one-step collocation methods [5, 8,15]. Nevertheless, the use
of small subintervals at the start of the method can lead to substantial round-off errors in
subsequent calculations. To overcome these difficulties, various smoothing transformations
have been proposed in [1,2,17,22,23]. Thus Diogo et al. [16] regularised weakly singular
VIEs by a transformation and applied spline collocation methods based on uniform meshes.
We note that working with smoothing transformations on a uniform partitions is equivalent
to the use of graded meshes.

On the other hand, multistep collocation methods attract a lot of interest nowadays.
Such methods employ collocation polynomials, relying on data and collocation points from
previous time steps. The use of such methods allows to achieve prescribed accuracy at a
much lower computational cost than in classical one-step collocation methods [12]. More-
over, multistep collocation methods have good stability. We recall that two-step almost
collocation methods for VIEs with regular kernels have been constructed in [9,11,12], but
generalisation of this approach to VIEs with weakly singular kernels requires substantial
additional work. Here we engage the transformation from [23] to extend the approach of
Conte and Paternoster [12] to weakly singular VIEs.

This paper is arranged as follows. Section 2 is devoted to the regularity of the solutions
of the Eq. (1.1). In Section 3, multistep collocation methods for weakly singular VIEs are
introduced and the order of convergence of such methods is established. In Section 4,
we analyse the stability of multistep methods. Finally, Section 5 presents the results of
numerical experiments, which illustrate the theoretical findings.

2. Regularity of the Solutions

Here and in what follows, C denotes a positive constant, independent of specified vari-
ables but taking different values in different occurrences. Let us introduce the weight func-
tion

1, for 6 <0,
Ag(t) :=14 (1 +logt])™', for 6 =0,
t9, for 6>0,

where t € (0,T]. We also consider two sets of smooth functions needed to describe the
high order derivatives of the solutions of the Eq. (1.1).

Definition 2.1 (cf. Refs. [14,23]). If m € N and a < 1, then C™%[0, T] is the set of all
m-times continuously differentiable functions y : [0, T] — R such that

YO0 <cagy (@, j=1,2,,m.

Definition 2.2 (cf. Refs. [14,23]). If m € N and a < 1, then W™%(D) is the set of all
m-times continuously differentiable functions K : D — R such that

(%) (G &2 e

SCA(t—71), i+j<m, i,jeN"
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Lemma 2.1. If K(t,t) e W™*(D), m€N, a < 1, then

JPK(t,7)
W \CAa+p l(t T), l<p<m (2.1)
Proof. It follows immediately from Definition 2.2. O

The regularity of the solutions of the Eq. (1.1) can be characterised as follows.

Lemma 2.2 (cf. Brunner & Houwen [8, p. 1081]). f K € W™%(D), g € C™*[0,T], m €N,
a < 1, then (1.1) has a unique solution y € C™*[0,T].

Now we assume that m € N, V,T € R*, d > 1 and consider smoothing transformations
¢ :[0,V]— [0, T] such that

¢ € C™0,V], (2.2)
Cvit <M<l o<y <y, 2.3)
: 4= 0<j<min{d
p0m|<c{’ ! mintd,m}, o < <, (2.4)
1, j>d,

where C, = C; > 0 and C > 0 are constants.
If v,we[0,V]and P := {(v,w) : 0 < w < v < V}, we can replace the variables t and 7
in (1.1) by
T=¢Ww), t=¢b), (2.5)
thus rewriting this equation in the form

v

=g +J K? (v, w)y? (w)dw, (2.6)
0

where g?(v) = g (¢(v)), K¢ (v,w) =K (¢ (v), p(w)) ¢'(w) are known functions and y?(v)
= y (¢(v)) is the objective function. Let us now describe the properties of the functions in
(2.6).

Lemma 2.3. If K(t, T) e wm “(D) and the transformation ¢ satisfies the conditions (2.2)-

(2.4), then for p = ak + 2 11b — 1 with ay, b, € Ny, there is a constant C such
that
d\ (2 d
il K
(Bv) (av " ow ) (v.w)
i+j jt1
a IPK(t
_Z STe[ TR [ (% w) K %, 2.7)
Oak bk k=1 k=1 t T
where [ISp<i+j<m 0<Sw<v< Vandzlﬂkk+z;:;11kbk:i+j+1.

Proof. It can be proved by induction.
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Lemma 2.4 (cf. Pedas & Vainikko [23, Lemma 4.2]). If f and ¢ satisfy the conditions:

1. f(t)eC™*[0,T]formeN, a,TER, a<land T >0,

2. ¢ meets the requirements (2.2)-(2.4) withd e Nifd < mandwithd € R if d > m,
then f®(v) = f (¢(v)) € C™P[0,V]Iwith p=1—d(1—a).
Lemma 2.5. If K and ¢ satisfy the conditions:

1. K(t,7) e W™*(D), where D ={(t,7):0<7t<t<T}, meN, a,T€R, a<1and
T >0,

2. ¢ meets the requirements (2.2)-(2.4), withd e Nifd < mand withd € Rifd > m,

then K®(v,w) =K (¢(v), p(w)) ¢’ (w) € WP (P) with p =1 —d(1 — ).

Proof Assume that K and ¢ satisfy the above conditions and note that K¢ (v, w) is m
times continuously differentiable function in the triangle 0 < w < v < V. The inequality
(2.7) can now be used, but we have to estimate all terms in its right-hand side. Indeed, it
follows from (2.1) that

JPK(t,T)
‘W a+p l(¢(V) d(w))
1, a+p—1<0,
< CH{ 1+ |log(v—w)|+ |logw]|, a+p—1=0
(v —w)~(etp=Dy~latp=Dd=1 " 4 4 p 1 >0,
< CA;}LP (v—w).

There are five cases to consider — viz.
iz1l,i+j=1,2,--- ,min{d, m};

ci>1,1+j=12--,d,i+j=d+1,d+2,---,m

A
B
C:i=21l1+j=d+1,d+2,---,m
D:i=0,1+j=1,2,--- ,min{d, m};
D

:1=0,j=d,d+1,---,m

Let us start with the case A. Using the relations (2.1)-(2.5) when i + j < min{d, m}, we
obtain

i+j j+1 i _
l_[(¢(k)( ))akl_[(¢(k)( ))bk <Cv2(d k)akwgl(d P < C(v — w)d@+D=(+j+D),

k=1 k=1
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Note that if 0 < w < v < V, then (v —w)d@+D=-(+i+1) < ¢ Therefore,

Wy S C(v—w) DA (v —w)

1, a+p—I1<0,
<C{ 1+ loglv—w)]) (v —w)d—0=(+D) " g4 p_1=0
(v —w)dd-a)=(+D) a+p—1>0,
where .
i+j Jj+ p
3] a ) bk 0 K(t,T)
ﬂw ) ﬂ $®w))" ==,

Ifa<0,thend(l—a)—(i+1)>0and the 1nequa11ty (2.8) yields
v, <C.
On the other hand, if a = 0, then
1, i#Fd—1,
A<C{1+|log(v—w)|, iid—l.
For 0 < a < 1, one notes that p > [ — a and the application of (2.8) shows that

{1, i<d(l—a)—1,

W, <C .
A (v —w)dA==+D s 41 —q)—1.

Combining estimates (2.9)-(2.11), we arrive at the inequality

< CAT! w).

1+i—d(1— a)(v
Case B: Let

It follows from (2.1), (2.2)-(2.4) that

i+j j+1
[Te®m)* [ T(e®w)™| < cv—w)2,
k=1 k=1

and since C(v —w)Q (@ P=D L ¢(y —w)?(~0+=Q2 e obtain

1, a+p—1<0,
U <CH (14 loglv—w))(v—w)?, a+p—1=0
(v —w)dd-a+i=Q a+p—1>0,

71

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)
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where .
i+j Jj+

- ()" () () 97K (L, T)

Ty l_[(qb ) g o))" ==

On the other hand, since C(v —w)?(=®+=Q < ¢ (y — w)d(=0)=(+1) then

1, a+p—1<0,
1, a+p—I01=0, Q;>0,

\IJB<C{ 1+ |log(v —w)|, a+p—1=0, Q;=0, (2.13)
1, a+p—1>0, dl—a)+j—Qy=0
((v—w)d==D g4 p—1>0, d(1—a)+j—Q,<0.

The inequality i + j > d implies
Q<si+j+1 (2.14)

Moreover, it follows from the relations a +p—1=0, Q; =0 and i + j > d that

j+1 i+j
i+j+1=d (Zak+2bk)+ > kay,

k=1 k=d+1
i+j j+1
d(1—a) <d(l+1—a)=d(p+1):d(2ak+2bk) <i+j+1.
k=1 k=1

However, since i + j+1 = d + 2 implies d(1 — a) = i + 1, the inequalities (2.13), (2.14)
yield
W < CATL gV —W). (2.15)

The remaining cases C, D and E, can be considered analogously, so that

<CAI-H d(1— a)(v W)
Uy < CA_ —d(1— a)(v w), (2.16)
<CA_ —d(1— a)(v w).

Combining (2.12), (2.15), (2.16) with the representation (2.7) produces the estimate

‘(%)i(aav * 3 )

where v,w € P and i+j < m. This shows thatK?(v,w) € W™P(P)with f = 1-d(1—a). O

CAﬁil(v—w),

Lemma 2.5 describes the differential properties of the solutions and is used in the con-
vergence analysis below.

Remark 2.1. Simple calculations show that 8 < a, hence the functions f?(v) and K¢ (v, w)
have improved smoothing properties.
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3. Convergence Order

Weakly singular VIEs on graded meshes with grading exponent { are equivalent to VIEs
on uniform meshes regularized by transformation t = v¢T.

It is well known that the application of linear multistep methods with non-equidistant
nodes to ordinary differential equations is connected with a number of problems. For
weakly singular VIEs, analogous difficulties arise in multistep collocation methods based on
graded meshes . Therefore, here we start with approximation methods on uniform meshes.

Let N € N and V € R". Following the notation in [3, 4, 23], we write Ag\f’v) for the
partition

n\¢
vn:=V(ﬁ), n=0,1,---,N, (=1,

and discretise the interval [0,V ] by uniform mesh A](\}’V) with the step size h = V/N.
Besides, we consider collocation points Vnj = vn+c]~h, forj=1,2,---,m,n=0,1,--- ,N—1
with the fixed parameters 0 < ¢; < ¢y < -+ < ¢, < 1. Using the transformation ¢, we
transform the initial mesh into a non-uniform one — viz.

n

Cn
,T
A](\? ): {tn|tn:¢(vn):T(ﬁ) ) Tl:O,l,"' ,N, GZHZIOI}le}'}E,Ngn’ Cn> 1}

Let t,, ; = ¢ (v ;) = t, +cp jhy, Where by, = t, .1 —t, and

P (»b(vn,j)_(pb(vn)
" () — ¢ (V)

Using this mesh A%’T) in the Eq. (1.1), we rewrite it on the interval t € [t,, t,.;]as y(t) =
F,(t) + ®,(t), where the lag-term F,(t) and the increment-term &,,(t) have the form

t

Fo(0) = (1) +J "K(e, D)y,
t—t 01—‘1 ! t—t t—t -1
@, (t)=(—= f (1—s)k(t,t, + —2(1+5) ) y(t, + —=2(1+5) ) ds.
(52) ] a9 k(e 52 r9)y (a0 s

If m is a non-negative integer and —1 < % < m— 1, then Sfj) (AI(\E’T)) refers to the spline
space
fGCﬁ([O,T]), fl(tn,tn+1]=fnenm: n:())]-:"':N_]-

on the grid AI(VC’T), where 1, denote the set of (real) polynomials of degree at most m.

For N,m € N, the desired approximation of y? is an element u®(v) € S(__ll) (A](\}’V)) and

m
yn(t) :=u® (qb_l(t)), t € [0, T] represents an approximation for the solution y of (1.1).
In order to derive the starting values of the scheme, we assume that the domain can be
appropriately extended into negative half-axis. The initial values we need, can be obtained
via a starting procedure related to a classical one-step method. In this way, the multistep
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collocation method can start on the first integration interval. In what follows, the starting
interval is written as [0, v,_;] and on the set [v,,,V,,.;], n =r—1,r,--- ,N —1, the unknown
function y? (v) is approximated by piecewise polynomials as follows

r—1
uf(vn+sh)=2cpk(s)y +ij(s)Un], s€[0,1]. (3.2)
k=0 j=1

Note that Uf =u, (vn ;) and @ (s), ¥ ;(s) are polynomials of degree m + r — 1, satisfying

¢

the conditions uf (Vn—k) = ¥,_,- In particular, the interpolation conditions yield

oK) =811, @ilc;))=0, Lk=0,1,---,r—1,
/"pl(_k):O, /l)bl (C]):(Sl,]’ i’j:]_’z,-..’m,

where 9, ; is the Kronecker delta. The above system has a unique solution — viz.

()_ﬁ S—¢; ﬁ s+1i ()_i—ierl s
=g —k+i’ ;6 ci—¢

i=1 L i=0,i#k i=0 J i=1,i#j J

On the other hand, the collocation polynomials on the interval [¢,, t,.;] have the form

r—1

ty (£ +5hy) = D My ()Y k+ZLn](s)Un], sef0,1], n=0,1,---,N—1, (3.3)
k=0 j=1

where U, ; = up(t, ;) and M, ;(s), L, ;(s) are polynomials such that
Mn,l (_dn,k) = 5l,k5 Mn,l (Cn,j) =O, lnk =O: 1) :r_]-)
Lyi(—dnux) =0, Ly, (Cn,j) =06i5, Lj=1,2,---,m,

with d,, , = (t, — t,_)/h,. The unique solution of the above interpolation problem is

) r—1 s+d,; L () r—1 s+d,; T S—Cpy
e —l_[ —— We=]1 [ -
—d k_cnll- =0,i#k _dn,k+dn,i / i=0 n)+dn1i 1,i#j Cn,j_cn,i

Using the transformation (2.5) in the Eq. (3.1) yields

Vn

FP(v)=g?(v)+ J K? (v, w)y® (w)dw,
0

_ l1—a 1 _
q;z’(v)z(M) J (1_5)_ak(¢(v),¢(vn)+w(l +s)) (3.4)
-1

2
P(v)—¢ (vi)
2

x)’(¢ (v) + (1 +s))ds
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It is clear that y?(v) = y(t), g®(v) = g(¢), F,?(v) = F,(t) and the Eq. (1.1) transforms
into y?(v) = F,? )+ @f(v). Thus, the multistep collocation method can be now written
as

vl =F’ +8?
r—1 m (35)
Y=oyl + > Ul
k=0 j=1
where
n—1 1
F:fi = g¢(vn,i) +h J K? (vn,i, v+ sh) uf’ (v; +sh)ds, (3.6)
[=0J0
q>¢ _ qb(vn,i) - ¢ (vn) e
ni 2
1
_ ¢(vni)_¢(vn)
x [ (1-s)"% (¢(Vn,i): ¢ (vp) + ’f(l +S))
-1
X U, (4) (v )+ w(l +s)) ds, i=1,2,---,m. (3.7)

Let us point out that the collocation polynomials (3.2) and (3.3) are aimed to manage the
terms (3.6) and (3.7).

We now consider the errors of the approximations (3.2)-(3.5). Let L(f) refer to the
linear functional on the space C"™%[a, b] defined by

m—1

b Ji
L(f)=>. ( J w)fFO)dx + >z fO (xi,z)) ,
a i=1

=1

where u;(x) are piecewise continuous functions on the interval [a,b], x;; € [a,b] and
Xi; € R*. Similar to [13, Theorem 3.7.1], we can establish the following result.

Theorem 3.1. If L(v) =0 for all v € m,,_;, then for all f € C™%[a, b] one has

b
L(f) =J FMOK(e)dt,

where K(t) = ﬁLx [(x — t)_”:_l] and L, [(x — t)_”:_l] means that L acts on (x — t)_”:_1
considered as the function of x such that
(x—t)"1 forx>t,

_ ym—1 _
(=) {O, for x < t. (3.8)

Proof. Taking into account the representation (3.8) and applying L to the m-term Tay-
lor’s expansion of f (x) with the remainder in integral form, we have

1
(m—1)!

b
L(f)= J FOOL [ =07 ]de,
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since L(p) = 0 for any p € 1,,_;. This completes the proof. O

Lemma 3.1. If K € W™t"%(D) and g € C™"%[0, T], then for any s € [0,1] and distinct
collocation abscissas {c;}"" iy the exact solution y(t) of (1.1) satisfies the equations

y® (v, +sh) = Zcpk(s)y‘p (v k)+Z1,b](S)y (Vn])+hm+er”n()

- o (3.9)
¥ (ty +shy) = ZMn,k(s)y (tai) + Z Ly j )yt ) + HT Ry o5,
k=0 j=1

where

1
Ry, rn(s) = J K;ﬁ)r(s, o)[ ? (v, + Gh)](m+r) do,

—r+l1

1
Rm,r,n(s) = J Km,r(5> U)J’(m+r) (tn + O-hn) do,

_dn,r—l
r—1
(s— o)M= S o (s)(—k — o)+l Z $;(s)(c;— o)
K¢ (s,0) = =0 ,
mr (m+r—1)!
r—1 m _
(5= )M = 3 My () (—dp e — 0)TH = 3 Ly i(s) (e —0 )0
k=0 j=1
K =
mr(8,0) (m+r—1)!

Proof If K € W™"*(D) and g € C™"*[0,T], then Lemma 2.2 shows that y €
C™*7[0,T]. Therefore, Lemmas 2.4 and 2.5 yield the inclusions g® € ¢c™*"P[0,V],
y® ec™Plo, V], K® e W™ B(P), B =1—d(1—a).

From (3.9), we obtain

RY(5)= h,,m( ¢ (v +sh) — Zapk(sw ()= ()y? (vnj))

j=1

Bonnl®) = v (y(t +5sh,) — ZMnk(s)yun e ZLnxs)y(tm))

k=0 j=1
Replacing both the sets v, +sh, v,_i, v, j and t, +shy, t,_, t, ; into x, respectively, leads

to the representatlons

7 1 X m-+r—
Kﬁ,r(s,0)=m P [(x = (v + o)) ]

r—1
. {(s — oY= )k — o)

:(m+r—1)!h =
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m
+r—1
= i) — o)
j=1

Km,r(s,a)z(mTl_l)' gf)rn[(x (tn+oh))TH 1]

r—1
1
{(s — Y= My ()~ — )

(m+r—1)h, =
m

— > Ly () — ),
j=1

suggesting that K,i - and K, , are Peano kernels for the operators R%nn and R,, .,. By

Theorem 3.1, we have

1
mrn(s)—J hK¢ (s, cr)[y¢(v +c7h)](m+r) do,

—r+1

1
Rm,r,n(s) = J hnl_(m,r(s, U)y(m+r)(tn + O-hn)do--

_dnr—l
Setting K (s,0) = hK ((s,0) if s € [-r +1,1] and K, ,(s,0) = hnlzm,r(s,a) if s €
[—d,,—1,1 ], we complete the proof. O

Lemma 3.1 allows to evaluate the error e(v) = y?(v) —u®(v) of the numerical scheme
(3.5).

Theorem 3.2. Assume that K € W™"%(D), ¢ € C™"*[0,T] and ¢ is a transformation
satisfying the conditions (2.2)-(2.4) withd e N ford < mandd € R ford > m. If in
addition, the starting error satisfies the relation

lelloo fo, 1= @ (A™"), h—0,

and the spectral radius p(A) of the matrix

Az[ 0,11 | P ]
¢r—1(1)  @ro(1),-+,0(1)

is less than one, then
lelloo = @ (R™7), h—0.

Proof. Let s €[0,1]. It follows from Lemma 3.1 that

r—1 m

Y +sh) = o)y ? s + D )y ? (v, )+ R™RS, (), (3.10)
k=0 j=1
r—1 m

¥ (tn+shy) =D Mui(©)y (o) + D Ly i)y (L) ARy o (s). (3.11)

k=0 j=1
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Subtracting (3.10) from (3.2) and (3.11) from (3.3), we obtain

e (v, +sh)—Z<pk(s)en k+21,b](s)en] hm”Rf”n() n=r—1, (3.12)
j=1

e(t,+sh,) = ZMn,k(S)gn—k + Z Lo j(8)en; + Rl "Ry n(s), n=r—1, (3.13)
k=0 j=1

where &, = £ (Vp—i) = €(ty—i), &nj = €(vy;) = &(t,;). Evaluating the Eqgs. (3.4) at
v =vp; yields

n—1 1
FS (v)) = 8? () +h Y J K® (1,1 +sh)y® (v + sh)ds,
—0J0

_ l-a r1
q>f(vn,i)=(—¢(v"’f)2‘”V")) f (-
-1
¢(vn,i)2—¢(vn)(1+s))

(3.14)
x k (¢(Vn,i), ¢ (Vn) +
¢(vn,i)2_ ¢ (Vn)(1 +s)) ds, i

=1,2,---,m.

xy(¢(vn)+

Subtracting (3.6) and (3.7) from (3.14), we get

n—1

1
hZJ K? (Vn,i, V1 +sh)e(v; +sh)ds + (
0

l

Lo

0
xk(tnl, 4 o ”(1+s)) (t 4 "(1+s)) (3.15)

The condition (2.2) implies that
e(vi+sh)=h"""q(s), 1=0,1,---,r—1, s€[0,1] (3.16)
with ||q;|| o < C. Substituting (3.12), (3.13) and (3.16) in (3.15) leads to the equation

—1 n—1
(2) hl ap 6(2)_hZB(l) (2)+hZB(l) 1 hl aB e(l)

l=r l=r

hm+r+1z =) +hm+r+1 ap(n) n=r—1, (3.17)

where the terms egl) ER, € (2) p(” eR™, B(” € R™ and B, B(l) € R™™ have the form

T (2)

1 T
() [31 r+15 E1—r+25° )gl] P [81 1, €12, ng,m] 5
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1

1
(Bg))lk = J K¢(vn i» VI +Sh)(,0k(5)ds, (Eg))l] = J Kd)(vn,i)vl +5h)1/)j(5)d5,
0 0

C

(Bn)iﬁ ? 1 aJ (1—s) “k b ”(1+s)) (%(1+s))ds,

@), =(%) "]

folK (Vn,i, vy +sh)qi(s)ds, [=0,1,---,r—1,

(1—3) “k( n+c’” ”(1+s)) (%(1+s))ds,

1
(p,ﬁ”) — foK (vm,vl+sh)Rmrl(s)ds l=r,r+1,---,n—1,

(C ) [La—sy ak(nl’ s "(1+S)) mm(%(lﬂ))ds, [=n.

Setting n =1—1 and s = 1 in (3.12) produces the difference equation

651) = Aegi)l + 5691 + hm+rﬁm,r,l—1, [Z2r—1, (3.18)

_ Or—l,m - o Or 1,1
RO A e &
P(1) = [1(1),42(1), -+, (D]

We note that (3.18) has the solution

(1) _ Al-r+1 (1) Z [—j—1 ( (2) m+r x
=A > A R B )
j=r—1

with the coefficients

and inserting it in (3.17), one obtains

n—1 n—1
1-ap 2) _ R(D (2) R Al-r+1 | (1)
(1—hB,)e@ =h > BUe +h(ZBg>A r+ )er_l

l=r =
n— n—1 n—2 n—1
+hz Z B(Z)Al—] 1g (2)+hm+r+1 Z Z Egl)Al—]—l B
j=r \I=j+1 j=r—1 \U=j+1
n—1
+h(ZB(Z)Al rs> (2) hm+r+1 Zp(l)+h1 ap An r+1 (1)
l=r
n—1 n—1
+h}l—a 1‘3 n—j— 1S (2) hl apmtr Z B An j— 1pmr) hm+r+1 ap(n).
j=r-1 j=r—1

The error term 6%2) can be estimated analogously to [12, Theorem 4.2]. This finishes the
proof. O

Table 1 shows the convergence order for various approximation methods for weakly
singular VIEs.
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Table 1: Collocation methods for weakly singular VIEs

Method Collocation numbers Convergence Order
One-step (uniform) m 1—a
One-step (graded) m m
One-step (transformed) m m
Multistep (uniform) m 1—a
Multistep (transformed) m m+r—a

4. Linear Stability Analysis

In this section, we consider the basic test equation
t
y()=1+ AJ (t—7)%y(r)dr, O<a<1, t€[0,T], Re(A)<O 4.1)
0

usually adopted in literature to test the stability of numerical methods for VIEs— [6]. If
largA — | < (1—a/2)m, then the exact solution y(t) of (4.1) tends to zero as t tends
to +00.

Definition 4.1. A numerical method is called stable for 2 = Ah € C, where h is the step
size, if the corresponding numerical solution y,, of the Eq. (4.1) tends to zero when n tends
to +00. The region of absolute stability of a numerical method consists of all those z € C
for which the method is stable. If the region of absolute stability contains the left complex
half-plane, then the corresponding method is called A-stable.

(1)
AN

Using the mesh , we rewrite (4.1) on the interval [t,, t,,1] as

y()=F(t)+@,(t), te[tyty],

where
F,(t)= 1+7Lf (t—7) *y(r)dr,

— l1-a
@, (1) =2 J(l s) " y t

and the application of ¢ yields

FP(v)=1+ lJ n (1) —pw) ™ ¢’ (w)y® (w)dw,
0

— 1-a 1 —
@f(y):)\(w) J (1_5)—ay(¢(vn)+ M(lﬂ))ds
-1
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Consider now the vectors
_ T o T
u=[11,-,1"er", v¢=[vl U?, - Us |,

T
yg)(r) = [‘y¢ r? 1" ’-yr?—r+1] ’ (P(l) = [()00(1)’ 901(1):' ) %’r—l(l)]T,

and the matrices

— T _ T
E:[ H(1) ] F:[ou 0 ] G:[ 1 —p(1) ]
Orm Ir Or,l Or,l Ir

™) ¢

and B¢ (ﬂﬁb(l)) c Rmxr 1—-¢ (Yﬁb(l)) c Rmxm W — (wgcl)) c Rmxr, Pn — (pij

]Rmxm, where

1
peo = J (@) — d(vy +5h)) " @' (v + sh)gy(s)ds,

i = J(¢<vm) (v +5h)) " " (v, + sh)p; (s)ds,

w(.”):l(cm—n) J 1-s5) aMnk( m(l +s))ds

ik h
1 (cnihn
pgﬂzﬁ( mi ) J (1—s)" “Ln]( ’“(1+s))ds

The main result of this section is the following theorem.
Theorem 4.1. Let z = Ah. The multistep collocation method (3.5) for the Eq. (4.1) comprises

the recurrence relation

¢

yn+1 .yr?

y¢0) | =R,(2) yz(? , 1<n<N-1, (4.2)
Uf Un—l

with the stability matrix R,(z) = [Q,(z)]' M,,(z) and

0 —zW, I,—=zP
] ®er 7 b |
9 o
M (2) __[ 0ny z(BY,—W,y) I,+z(r? —P,,) ]
F 0r+1,m

Proof. For the Eq. (4.1), we rewrite (3.6) and (3.7) as follows
n—1 1
ngi =l+z Z (¢(Vn,i) - ¢(V1 + Sh))_a ¢/(Vl + Sh)Ul‘idS’

1=0J0
_ 1—a 1 ) —
a? =2 (M) J (1—s)"%u, ((ﬁ(%HM(l +s)) ds.
i h 2 -1 2
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Taking into account that
Y On)=y8 = U

r—1 m
UP =D oyl + D i)y?,
k=0

j=1
we write
n—1[(r—1 r—1
z(z z)z ROV
=0 \ k=0 k=0

Now the multistep collocation method (3.5) can be represented in a more compact form —
viz.

yo = e)Ty?W 1 (1) u?, (4.3)
n—1
U? =u+zy (B y! +1fU} ) +2W,y ¢ + 2P, U (4.4)
1=0
Considering the difference U‘j> Uf 1> we find out

U?—0?  =z(B y?D 1P 0P ) 42w,y —aw, y?0)
+2P, U —zP,_ U’
Therefore,
(I —2P,) UL =W,y 200 =5 (B, — W,y )y
+[La+2(r? —p, ) Ul . 4.5)

It follows from (4.3) that

L@y | [ ¥ Jge [ 0 0 ][ 5
Or,l Ir yf(r) Or,m n Ir Or,l yffrl) .

Taking into account the Eq. (4.5), we obtain

] y?
0,1 —W, I,—zP, 50
G E yn
I u?
3¢
- n
[ Omy 2(BS,~W,y) Ly+z(r?,—Pp,,) ] $(r)
= yn—l 4
L F 0r+1,m ¢
Un—l

which implies the representation (4.2). O
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5. Numerical Experiments

Usually, the integrals in the Egs. (3.6) and (3.7) cannot be evaluated analytically, hence
quadrature formulae have to be used. The integral in the right-hand side of (3.6) does
not contain singular terms. Therefore, one can use the Gauss-Legendre quadratures thus

obtaining
n—1

F¢ —g4> Vi +hZZb K¢ m,vl+§nh)u;p(vl+§nh), (5.1)
[=0 n=0
where (§ s bn)!:,l:o are Gauss-Legendre nodes and weights in [0,1].

To discretise the term (3.7), we approximate it by Gauss-Jacobi quadrature formula, so
that

5 Cniln e nlhn Cn,i
q’n,iz( ,2 ) Zd k( tn,ist (1+Yn))un(tn+?’(1+}’n)hn), (5.2)

where (Yn’ d, )“O are Gauss-Jacobi nodes and weights in [—1,1].
The starting values of the method are determined by the classical one-step collocation

method of order m + r, and the discretised multistep collocation polynomial P,? (v) has the
form

P (v, +sh) = Zcpk(s)ynk+21/)](s) ¢, sel01], n=01,,N-1 (53)
j=1

The second collocation polynomial has the form
P, (t, +sh,) = ZMnk(s)yn k+ZLnJ(s)Ym, s€[0,1], n=0,1,---,N—1. (5.4
j=1

Thus, the Egs. (5.3) and (5.4) represent the continuous approximations of u?) and y;, re-

spectively. Besides, Yn‘pj =Y, = P,‘f (vn,j) = Py(t, ;) are determined by the nonlinear
system

v? =F? +8¢

n,i’

m
yho = Z Py L+ D (Y
k=0 j=1

i=1)25...5m)

In order to verify the theoretical results of Section 3, we consider two test problems.

Example 5.1. The linear weakly singular Volterra integral equation

t
y(t) = %mH%—J (t—s)"2y(s)ds, te[0,1]
0

has the exact solution y(t) = t'/2 — cf. [26, Example 1].
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Table 2: Example 5.1: Error Norms and Order of Convergence.

¢ =21/38,¢c,=1 ¢ =16/19,¢c, =1
N Error Norm Order  Error Norm Order
4 1.0336e-003 - 9.3550e-004 -
8 4.6645e-005 4.4698 4.2028e-005 4.4763

16 1.8953e-006 4.6212 1.6840e-006 4.6414
32 8.3248e-008 4.5089 7.3189e-008 4.5241
64  3.5540e-009 4.5499 3.1229e-009 4.5507
128  1.1492e-010 4.9507 1.0225e-010 4.9327
256  5.0575e-012 4.5061 4.3201e-012 4.5649
512 2.2371e-013 4.4987 1.8433e-013 4.5507
1024 9.9198e-015 4.4987 7.8650e-015 4.5507

We set m = 2, r = 3 with ¢; =21/38, ¢, =1 and ¢; = 16/19, ¢, = 1, respectively, and
use a smoothing transformation ¢(v) = TV=9v¢, 0 < v < V, which satisfy the conditions
(2.2)-(2.4). Taking into account [23, Theorems 5.2], we obtain d > 4, and we will use the
transformation t = ¢(v) = v’. The starting values are obtained by the classical one-step
collocation method of order 5 considered in [23]. Besides, we choose uy = u; = 3 in the
quadrature methods (5.1) and (5.2).

The errors of the method are presented in Table 2. The column "Error Norm" demon-
strates absolute errors at the end point for various N. The column "Order" shows the
estimated order of convergence computed as Order = log, (Error (N /2) /Error(N)). For
a = 1/2, the theoretical convergence order determined by Theorem 3.2 is m+r —a =
3+2—1/2=9/2 consistent with the numerical results in Table 2.

Example 5.2. The nonlinear weakly singular Volterra integral equation

t
y(t) =13 (1 — 19—0t4/3) + J (t—s)"3y3(s)ds, te[0,1]
0

has the exact solution y(t) = t1/3 — cf. [21, Example 4].

We set m = 2, r = 3 with ¢; = 16/19, ¢, = 1 and take the smoothing transformation
¢(v) = vl For a = 1/3, the theoretical convergence order determined by Theorem 3.2
ism+r—a=24+3—-1/3 ~ 4.6667. Table 3 shows the errors and the corresponding
convergence order for the methods presented here and in [21]. We point out that the
above multistep collocation methods nearly attains the theoretical value of Theorem 3.2,
while the method in [21] produces visibly distinct results.
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512 1.7870e-013 4.6115 1.2026e-006 2.2542
1024 7.3101e-015 4.6115 2.5209e-007 2.2542
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