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Abstract. The concept of minimality is generalized in different ways, one of which
is the definition of k-minimality. In this paper k-minimality is studied for minimal hy-
persurfaces of a Euclidean space under different conditions on the number of principal
curvatures. We will also give a counterexample to Lk-conjecture.
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1 Introduction

Let x : M → Em be an isometric immersion from a Riemannian n−manifold into a Eu-
clidean space. Denote the Laplacian, the position vector and the mean curvature vector
field of M, respectively, by ∆,x and H⃗. Then, M is called a biharmonic submanifold if
∆H⃗=0. Beltrami’s formula, ∆x=−nH⃗, implies that every minimal submanifold of Em is
a biharmonic submanifold.

Chen initiated the study of biharmonic submanifolds in the mid 1980s [4]. Then, Chen
and other authors proved that, in specific cases, a biharmonic submanifold is a minimal
submanifold [4, 5, 7] and Chen introduced his famous conjecture [3]. This conjecture re-
mains open, although the study thereof is active nowadays. Among other results, it is
proved in [6] that Chen’s Conjecture is true for biharmonic hypersurfaces with three dis-
tinct principal curvatures in Em. Furthermore, under a generic condition, Koiso and
Urakawa [8] gave affirmative answer to Chen conjecture.

The linearized operator of (k+1)-th mean curvature of a hypersurface, i.e. Hk+1,
is the Lk operator. The Lk operator is a natural generalization of Laplace operator for
k=1,...,n [9,10]. Let x : Mn→En+1 be an isometric immersion from a connected orientable
Riemannian hypersurface into the Euclidean space En+1. It is proved that [1]

Lkx=(k+1)
(

n
k+1

)
Hk+1N,
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where N is the unit normal vector field and k=0,..,n−1.The Lk-conjecture is as follows.

Lk-Conjecture. Every Lk-biharmonic hypersurface, namely a Euclidean hypersurface x :
Mn → En+1 satisfying the condition L2

kx = 0 for some k = 0,...,n−1, has zero (k+1)-th
mean curvature.

A manifold with zero (k+1)-th mean curvature is called k-minimal for k= 0,..,n−1.
In 2015, Aminian and Kashani [2] proved the Lk-conjecture for Euclidean hypersurfaces
with at most two principal curvatures. They also proved the Lk-conjecture for Lk-finite
type hypersurfaces.

In this paper, we prove that the L1-conjecture is not true for a connected minimal
hypersurface of a Eucldean space with arbitrary number of principal curvatures.

2 Preliminaries

In this section, we recall some standard definitions and results from Riemannian geome-
try. Let n≥2 and suppose x :Mn→En+1 is an isometric immersion from an n-dimensional
connected Riemannian manifold Mn into Euclidean space En+1.

Let A be the shape operator of this immersion and λ1,...,λn be the eigenvalues of this
self-adjoint operator. The mean curvature of M is given by

nH= trace A=λ1. ... .λn.

The k−th mean curvature of M is also defined by(
n
k

)
Hk = sk,

where s0 =1 and sk = ∑
1≤i1<···<ik≤n

λi1 . . . . .λik , for k=1,...,n. It is obvious that H1 = H and

S=n(n−1)H2, where S is the scalar curvature of M.
The Newton transformations Pk : C∞(TMn)→ C∞(TMn) are defined inductively by

P0= I and

Pk = sk I−A◦Pk−1, 1≤ k≤n.

Therefore,

Pk =
k

∑
i=0

(−1)isk−i Ai, 1≤ k≤n.

Thus the Cayley-Hamilton theorem implies that Pn = 0. It is well known that each Pk
is a self-adjoint linear operator which commutes with A. For k = 0, ..., n, the second
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order linear differential operator Lk : C∞(Mn)→C∞(Mn), as a natural generalization of
the Laplace operator on Euclidean hypersurface M, is defined by

Lk f = trace(Pk◦▽2 f ),

where ▽2 f is metrically equivalent to the Hessian of f and is defined by

⟨(▽2 f )X,Y⟩= ⟨▽X(▽ f ),Y⟩

for all vector fields X,Y∈C∞(TMn). Here ▽ f is the gradient vector field of f .
When k= 0, L0 =△. In this case, we have also A◦P0 = A and L2

0x= 0, which means,
Mn is a biharmonic hypersurface.

3 1-minimality and counterexample

In this section, we first consider the minimal hypersurfaces of En with three distinct prin-
cipal curvatures.

Theorem 3.1. Let x : Mn →En+1 be an isometric immersion from an n-dimensional connected
Riemannian manifold Mn into Euclidean space En+1. If Mn is a minimal hypersurface with three
distinct principal curvatures, then Mn cannot be 1-minimal.

Proof. Let λ1=...=λp=α, λp+1=...=λp+q=β, λp+q+1=...=λn=γ be principal curvatures
of Mn, for 1≤ p≤n−2 and 1≤q≤n−2. Therefor we have

s2=
1
2

p(p−1)α2+
1
2

q(q−1)β2+
1
2
(n−(p+q))(n−(p+q)−1)γ2+pqαβ

+(n−(p+q))(pα+qβ)γ.

The minimality of Mn yields

γ=− (pα+qβ)

n−(p+q)
.

So we have
s2=− 1

2(n−(p+q))
(pα+qβ)2− 1

2
(pα2+qβ2). (3.1)

Now if Mn is 1-minimal, then (3.1) implies that

(pα+qβ)2=−(n−(p+q))(pα2+qβ2).

This concludes that α=β=γ=0, which contradicts the assumption.

Theorem 3.1 can be generalized to an arbitrary number of principal curvatures as in
the following theorem,
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Theorem 3.2. Let x : Mn →En+1 be an isometric immersion from an n-dimensional connected
Riemannian manifold Mn into Euclidean space En+1. If Mn is a minimal hypersurface with k,
k>1, distinct principal curvatures, then Mn cannot be 1-minimal.

Proof. Let λ1= ...=λp1 =α1, λp1+1= ...=λp1+p2 =α2,..., λ∑k−1
i=1 pi+1= ...=λn=αk be principal

curvatures of Mn, for 1≤ pi ≤n−(k−1), 1≤ i< k−1, and let pk =n−Σk−1
i=1 pi. Therefor we

have

s2=
1
2

k−1

∑
i=1

pi(pi−1)α2
i +

1
2

pk(pk−1)α2
k+ ∑

1≤i≤j≤k−1
pi pjαiαj+pk(

k−1

∑
i=1

piαi)αk.

We obtain from minimality of Mn,

αk =−∑k−1
i=1 piαi

pk
,

so we have

s2=
−1
2pk

(
k−1

∑
i=1

piαi)
2− 1

2
(

k−1

∑
i=1

piα
2
i ). (3.2)

Now if Mn is 1-minimal, then (3.2) implies that

(
k−1

∑
i=1

piαi)
2=−pk

k−1

∑
i=1

piα
2
i .

This concludes that αi =0, for i=1,...,k, which contradicts the assumption.

An immediate corollary for this section is stated as follows.

Corollary 3.1. Let x : Mn →En+1 be an isometric immersion from an n-dimensional con-
nected Riemannian manifold Mn into Euclidean space En+1.If Mn is a minimal hypersur-
face, then Mn is 1-minimal if and only if Mn has exactly one vanishing principal curva-
ture.

We conclude this section with a Counterexample for Lk−Conjecture.

Counterexample. By Corollary 3.1, a connected minimal L1-biharmonic hypersurface of
En+1 with at least one non zero principal curvature cannot be 1-minimal.

4 2-minimality

In this section we study the property of 2-minimality for some hypersurfaces of Euclidean
spaces in the specific cases.
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Theorem 4.1. Let n be odd and x : Mn→En+1 be an isometric immersion from an n-dimensional
connected Riemannian manifold Mn into Euclidean space En+1. If Mn is a minimal hypersurface
with two distinct principal curvatures, then Mn cannot be 2-minimal.

Proof. According to the calculation on the page 4 of [2], we have

s3=
n

∑
i=0

(
m
i

)(
n−m
3−i

)
αiβ3−i.

From the minimality of Mn, it follows that α=−n−m
m

β. Therefore

s3=
n

∑
i=0

(
m
i

)(
n−m
3−i

)
(−1)i(

n−m
m

)iβ3. (4.1)

Now from (4.1), if Mn is 2-minimal, then α=β=0, which yields a contradiction.

In Theorem 4.1, if n is even, then we have another theorem.

Theorem 4.2. Let n be even and x:Mn→En+1 be an isometric immersion from an n-dimensional
connected Riemannian manifold Mn into Euclidean space En+1. Assume also that Mn is a mini-
mal hypersurface with two distinct principal curvatures. If the multiplicity of principal curvatures
are equal, then Mn is 2-minimal. Otherwise, Mn cannot be 2-minimal.

Proof. We have

n

∑
i=0

(
m
i

)(
m

3−i

)
(−1)i =0,

thus if the multiplicity of two principal curvatures are equal, then s3 = 0, by (4.1). This
means that, independent of β, Mn is 2-minimal. In other cases, the proof is similar to the
proof of Theorem 4.1.

For three distinct principal curvatures in a spacial case, we have the following theo-
rem.

Theorem 4.3. Let n≥5 and x : Mn →En+1 be an isometric immersion from an n-dimensional
connected Riemannian manifold Mn into Euclidean space En+1. If Mn is a minimal hypersurface
with three distinct principal curvatures of multiplicity {n−2,1,1}, then Mn is 2-minimal if and
only if the principal curvature of multiplicity n−2 is vanish.

Proof. Let α,β,γ be principal curvatures of Mn with multiplicity n−2,1,1 respectively.
According to definition, we have

s3=
(n−2)!

3!(n−5)!
α3+

(n−2)(n−3)
2

α2(β+γ)+(n−2)αβγ. (4.2)
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Since Mn is minimal we have α=−β+γ

n−2
. So by substitution in (4.2) we get,

s3=T(β+γ)3−(β+γ)βγ=(β+γ)(Tβ2+Tγ2+(2T−1)βγ), (4.3)

where T= n2−4n+3
3(n−2)2 . Because of non-vanishing of the second parenthesis in (4.3) for n≥5,

if Mn is 2-minimal, we conclude that β =−γ and α = 0. The converse is obvious from
(4.2).

A direct computation shows that the result of Theorem 4.3 is also true for n= 3 and
n=4.

The last theorem is about 2-minimality property for minimal hypersurfaces with three
distinct principal curvatures, when the dimension of hypersurface is a multiple of three.

Theorem 4.4. Let n=3m, for some m≥3 and x : Mn→En+1 be an isometric immersion from an
n-dimensional connected Riemannian manifold Mn into Euclidean space En+1. Assume also that
Mn is a minimal hypersurface with three principal curvatures of equal multiplicity. Then Mn is
2-minimal if at least one of the principal curvatures is zero.

Proof. Let α,β,γ be principal curvatures of Mn. By definition of s3, we have,

s3=

(
m
3

)
(α3+β3+γ3)+m

(
m
2

)
(α2β+αβ2+α2γ+αγ2+β2γ+βγ2)+m3αβγ.

Because of minimality of Mn, we have also α=−(β+γ). Therefore we get

s3=−m(β+γ)βγ.

It is concluded that if Mn is 2-minimal, then one of the principal curvatures is zero.

In Theorem 4.4, for the case m=2, 2-minimality of Mn is a direct result of its minimal-
ity.
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