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Abstract. This paper presents a high order time discretization method by combin-
ing the semi-implicit spectral deferred correction method with energy stable linear
schemes to simulate a series of phase field problems. We start with the linear scheme,
which is based on the invariant energy quadratization approach and is proved to be
linear unconditionally energy stable. The scheme also takes advantage of avoiding
nonlinear iteration and the restriction of time step to guarantee the nonlinear system
uniquely solvable. Moreover, the scheme leads to linear algebraic system to solve at
each iteration, and we employ the multigrid solver to solve it efficiently. Numerical re-
sults are given to illustrate that the combination of local discontinuous Galerkin (LDG)
spatial discretization and the high order temporal scheme is a practical, accurate and
efficient simulation tool when solving phase field problems. Namely, we can obtain
high order accuracy in both time and space by solving some simple linear algebraic
equations.
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1 Introduction

The phase field model has been used successfully for modeling a variety of interfacial
phenomena like microstructure evolution [3] and the physics of phase transitions [16].
The key idea of phase field model is to replace the sharp interface by a thin transition
lays, it takes two distinct values (for instance, +1 and −1) in each of the phases, with
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a smooth change between both values in the zone around the interfaces, which is then
diffused with a finite width.

In the phase field model, the dynamics of the underlying physical system is gen-
erally described by a gradient flow resulting from the Euler-Lagrangian variation of a
pre-defined energy form with embedded phase-field functions. However, the gradient
flow, in the form of high order stiff partial differential equations (PDEs), poses a great
deal of difficulty for numerical simulations [24, 39]. Namely, high resolution simulation
is preferred in order to capture the generally sharp interfacial structures and to provide
numerical solution with fidelity. In addition, the model itself experiences long time evo-
lution therefore computational efficiency is essential to map out the whole dynamics from
initial state to steady state.

Various numerical simulations have been developed for phase field problems re-
cently, especially for temporal discretization, which mostly are the convex splitting
schemes [4, 10, 12–14, 18, 19, 21, 23, 27, 28], the stabilized linear schemes [11, 17, 20] and
others [1, 29]. In the convex splitting scheme, one first splits the energy into convex and
nonconvex parts. Then one discretizes the terms of the variational derivative implicitly
for the convex part, and explicitly for the nonconvex part of the energy respectively. The
resulting convex splitting schemes are unconditionally energy stable. However, they are
nonlinear in most cases, which results in nonlinear systems, hence iterative methods are
necessary. Moreover, as for the unique solvability of the nonlinear scheme, the proof is
not easy. In some cases, nonlinear schemes also require very small time step to guarantee
the unique solvability. While for the stabilized linear scheme, the term from the nonlin-
ear potential is simply treated explicitly and some linear stabilizing terms are added to
improve the stability. The resulting linear schemes are simple and easy to implement.
However, the energy stability depends on the boundedness of the numerical solution,
which is not satisfied for most phase field models. In such case, the stabilized linear
scheme fails to preserve the energy stability.

In order to overcome the difficulties mentioned above, one hopes to construct a linear
scheme which preserves the energy stability. Yang et al. developed a novel scheme based
on the invariant energy quadratization (IEQ) approach and have been successfully used
to solve the molecular beam epitaxial (MBE) growth model [2,34], the phase field crystal
model [32] and various gradient flows [31, 33, 35–38]. The numerical scheme using the
IEQ approach takes the following advantages: 1) It is unconditionally energy stable. 2) It
is easy to construct the second order scheme, thus more accurate. 3) It is linear and thus
easy to implement and efficient. Inspired by the idea, the IEQ approach can be applied to
solve other phase field problems automatically, for example, the Allen-Cahn (AC) equa-
tion, the Cahn-Hilliard (CH) equation and the Cahn-Hilliard-Hele-Shaw (CHHS) system.
The linear scheme is unconditionally energy stable and easy to implement. However, it
is only first order or second order accurate in time, and not straightforward to extend to
higher order ones. In this paper, we will apply the semi-implicit spectral deferred cor-
rection (SDC) method [15] to improve the temporal accuracy, which borrows the linear
unconditionally stable method as the basis scheme. We only pay attention to some clas-
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sical and widely used phase field models, namely the AC equation, the CH equation, the
MBE growth model and the CHHS system in this paper, it is clear that the technique can
be applied to more general gradient flows.

Regarding spatial discretization, the discontinuous Galerkin (DG) method will be de-
veloped in this paper. The DG method we discuss here is a finite element method using
a completely discontinuous piecewise polynomial space for the numerical solution and
the test functions. It was first introduced in 1973 by Reed and Hill [22] for solving the lin-
ear time-independent neutron transport equation. Later, the DG method was developed
for solving the nonlinear hyperbolic conservation laws by Cockburn et al. in a series of
papers [5–8].

For PDEs containing higher order spatial derivatives, it is not straightforward to ap-
ply the DG method directly, so the local discontinuous Galerkin (LDG) method was in-
troduced. The first LDG method was designed to solve a convection diffusion equation
(with second derivatives) by Cockburn and Shu [9]. The idea of LDG methods is to suit-
ably rewrite a higher order PDE into a first order system, then apply the DG method to
the system. A key ingredient for the success of such methods is the correct design of
interface numerical fluxes, which should be designed to guarantee stability. The DG and
LDG methods have several attractive properties, for example: 1) The order of accuracy
can be locally determined in each cell, thus allowing for efficient p adaptivity. 2) These
methods can be used on arbitrary triangulations, even those with hanging nodes, thus
allowing for efficient h adaptivity. 3) These methods have excellent parallel efficiency.
With the LDG method for spatial discretization and the semi-implicit SDC method for
temporal discretization, it is obvious that we can achieve high order accuracy in both
time and space.

Implicit temporal discretization methods lead to linear algebraic equations to solve
at each time step, traditional iterative solution methods, such as Gauss-Seidel method,
suffers from slow convergence rates, especially for larger system. To further improve
the efficiency of the proposed approaches, the multigrid solver is employed to solve the
linear algebraic equations at each time step, which converges with optimal or nearly
optimal rates.

The organization of the paper is as follows. In Section 2, we develop the uncondition-
ally energy stable linear schemes based on the IEQ approach for a series of phase field
problems, including the AC equation, the CH equation, the MBE growth model and the
CHHS system. Moreover, we introduce a high order semi-implicit SDC method combin-
ing with these linear schemes to achieve high order accuracy in both time and space. Nu-
merical experiments are presented in Section 3, testing the performance of these proposed
approaches for solving phase field problems. We give concluding remarks in Section 4.
In Appendices A and B, we take the AC equation as an example to prove the uncondi-
tional energy stability of the proposed linear scheme when coupled with the LDG spatial
discretization method.
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2 Semi-implicit SDC schemes based on the IEQ approach

In [34], Yang et al. presented a first order stable scheme based on the IEQ method for the
MBE growth models. The novelty is that all nonlinear terms are treated semi-explicitly,
and the resulted semi-discrete equations form a linear system at each time step. In this
section, we will first focus on constructing the corresponding linear unconditionally sta-
ble schemes based on the IEQ approach for the AC equation, the CH equation and the
CHHS system.

The proposed schemes are all linear and unconditionally energy stable, namely, they
are stable regardless of time step size. However, these schemes are only first order accu-
rate in time. To improve the temporal accuracy, we will then employ the semi-implicit
spectral deferred correction (SDC) method [15].

The novelty is how to combine SDC method with the proposed linear schemes devel-
oped by IEQ approach to maintain the expected high order accuracy of SDC method.

2.1 SDC scheme for the Allen-Cahn equation

2.1.1 The first order linear scheme

We consider the Allen-Cahn equation with degenerate mobility

φt=b(φ)(ε2
∆φ−F′(φ)), (2.1)

where b(φ)≥0 is the degenerate mobility and F(φ)= 1
4(φ

2−1)2. The Allen-Cahn equation
(2.1) is a gradient flow in L2 with the free energy

E(φ)=
∫

Ω

(
1

2
ε2|∇φ|2+F(φ)

)
dx. (2.2)

Inspired by the IEQ approach [32, 34] to discrete the nonlinear term φ3, we introduce
the auxiliary function as follows

U=φ2−1. (2.3)

Then, we can recast the free energy (2.2) as a quadratic function of φ and U

E(φ,U)=
∫

Ω

(
1

2
ε2|∇φ|2+

1

4
U2

)
dx, (2.4)

and the equivalent equation is given as

φt=b(φ)(ε2
∆φ−φU), (2.5)

Ut=2φφt. (2.6)

The initial conditions are

φ(t=0)=φ0, U(t=0)=φ2
0−1.



R. Guo and Y. Xu / Commun. Comput. Phys., 26 (2019), pp. 87-113 91

Further, the equivalent equation preserves an energy law, namely,

d

dt
E(φ,U)=−

∫

Ω

b(φ)(−ε2
∆φ+φU)2dx≤0. (2.7)

Obviously, we hope to construct a linear scheme that preserve the energy law (2.7)
in the discrete level. A first order linear scheme for solving the system (2.5)-(2.6) can be
given as follows

φn+1−φn

∆t
=b(φn)(ε2

∆φn+1−φnUn+1), (2.8)

Un+1−Un

∆t
=2φn φn+1−φn

∆t
. (2.9)

Since (2.9) is a simple algebraic equation, we can rewrite it as

Un+1=Un+2φn(φn+1−φn). (2.10)

Then the linear scheme (2.8)-(2.9) can be written as

φn+1−φn

∆t
=b(φn)(ε2

∆φn+1−φn(Un+2φn(φn+1−φn))). (2.11)

Thus, we can solve φn+1 directly from (2.11), which means that the auxiliary U does not
indeed increase the computational costs. However, it will lead to solving linear equations
with complicated variable coefficients, which is a drawback of the IEQ approach.

Remark 2.1. For spatial discretization, we use the LDG method. In Appendices A and
B, we will take the AC equation as an example to illustrate the LDG method to solve the
linear scheme (2.8)-(2.9) and prove the corresponding energy stability.

2.1.2 The high order SDC scheme

The SDC method is a special case of the DC (deferred correction) method [25], and it is
driven iteratively by the chosen first order linear scheme (2.8)-(2.9). An advantage of SDC
method is that it is a one step method and can be constructed easily and systematically
for any order of accuracy.

Suppose now the time interval [0,T] is divided into M non-overlapping intervals by
the partition 0= t0< t1< ···< tn < ···< tM =T. We shall describe below the semi-implicit
SDC method which will be used to advance from tn to tn+1. Let ∆tn = tn+1−tn and φn

denotes the numerical approximation of φ(tn), with φ0=φ(0).
Divide the time interval [tn,tn+1] into P subintervals by choosing the points tn,m for

m=0,1,··· ,P such that tn=tn,0<tn,1<···<tn,m<···<tn,P=tn+1. Let ∆tn,m=tn,m+1−tn,m and
φk

n,m denotes the kth order approximation to φ(tn,m). The points {tn,m}P
m=0 can be chosen

to be the Chebyshev Gauss-Lobatto nodes on [tn,tn+1] to avoid the instability of approxi-
mation at equispaced nodes for high order accuracy. We can also choose the Gauss nodes,
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or Legendre Gauss-Radau nodes or Legendre Gauss-Lobatto nodes. Starting from φn, Un,
we give the algorithm to calculate φn+1, Un+1 in the following.

Compute the initial approximation based on first order scheme:

φ1
n,0=φn, U1

n,0=Un.

Use the first order linear scheme (2.8)-(2.9) to compute approximate solution φ1,U1 at the
nodes {tn,m}P

m=1, i.e.

For m=0,··· ,P−1

φ1
n,m+1=φ1

n,m+∆tn,mb(φ1
n,m)(ε

2
∆φ1

n,m+1−φ1
n,mU1

n,m+1), (2.12)

U1
n,m+1−U1

n,m

∆t
=2φ1

n,m

φ1
n,m+1−φ1

n,m

∆t
. (2.13)

Compute successive corrections:

For k=1,··· ,K
φk+1

n,0 =φn, Uk+1
n,0 =Un.

For m=0,··· ,P−1

φk+1
n,m+1=φk+1

n,m +∆tn,mb(φk
n,m+1)[(ε

2
∆φk+1

n,m+1−φk+1
n,m+1Uk

n,m+1)

−(ε2
∆φk

n,m+1−φk
n,m+1Uk

n,m+1)]+ Im+1
m (F(t,φk,φk,Uk)), (2.14)

Uk+1
n,m+1=(φk+1

n,m+1)
2−1, (2.15)

where
F(t,φk,φk,Uk)=b(φk)(ε2

∆φk−φkUk),

and Im+1
m (F(t,φk,φk,Uk)) is the integral of the P-th degree interpolating polynomial on

the P+1 points (tn,m,F(tn,m,φk
n,m,φk

n,m,Uk
n,m))

P
m=0 over the subinterval [tn,m,tn,m+1]. The

details of how to compute Im+1
m (F(t,φk,φk,Uk)) was specified in [15].

Finally we have φn+1=φK+1
n,P and Un+1=UK+1

n,P .

Remark 2.2. In the correction procedure of the above algorithm, the approximation of
Uk+1

n,m+1 with the form (2.15) is employed here to maintain the high order temporal accu-
racy, which is different from the first order scheme (2.13).

2.2 SDC scheme for the Cahn-Hilliard equation

The Cahn-Hilliard equation

φt=∇·(b(φ)∇(−ε2
∆φ+F′(φ))) (2.16)

is a gradient flow in H−1 with the free energy

E(φ)=
∫

Ω

(
1

2
ε2|∇φ|2+F(φ)

)
dx, (2.17)
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where F(φ)= 1
4(φ

2−1)2.
To develop a linear scheme based on the IEQ approach, we introduce the auxiliary

functions
U=φ2−1, µ=−ε2

∆φ,

and then construct the following first order linear scheme

φn+1−φn

∆t
=∇·(b(φn)∇(µn+1+φnUn+1)), (2.18)

µn+1=−ε2
∆φn+1, (2.19)

Un+1−Un

∆t
=2φn φn+1−φn

∆t
. (2.20)

The first order linear scheme (2.18)-(2.20) also preserves the discrete energy stability.

Remark 2.3. Similarly, we can develop the semi-implicit SDC schemes based on the cor-
responding first order linear scheme (2.18)-(2.20) for the Cahn-Hilliard equation, where
we introduce the same auxiliary function U=φ2−1.

2.3 SDC scheme for the Cahn-Hilliard-Hele-Shaw system

We consider the CHHS system




φt=∆µ+∇·(φ(∇p+γφ∇µ)),

µ=φ3−φ−ε2
∆φ,

−∆p=γ∇·(φ∇µ),

(2.21)

which is mass conservative and energy dissipative, i.e.

d

dt
E=−

∫

Ω

(
|∇µ|2+

1

γ
|u|2

)
dx≤0, (2.22)

where

E(φ)=
∫

Ω

(
1

4
φ4−

1

2
φ2+

ε2

2
|∇φ|2

)
dx, and u=−∇p−γφ∇µ.

Introduce the auxiliary function

U=φ2−1,

we can achieve the following first order linear scheme




φn+1−φn

∆t
=∆µn+1+∇·(φn(∇pn+1+γφn∇µn+1)),

µn+1=φnUn+1−ε2
∆φn+1,

−∆pn+1=γ∇·(φn∇µn+1),

Un+1−Un

∆t
=2φn φn+1−φn

∆t
.

(2.23)
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The scheme (2.23) is unconditionally energy stable. In addition, to the best of the au-
thors’ knowledge, this is the first linear scheme with energy stability result for the CHHS
system.

Remark 2.4. The semi-implicit SDC scheme based on the corresponding first order lin-
ear scheme (2.23) for the Cahn-Hilliard-Hele-Shaw system can be developed similarly as
before, we will omit the details here.

2.4 SDC schemes for the molecular beam epitaxial growth models

The molecular beam epitaxial (MBE) growth model is the gradient flow with the energy

E(φ)=
∫

Ω

(
1

2
ε2|∆φ|2+F(∇φ)

)
dx, (2.24)

where for the MBE model without slope selection, F(∇φ) is given as

F(∇φ)=−
1

2
ln(|∇φ|2+1),

and for the MBE model with slope selection, F(∇φ) reads

F(∇φ)=
1

4
(|∇φ|2−1)2.

Therefore, the gradient flow for the MBE model without slope selection follows

φt=−b(φ)

(
ε2

∆
2φ+∇·

(
1

1+|∇φ|2
∇φ

))
, (2.25)

and the gradient flow for the MBE model with slope selection is given by

φt=−b(φ)
(
ε2

∆
2φ−∇·((|∇φ|2−1)∇φ)

)
. (2.26)

Followed the IEQ approach suggested in [34], we present the corresponding first order
linear schemes as follows.

2.4.1 The MBE model without slope selection

Introduce the auxiliary functions

U=
√

ln(1+|∇φ|2)+1, µ=−ε2
∆φ,

and the equivalent PDE system reads as follows

φt=b(φ)(∆µ−∇·(UH)), (2.27)

µ=−ε2
∆φ, (2.28)

Ut=H ·∇φt, (2.29)
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where

H=
∇φ

(1+|∇φ|2)
√

ln(1+|∇φ|2)+1
.

The first order linear scheme to solve the system (2.27)-(2.29) is

φn+1−φn

∆t
=b(φn)(∆µn+1−∇·(UnHn)), (2.30)

µn+1=−ε2
∆φn+1, (2.31)

Un+1−Un

∆t
=Hn ·∇

φn+1−φn

∆t
, (2.32)

where

Hn =
∇φn

(1+|∇φn|2)
√

ln(1+|∇φn|2)+1
.

2.4.2 The MBE model with slope selection

We introduce the auxiliary functions

V= |∇φ|2−1, µ=−ε2
∆φ,

and the equivalent PDE system reads as follows

φt=b(φ)(∆µ+∇·(V∇φ)), (2.33)

µ=−ε2
∆φ, (2.34)

Vt=2∇φ·∇φt. (2.35)

The first order linear scheme to solve the system (2.33)-(2.35) is

φn+1−φn

∆t
=b(φn)(∆µn+1+∇·(Vn+1∇φn)), (2.36)

µn+1=−ε2
∆φn+1, (2.37)

Vn+1−Vn

∆t
=2∇φn ·∇

φn+1−φn

∆t
. (2.38)

Remark 2.5. The linear schemes (2.30)-(2.32) and (2.36)-(2.38) both preserve the corre-
sponding discrete energy stability.

2.4.3 The high order SDC schemes

For the MBE model with slope selection, the initial approximation and the successive
corrections are almost the same with above, except that we replace equation (2.15) by

Vk+1
n,m+1= |∇φk+1

n,m+1|
2−1.
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While for the MBE model without slope selection, the semi-implicit SDC scheme is as
follows.

Compute the initial approximation based on first order scheme:

φ1
n,0=φn, µ1

n,0=µn, U1
n,0=Un, H1

n,0=Hn.

For m=0,··· ,P−1

φ1
n,m+1=φ1

n,m+∆tn,mb(φ1
n,m)(∆µ1

n,m+1−∇·(U1
n,mH1

n,m)),

µ1
n,m+1=−ε2

∆φ1
n,m+1,

U1
n,m+1−U1

n,m

∆t
=H1

n,m ·∇
φ1

n,m+1−φ1
n,m

∆t
.

Compute successive corrections:

For k=1,··· ,K

φk+1
n,0 =φn, µk+1

n,0 =µn, Uk+1
n,0 =Un, Hk+1

n,0 =Hn.

For m=0,··· ,P−1

φk+1
n,m+1=φk+1

n,m +∆tn,mb(φk
n,m+1)(∆µk+1

n,m+1−∆µk
n,m+1)+ Im+1

m (F(t,φk,µk,Uk,Hk)),

µk+1
n,m+1=−ε2

∆φk+1
n,m+1,

Uk+1
n,m+1=

√
ln(1+|∇φk+1

n,m+1|
2)+1,

Hk+1
n,m+1=

∇φk+1
n,m+1

(1+|∇φk+1
n,m+1|

2)Uk+1
n,m+1

,

where

F(t,φk,µk,Uk,Hk)=b(φk)(∆µk−∇·(UkHk)).

Finally we have φn+1=φK+1
n,P , µn+1=µK+1

n,P , Un+1=UK+1
n,P and Hn+1=HK+1

n,P .

Remark 2.6. (Local truncation error ). The local truncation error obtained with the semi-
implicit SDCP

K scheme based on the IEQ approach is [15]

O(hmin[K+1,P+1]), (2.39)

where h=maxn,m ∆tn,m.

Remark 2.7. The proposed first order linear schemes (2.8)-(2.9), (2.18)-(2.20), (2.23), (2.30)-
(2.32) and (2.36)-(2.38) are all based on the IEQ approach. The novelty here is how to com-
bine the semi-implicit SDC method with these linear schemes to maintain the expected
high order accuracy of the SDC method.
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Remark 2.8. From the numerical experiments in the next section, it can be found that the
SDC method based on the linear scheme can maintain the energy stability numerically.
For the semi-implicit SDC scheme, the iteration and the left-most endpoint involved in
the integral for the implicit part increase the difficulty of the energy stability analysis. The
energy equations are more difficult to construct, compared with the first order scheme or
the Runge-Kutta type semi-implicit schemes. It is not easy to prove the energy stability
of the semi-implicit SDC scheme for phase field models. We will leave it as our future
work.

Remark 2.9. The semi-implicit SDC methods lead to linear algebraic equations to solve at
each iteration, and the overall performance of the SDC method highly depends on the ef-
ficiency of the linear solver. To enhance the efficiency of the high order semi-implicit time
marching method, we will apply the multigrid solver to solve them in this paper. For a
detailed description of the multigrid solver [26, 30] coupled with LDG spatial discretiza-
tion, we refer readers to our recent work [12], which presents numerical experiments to
show that the multigrid solver have optimal or nearly optimal convergence rates.

3 Numerical results

In this section, we present some numerical experiments for solving the AC equation, the
CH equation, the MBE growth models and the CHHS system. The spatial discretization
method is LDG scheme and the temporal discretization technique is the energy stable
linear schemes combined with the semi-implicit SDC scheme. We perform a series of
accuracy tests, which show the expected high order accuracy in both time and space. In
addition, we present some long time simulation examples to show the capability of the
semi-implicit SDC method based on the IEQ approach and the energy stability results of
the proposed methods.

The Allen-Cahn equation

We consider the Allen-Cahn equation with b(φ) = 1−φ2, ε = 1.0 in the square domain
Ω = [0,2π]×[0,2π] and with periodic boundary condition. To verify the convergence
rate, we choose the suitable forcing function so that the exact solution is given by

φ(x,y,t)= e−2t sin(x)sin(y). (3.1)

We use the LDG method for spatial discretization on the uniform mesh with the cell size
∆x=∆y=2π/N.

Temporal accuracy test. To test the temporal accuracy of the SDC method, we choose
P4 approximation and N = 128 to ensure that the spatial discretization error is small
enough, such that the temporal discretization error is dominant. We present the L2 and
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L∞ errors and the numerical orders of temporal accuracy in Table 1, which shows the
expected accuracy of the SDC method.

Table 1: Temporal accuracy test for the Allen-Cahn equation with the exact solution (3.1) at time T=0.5. Here
we choose ∆x= 2π/128 and piecewise P4 approximations. The refinement path is ∆t=∆t0/2m, m= 0,1,2,3
and ∆t0=0.0375.

m L2 error order L∞ error order

0 2.33E-02 – 7.46E-03 –

SDC0
2 1 1.21E-02 0.95 3.89E-03 0.94

2 6.19E-03 0.97 1.98E-03 0.97

3 3.12E-03 0.99 1.00E-03 0.99

0 4.12E-04 – 1.27E-04 –

SDC1
2 1 1.11E-04 1.89 3.43E-05 1.89

2 2.90E-05 1.94 8.93E-06 1.94

3 7.39E-06 1.97 2.27E-06 1.98

0 4.26E-06 – 1.25E-06 –

SDC2
2 1 6.90E-07 2.63 2.02E-07 2.63

2 9.73E-08 2.83 2.97E-08 2.77

3 1.30E-08 2.90 4.23E-09 2.81

Spatial and temporal accuracy test. To show that the proposed space and time dis-
cretization methods are high order accurate, we use the piecewise P r approximations for
spatial discretization and the SDC3

3 method for temporal discretization. Table 2 presents
the L2 and L∞ errors and the numerical orders of accuracy at time T=0.5, which shows
(r+1)-th order of accuracy for P r approximation.

Table 2: Spatial and temporal accuracy test for the Allen-Cahn equation with the exact solution (3.1) at time

T=0.5. Here we choose the SDC3
3 method with ∆t=0.1∆x and ∆x=2π/N.

N L2 error order L∞ error order

16 1.84E-01 – 6.47E-02 –

P0 32 9.25E-02 0.99 3.27E-02 0.98

64 4.63E-02 1.00 1.63E-02 1.00

16 2.12E-02 – 1.52E-02 –

P1 32 5.33E-03 2.00 3.86E-03 1.98

64 1.33E-03 2.00 9.69E-04 2.00

16 1.35E-03 – 1.25E-03 –

P2 32 1.69E-04 3.00 1.55E-04 3.01

64 2.11E-05 3.00 1.92E-05 3.01

16 6.80E-05 – 8.63E-05 –

P3 32 4.25E-06 4.00 5.51E-06 3.97

64 2.66E-07 4.00 3.47E-07 3.99
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Convergence and complexity of the multigrid solver. To demonstrate the near optimal
complexity (with respect to the spatial step size ∆x) of the multigrid solver, we provide
evidence that the multigrid convergence rate is nearly independent of ∆x. We fix the time
step as ∆t=0.01∆x and the spatial step size varies from ∆x=2π/32 to ∆x=2π/128. The
convergence rates of the multigrid solver at the 10th time step is presented in Fig. 1, we
can see the nearly optimal convergence of the solver.
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Figure 1: Convergence rates of multigrid solver with P2 approximation for the Allen-Cahn equation.

Spinodal decomposition. Here we present an example of spinodal decomposition. We
consider the piecewise P2 approximations for spatial discretization and the SDC2

2 method
for temporal discretization with ∆t=0.1∆x. The initial data is a random number varying
from −0.01 to 0.01. The domain is [0,2π]×[0,2π] and ε is fixed as 0.1. Fig. 2 shows the
corresponding numerical simulations. In spinodal decomposition, particles can coarsen,
i.e. large particles may grow at the expense of smaller particles. The energy evolution
with ∆t=0.1∆x is presented in Fig. 3, which shows the energy is decreasing, namely, the
SDC method is energy stable numerically.

The Cahn-Hilliard equation

Spatial and temporal accuracy test. We consider the Cahn-Hilliard equation with
b(φ)=1−φ2, ε=1.0 in the square domain Ω=[0,2π]×[0,2π] and with periodic boundary
condition. To verify the convergence rate, we choose the suitable forcing function so that
the exact solution is given by

φ(x,y,t)= e−2t sin(x)sin(y). (3.2)
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Figure 2: Numerical results of the Allen-Cahn equation using the piecewise P2 approximation and the SDC2
2

method with ∆t=0.1∆x.
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Figure 3: Energy evolution of the SDC2
2 method with ∆t=0.1∆x for the Allen-Cahn equation.
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We choose the piecewise P r approximations for spatial discretization and the SDC3
3

method for temporal discretization. The L2 and L∞ errors and the numerical orders of
accuracy at time T = 0.5 is presented in Table 3, which indicates the optimal (r+1)-th
order of accuracy for P r approximation.

Table 3: Spatial and temporal accuracy test for the Cahn-Hilliard equation with the exact solution (3.2) at time

T=0.5. Here we choose the SDC3
3 method with ∆t=0.1∆x and ∆x=2π/N.

N L2 error order L∞ error order

16 1.93E-01 – 7.78E-02 –

P0 32 9.50E-02 1.02 3.79E-02 1.04

64 4.72E-02 1.01 1.86E-02 1.02

16 2.12E-02 – 1.52E-02 –

P1 32 5.33E-03 2.00 3.85E-03 1.98

64 1.33E-03 2.00 9.66E-04 1.99

16 1.40E-03 – 1.24E-03 –

P2 32 1.71E-04 3.03 1.55E-04 3.01

64 2.12E-05 3.01 1.94E-05 3.00

16 6.80E-05 – 8.74E-05 –

P3 32 4.27E-06 3.99 5.68E-06 3.94

64 2.76E-07 3.95 3.66E-07 3.96

The convergence rates of the multigrid solver implemented with ∆t=0.001 at the 10th
time step is presented in Fig. 4, which shows the optimal convergence rate.
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Figure 4: Convergence rates of multigrid solver with P2 approximation for the Cahn-Hilliard equation.
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Long time simulation. We consider the Cahn-Hilliard equation with ε = 0.1 in the
square domain [0,2π]×[0,2π]. The initial data is

φ(x,y,0)=0.1(sin3xsin2y+sin5xsin5y).

The computational parameters are the spatial discretization cell size ∆x = 2π/N with
N=128 and the piecewise P2 approximation. The numerical results are shown in Fig. 5.
The energy evolution with ∆t= 0.1∆x is presented in Fig. 6, which shows the energy is
decreasing, namely, the SDC method is energy stable numerically.
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Figure 5: Numerical results of the Cahn-Hilliard equation using the piecewise P2 approximation and the SDC2
2

method with ∆t=0.1∆x.

The molecular beam epitaxial growth models

Spatial and temporal accuracy test. We consider the molecular beam epitaxial growth
models with b(φ)=1−φ2, ε=1.0 in the square domain Ω=[0,2π]×[0,2π] and with peri-
odic boundary condition. To verify the convergence rate, we choose the suitable forcing
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Figure 6: Energy evolution of the SDC2
2 method with ∆t=0.1∆x for the Cahn-Hilliard equation.

function so that the exact solution is given by

φ(x,y,t)= e−2t sin(x)sin(y). (3.3)

We choose the piecewise P r approximations for spatial discretization and the SDC3
3

method for temporal discretization. The L2 and L∞ errors and the numerical orders of
accuracy at time T=0.5 for the MBE model without slope selection is presented in Table
4, and the corresponding results for the MBE model with slope selection is presented in
Table 5. In both cases, P r approximations provide the optimal (r+1)-th order of accuracy.

Table 4: Spatial and temporal accuracy test for the MBE model without slope selection at time T=0.5. Here

we choose the SDC3
3 method with ∆t=0.1∆x and ∆x=2π/N.

N L2 error order L∞ error order

16 1.87E-01 – 6.80E-02 –

P0 32 9.28E-02 1.01 3.34E-02 1.02

64 4.63E-02 1.00 1.65E-02 1.02

16 2.12E-02 – 1.51E-02 –

P1 32 5.33E-03 1.99 3.84E-03 1.98

64 1.33E-03 2.00 9.65E-04 1.99

16 1.39E-03 – 1.24E-03 –

P2 32 1.70E-04 3.03 1.54E-04 3.01

64 2.12E-05 3.00 1.95E-05 2.98

16 6.80E-05 – 8.68E-05 –

P3 32 4.26E-06 4.00 5.58E-06 3.96

64 2.67E-07 4.00 3.55E-07 3.97
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Table 5: Spatial and temporal accuracy test for the MBE model with slope selection at time T=0.5. Here we

choose the SDC3
3 method with ∆t=0.1∆x and ∆x=2π/N.

N L2 error order L∞ error order

16 1.87E-01 – 6.86E-02 –

P0 32 9.29E-02 1.01 3.36E-02 1.03

64 4.63E-02 1.00 1.66E-02 1.02

16 2.12E-02 – 1.51E-02 –

P1 32 5.33E-03 1.99 3.83E-03 1.98

64 1.33E-03 2.00 9.64E-04 1.99

16 1.42E-03 – 1.25E-03 –

P2 32 1.72E-04 3.05 1.56E-04 3.01

64 2.13E-05 3.01 1.94E-05 3.01

16 6.86E-05 – 8.85E-05 –

P3 32 4.37E-06 3.97 5.77E-06 3.94

64 2.90E-07 3.91 3.67E-07 3.97

The convergence rates of the multigrid solver implemented with ∆t=0.001 at the 10th
time step is presented in Fig. 7, we can see the optimal or near optimal complexity (with
respect to the spatial step size ∆x) of the multigrid solver.
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(a) MBE model without slope selection.
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(b) MBE model with slope selection.

Figure 7: Convergence rates of multigrid solver with P2 approximation for the MBE models.

Coarsening dynamics. We consider the MBE models with b(u)=1,ε=0.1 in the square
domain [0,12.8]×[0,12.8]. The initial data is a random number varying from −0.001 to
0.001. The computational parameters are the spatial discretization cell size ∆x=12.8/N
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with N = 128, the piecewise P2 approximation and the SDC2
2 method for temporal dis-

cretization. The numerical results are shown in Fig. 8 and Fig. 9 for the MBE models
without slope selection and with slope selection, respectively. The energy evolution is
presented in Fig. 10, which shows the energy is decreasing, namely, the SDC method is
energy stable numerically when solving the MBE models.
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Figure 8: Numerical results of the MBE model without slope selection using the piecewise P2 approximation

and the SDC2
2 method.

The Cahn-Hilliard-Hele-Shaw system

Spatial and temporal accuracy test. We consider the Cahn-Hilliard-Hele-Shaw system
with ε=1.0, γ=4ε in the square domain Ω=[0,2π]×[0,2π] and with periodic boundary
condition. To verify the convergence rate, we choose the suitable forcing function so that
the exact solution is given by

φ(x,y,t)= e−2t sin(x)sin(y). (3.4)

We use the LDG method with piecewise P r polynomial basis for spatial discretization
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Figure 9: Numerical results of the MBE model with slope selection using the piecewise P2 approximation and

the SDC2
2 method.
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Figure 10: Energy evolution of the SDC2
2 method for the MBE models.



R. Guo and Y. Xu / Commun. Comput. Phys., 26 (2019), pp. 87-113 107

iterations

lo
g(

re
si

du
al

)

2 4 6 8 10 12
10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

N=32
N=64
N=128

Figure 11: Convergence rates of multigrid solver with P2 approximation for the Cahn-Hilliard-Hele-Shaw system.

and the SDC3
3 method for temporal discretization. The L2 and L∞ errors and the numeri-

cal orders of accuracy at time T=0.5 for the CHHS system is presented in Table 6, which
shows the expected optimal (r+1)-th order of accuracy for P r approximation. The con-
vergence rates of the multigrid solver implemented with ∆t=0.001 at the 10th time step
is presented in Fig. 11, we can see the optimal complexity of the multigrid solver.

Table 6: Spatial and temporal accuracy test for the Cahn-Hilliard-Hele-Shaw system at time T=0.5. Here we

choose the SDC3
3 method with ∆t=0.1∆x and ∆x=2π/N.

N L2 error order L∞ error order

16 2.16E-01 – 8.99E-02 –

P0 32 1.10E-01 0.97 4.63E-02 0.96

64 5.55E-02 0.99 2.33E-02 0.99

16 2.14E-02 – 1.50E-02 –

P1 32 5.34E-03 2.00 3.78E-03 1.99

64 1.33E-03 2.00 9.45E-04 2.00

16 1.43E-03 – 1.27E-03 –

P2 32 1.72E-04 3.06 1.56E-04 3.02

64 2.16E-05 2.99 1.94E-05 3.01

16 6.80E-05 – 8.69E-05 –

P3 32 4.26E-06 3.99 5.69E-06 3.93

64 2.89E-07 3.88 3.98E-07 3.83
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Topology changes. Here, we present an example to illustrate a topological change. We
approximate the Cahn-Hilliard-Hele-Shaw system with ε=0.1 and γ=4.0ε on a 128×128
grid for the computational domain Ω= [−4,4]×[−4,4]. We test the topological change
with piecewise P2 approximations for spatial discretization and the SDC2

2 method for
temporal discretization with ∆t=0.1∆x. The initial configuration consists of two almost
touching surfaces-the inner surface being a circle and the outer surface being an ellipse.
We can see a phenomenon of pinching off in Fig. 12. The energy evolution is presented
in Fig. 13, where it is observed that the energy is non-increasing.
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Figure 12: Topology changes. Two shapes pinch off under the evolution of the Cahn-Hilliard-Hele-Shaw system.

4 Concluding remarks

In this paper, we have developed a high order semi-implicit SDC method combining
with energy stable linear schemes to approximate the Allen-Cahn equation, the Cahn-
Hilliard equation, the molecular beam epitaxial growth models and the Cahn-Hilliard-
Hele-Shaw system. The linear scheme is based on the invariant energy quadratization
approach and it is proved to be unconditionally energy stable. For spatial discretization,
we employ the local discontinuous Galerkin method. Combining with the semi-implicit
SDC method, we can achieve high order accuracy in both time and space. Specially,
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Figure 13: Energy evolution of the SDC2
2 method with ∆t=0.1∆x for the Cahn-Hilliard-Hele-Shaw system.

the linear scheme leads to linear algebraic equations to solve at each iteration, which
can be solved efficiently by multigrid solver, namely, the multigrid solver has nearly
optimal complexity. Numerical experiments are performed to verify that the proposed
time marching methods are high order accurate and efficient when solving the phase
field models.
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Appendix A: LDG method for the Allen-Cahn equation

Before developing the LDG method, we first present some notations.

We consider a subdivision Th of Ω with shape-regular elements K. Let Eh denote the
union of the boundary faces of elements K∈Th, i.e. Eh =

⋃
K∈Th

∂K, and E0 = Eh\∂Ω. Let

P k(K) be the space of polynomials of degree at most k≥0 on K∈Th. The discontinuous
Galerkin finite element spaces are denoted by

Vh=
{

ϕ : ϕ|K ∈P k(K), ∀K∈Th

}
,

Σh=
{

Φ=(φ1,··· ,φd)
T : φl|K ∈P k(K), l=1···d, ∀K∈Th

}
.
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Notice that functions in Vh and Σh are allowed to be completely discontinuous across
element interfaces.

In order to describe the flux functions, we need to introduce some notations. Let e
be an interior face shared by the “left” and “right” elements KL and KR and define the
normal vectors νL and νR on e pointing exterior to KL and KR, respectively. For our
purpose, “left” and “right” can be uniquely defined for each face according to any fixed
rule. For example, we choose ν0 as a constant vector. The left element KL to the face
e requires that νL ·ν0 < 0, and the right one KR requires νL ·ν0 ≥ 0. If ψ is a function on
KL and KR, but possibly discontinuous across e, let ψL denote (ψ|KL

)|e and ψR denote
(ψ|KR

)|e, the left and right trace, respectively.
To develop the LDG scheme for (2.8)-(2.9), we first rewrite it as a first order system

φn+1−φn

∆t
=b(φn)pn+1, (A.1a)

pn+1= ε2∇qn+1−φnUn+1, (A.1b)

qn+1=∇φn+1, (A.1c)

Un+1−Un

∆t
=2φn φn+1−φn

∆t
. (A.1d)

To simplify the notation, we still use φn+1, pn+1, qn+1, Un+1 as the numerical solution.
The LDG scheme to solve the system (A.1) becomes: Find φn+1, pn+1, Un+1 ∈ Vh and
qn+1∈Σh, such that, for all test functions ξ, ζ, χ∈Vh and η∈Σh, we have

∫

K

φn+1−φn

∆t
ξdK=

∫

K
b(φn)pn+1ξdK, (A.2a)

∫

K
pn+1ζdK=−

∫

K
ε2qn+1 ·∇ζdK+

∫

∂K
q̂n+1 ·νζds−

∫

K
φnUn+1ζdK, (A.2b)

∫

K
qn+1·ηdK=−

∫

K
φn+1∇·ηdK+

∫

∂K
φ̂n+1

η·νds, (A.2c)

∫

K

Un+1−Un

∆t
χdK=

∫

K
2φn φn+1−φn

∆t
χdK. (A.2d)

The “hat” terms in scheme (A.2) is the so-called “numerical fluxes”, we can take the
simple choices such as

φ̂n+1=φn+1
R , q̂n+1=qn+1

L (A.3)

to ensure the stability and local solvability of the intermediate variables.

Appendix B: The energy stability

Next, we will prove the energy stability for the fully-discrete LDG scheme (A.2) with the
choice of the numerical fluxes (A.3).
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Proposition B.1. (Energy stability for the first order linear LDG scheme) The solution to
the LDG scheme (A.2) with the numerical fluxes (A.3) satisfies the energy stability

Eh(q
n+1,Un+1)−Eh(q

n,Un)≤0, (B.1)

where

Eh(q,U)=
∫

Ω

(
1

2
ε2q·q+

1

4
U2

)
dx.

Proof. For Eq. (A.2c) of the LDG scheme, subtracting the equations at time level tn from
the equation at time level tn+1, and then taking the test function η=qn+1, we get

∫

K
(qn+1−qn)·qn+1dK=−

∫

K
(φn+1−φn)∇·qn+1dK+

∫

∂K
(φ̂n+1−φ̂n)qn+1·νds. (B.2)

For other equations in scheme (A.2), we choose the test functions

ξ=−pn+1, ζ=φn+1−φn, χ=
1

2
Un+1,

respectively, to obtain

−
∫

K

φn+1−φn

∆t
pn+1dK=−

∫

K
b(φn)pn+1 pn+1dK, (B.3)

∫

K
pn+1(φn+1−φn)dK=−

∫

K
ε2qn+1 ·∇(φn+1−φn)dK+

∫

∂K
q̂n+1 ·ν(φn+1−φn)ds

−
∫

K
φnUn+1(φn+1−φn)dK, (B.4)

∫

K

Un+1−Un

2∆t
Un+1dK=

∫

K
φn φn+1−φn

∆t
Un+1dK. (B.5)

Let ε2

∆t (B.2)+(B.3)+ 1
∆t (B.4)+(B.5), with the help of the alternating numerical fluxes (A.3),

and after a careful calculation, we obtain

ε2

∆t

∫

Ω

qn+1 ·(qn+1−qn)dx+
1

2∆t

∫

Ω

Un+1(Un+1−Un)dx+
∫

Ω

b(φn)(pn+1)2dx=0.

Using the identity

2(a−b,a)= |a|2−|b|2+|a−b|2,

we can get the energy stability result (B.1) immediately.
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