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Some Notes on k-minimality
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Abstract. The concept of minimality is generalized in different ways, one of which
is the definition of k-minimality. In this paper k-minimality is studied for minimal hy-
persurfaces of a Euclidean space under different conditions on the number of principal
curvatures. We will also give a counterexample to Li-conjecture.
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1 Introduction

Let x: M — E™ be an isometric immersion from a Riemannian n—manifold into a Eu-
clidean space. Denote the Laplacian, the position vector and the mean curvature vector
field of M, respectively, by A,x and H. Then, M is called a biharmonic submanifold if
AH=0. Beltrami’s formula, Ax=—nH, implies that every minimal submanifold of E™ is
a biharmonic submanifold.

Chen initiated the study of biharmonic submanifolds in the mid 1980s [4]. Then, Chen
and other authors proved that, in specific cases, a biharmonic submanifold is a minimal
submanifold [4,5,7] and Chen introduced his famous conjecture [3]. This conjecture re-
mains open, although the study thereof is active nowadays. Among other results, it is
proved in [6] that Chen’s Conjecture is true for biharmonic hypersurfaces with three dis-
tinct principal curvatures in E”. Furthermore, under a generic condition, Koiso and
Urakawa [8] gave affirmative answer to Chen conjecture.

The linearized operator of (k+1)-th mean curvature of a hypersurface, i.e. Hy.1,
is the Ly operator. The L; operator is a natural generalization of Laplace operator for
k=1,..,n[9,10]. Let x: M" —E"*! be an isometric immersion from a connected orientable
Riemannian hypersurface into the Euclidean space E"*1. It is proved that [1]
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where N is the unit normal vector field and k=0,..,n —1.The Li-conjecture is as follows.

Li-Conjecture. Every Li-biharmonic hypersurface, namely a Euclidean hypersurface x:
M" — E"*! satisfying the condition L%x =0 for some k=0,..,n—1, has zero (k+1)-th
mean curvature.

A manifold with zero (k+1)-th mean curvature is called k-minimal for k=0,..,n—1.
In 2015, Aminian and Kashani [2] proved the L-conjecture for Euclidean hypersurfaces
with at most two principal curvatures. They also proved the Li-conjecture for L-finite
type hypersurfaces.

In this paper, we prove that the L;-conjecture is not true for a connected minimal
hypersurface of a Eucldean space with arbitrary number of principal curvatures.

2 Preliminaries

In this section, we recall some standard definitions and results from Riemannian geome-
try. Let n>2 and suppose x: M" —E"! is an isometric immersion from an n-dimensional
connected Riemannian manifold M" into Euclidean space E"*!.

Let A be the shape operator of this immersion and Ay,...,A,, be the eigenvalues of this
self-adjoint operator. The mean curvature of M is given by

nH=trace A=Aq. ... Ay

The k—th mean curvature of M is also defined by

( Z )Hk:Sk/

where sp=1 and s, = Z Ay .. Ay, for k=1,..,n. It is obvious that H; = H and
1§i1<~~-<ik§n
S=n(n—1)H,, where S is the scalar curvature of M.
The Newton transformations Py : C*(TM") — C®(TM") are defined inductively by
Po=Iand

Pk:SkI—AOPk_l, 1<k<n.

Therefore,

k
Pe=) (—1)'s;_;A', 1<k<n.
i=0

Thus the Cayley-Hamilton theorem implies that P, =0. It is well known that each P
is a self-adjoint linear operator which commutes with A. For k=0, ..., n, the second
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order linear differential operator Ly : C®(M") — C®(M"), as a natural generalization of
the Laplace operator on Euclidean hypersurface M, is defined by

Lif =trace(Pro/2f),
where 172 f is metrically equivalent to the Hessian of f and is defined by

(V2HXY)=(Vx(Vf)Y)

for all vector fields X,Y € C*(TM"). Here v/ f is the gradient vector field of f.
When k=0, L= /A\. In this case, we have also AoPy= A and L%x =0, which means,
M" is a biharmonic hypersurface.

3 1-minimality and counterexample

In this section, we first consider the minimal hypersurfaces of E" with three distinct prin-
cipal curvatures.

Theorem 3.1. Let x: M" — E"*! be an isometric immersion from an n-dimensional connected
Riemannian manifold M" into Euclidean space E" 1. If M" is a minimal hypersurface with three
distinct principal curvatures, then M" cannot be 1-minimal.

Proof. Let My=...=Ap=a, Apy1=..=Ap1y=PB, Aprgr1=...= A, =7 be principal curvatures
of M", for 1<p<mn—2and 1<g<n—2. Therefor we have
1 2, 1 2, 1 2
s2=5p(p=D)a"+5q(g=1)p"+5 (n—(p+4)) (n—(p+q)~1)7"+pqap
+(n—(p+q))(pa+qp)y.

The minimality of M" yields

yo— Prtap)
n—(p+q)
So we have 1 .
sp=— = (pa+qB)> — = (pa®+qpB%). 3.1
Now if M" is 1-minimal, then (3.1) implies that

(pat-qB)* =—(n—(p+q)) (pa®+qp%).
This concludes that « = = =0, which contradicts the assumption. O

Theorem 3.1 can be generalized to an arbitrary number of principal curvatures as in
the following theorem,
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Theorem 3.2. Let x: M" — E"! be an isometric immersion from an n-dimensional connected
Riemannian manifold M" into Euclidean space E"*1. If M™ is a minimal hypersurface with k,
k>1, distinct principal curvatures, then M" cannot be 1-minimal.

Proof. Let Ay=...=Ap, =a1, Ap 11=. = Ap 4 p, =02, AZf‘ Ty = =\, =wy be principal
curvatures of M", for 1<p;<n—(k—1),1<i<k—1,and let py=n— i-‘;llpi. Therefor we
have
1k 1
2 L pilpi= e +2Pk(Pk— )it} pipeyp szwz
1<i<j<k—1

We obtain from minimality of M",

21 1 pl‘xl

K= ’
Pk

so we have
-1 k—1 ) 1 k—1 )
=— i) —= ;). 3.2

Now if M" is 1-minimal, then (3.2) implies that

k-1 ) k-1 )
(Y pii)®=—p Y piaci-
i=1 i=1
This concludes that a; =0, for i=1,...,k, which contradicts the assumption. O

An immediate corollary for this section is stated as follows.

Corollary 3.1. Let x: M" — E"*! be an isometric immersion from an n-dimensional con-
nected Riemannian manifold M" into Euclidean space E"*1.If M" is a minimal hypersur-
face, then M" is 1-minimal if and only if M" has exactly one vanishing principal curva-
ture.

We conclude this section with a Counterexample for L, —Conjecture.

Counterexample. By Corollary 3.1, a connected minimal L;-biharmonic hypersurface of
E"*1 with at least one non zero principal curvature cannot be 1-minimal.

4 2-minimality

In this section we study the property of 2-minimality for some hypersurfaces of Euclidean
spaces in the specific cases.
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Theorem 4.1. Let n be odd and x: M" —E"! be an isometric immersion from an n-dimensional
connected Riemannian manifold M" into Euclidean space B" . If M™ is a minimal hypersurface
with two distinct principal curvatures, then M" cannot be 2-minimal.

Proof. According to the calculation on the page 4 of [2], we have

(1) (5

From the minimality of M", it follows that a = — %ﬁ Therefore
o m n—m P M—M; s
s=y () () e @
Now from (4.1), if M" is 2-minimal, then « = =0, which yields a contradiction. O

In Theorem 4.1, if n is even, then we have another theorem.

Theorem 4.2. Let n be even and x: M" —E" 1 be an isometric immersion from an n-dimensional
connected Riemannian manifold M" into Euclidean space B" . Assume also that M" is a mini-
mal hypersurface with two distinct principal curvatures. If the multiplicity of principal curvatures
are equal, then M" is 2-minimal. Otherwise, M" cannot be 2-minimal.

() (5 oo

thus if the multiplicity of two principal curvatures are equal, then s3 =0, by (4.1). This
means that, independent of f, M" is 2-minimal. In other cases, the proof is similar to the
proof of Theorem 4.1. O

Proof. We have

For three distinct principal curvatures in a spacial case, we have the following theo-
rem.

Theorem 4.3. Let n>5 and x: M" — E"* be an isometric immersion from an n-dimensional
connected Riemannian manifold M" into Euclidean space E"+1. If M" is a minimal hypersurface
with three distinct principal curvatures of multiplicity {n—2,1,1}, then M" is 2-minimal if and
only if the principal curvature of multiplicity n—2 is vanish.

Proof. Let a,B,7y be principal curvatures of M" with multiplicity n—2,1,1 respectively.
According to definition, we have

(n—2)!

_ (n—2)(n—3)
3!(n—5)

S3 5

!(x3+ a?(B+v)+(n—2)apy. 4.2)
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Since M" is minimal we have a = — % So by substitution in (4.2) we get,

s3=T(B+7)°—(B+7)Br=(B+7)(TB*+T7*+(2T—1)B7), (4.3)

’éz(;f”;)rf. Because of non-vanishing of the second parenthesis in (4.3) for n>5,

if M" is 2-minimal, we conclude that § = —7 and & =0. The converse is obvious from
(4.2). O

where T =

A direct computation shows that the result of Theorem 4.3 is also true for n =3 and
n=4.

The last theorem is about 2-minimality property for minimal hypersurfaces with three
distinct principal curvatures, when the dimension of hypersurface is a multiple of three.

Theorem 4.4. Let n=23m, for some m>3 and x: M" —E"*H be an isometric immersion from an
n-dimensional connected Riemannian manifold M" into Euclidean space B" . Assume also that
M" is a minimal hypersurface with three principal curvatures of equal multiplicity. Then M" is
2-minimal if at least one of the principal curvatures is zero.

Proof. Let a,f,7 be principal curvatures of M". By definition of s3, we have,
m m
53= < 3 > (0 +B+7°) +m < ) > (*ptap®+a’y+ary’+p2y+py?) +mapy.

Because of minimality of M", we have also a =—(B+). Therefore we get

s3=—m(B+7)p7-
It is concluded that if M" is 2-minimal, then one of the principal curvatures is zero. [

In Theorem 4.4, for the case m =2, 2-minimality of M" is a direct result of its minimal-
ity.
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