Some Notes on *k*-minimality

Azam Etemad Dehkordy*

Department of Mathematical Sciences, Isfahan University of Technology, Isfahan, Iran.

Received April 4, 2017; Accepted September 13, 2018

Abstract. The concept of minimality is generalized in different ways, one of which is the definition of k-minimality. In this paper k-minimality is studied for minimal hypersurfaces of a Euclidean space under different conditions on the number of principal curvatures. We will also give a counterexample to L_k -conjecture.

AMS subject classifications: 53D12, 53C40, 53C42.

Key words: k-minimal, minimal hypersurface, L_k -conjecture.

1 Introduction

Let $x: M \to \mathbb{E}^m$ be an isometric immersion from a Riemannian n-manifold into a Euclidean space. Denote the Laplacian, the position vector and the mean curvature vector field of M, respectively, by Δ, x and \vec{H} . Then, M is called a biharmonic submanifold if $\Delta \vec{H} = 0$. Beltrami's formula, $\Delta x = -n\vec{H}$, implies that every minimal submanifold of \mathbb{E}^m is a biharmonic submanifold.

Chen initiated the study of biharmonic submanifolds in the mid 1980s [4]. Then, Chen and other authors proved that, in specific cases, a biharmonic submanifold is a minimal submanifold [4,5,7] and Chen introduced his famous conjecture [3]. This conjecture remains open, although the study thereof is active nowadays. Among other results, it is proved in [6] that Chen's Conjecture is true for biharmonic hypersurfaces with three distinct principal curvatures in \mathbb{E}^m . Furthermore, under a generic condition, Koiso and Urakawa [8] gave affirmative answer to Chen conjecture.

The linearized operator of (k+1)-th mean curvature of a hypersurface, i.e. H_{k+1} , is the L_k operator. The L_k operator is a natural generalization of Laplace operator for k=1,...,n [9,10]. Let $x:M^n \to \mathbb{E}^{n+1}$ be an isometric immersion from a connected orientable Riemannian hypersurface into the Euclidean space \mathbb{E}^{n+1} . It is proved that [1]

$$L_k x = (k+1) \binom{n}{k+1} H_{k+1} N,$$

^{*}Corresponding author. Email address: ae110mat@cc.iut.ac.ir (A. Etemad)

where *N* is the unit normal vector field and k = 0,...,n-1. The L_k -conjecture is as follows.

 L_k -Conjecture. Every L_k -biharmonic hypersurface, namely a Euclidean hypersurface x: $M^n \to \mathbb{E}^{n+1}$ satisfying the condition $L_k^2 x = 0$ for some k = 0,...,n-1, has zero (k+1)-th mean curvature.

A manifold with zero (k+1)-th mean curvature is called k-minimal for k = 0,...,n-1. In 2015, Aminian and Kashani [2] proved the L_k -conjecture for Euclidean hypersurfaces with at most two principal curvatures. They also proved the L_k -conjecture for L_k -finite type hypersurfaces.

In this paper, we prove that the L_1 -conjecture is not true for a connected minimal hypersurface of a Eucldean space with arbitrary number of principal curvatures.

2 Preliminaries

In this section, we recall some standard definitions and results from Riemannian geometry. Let $n \ge 2$ and suppose $x: M^n \to \mathbb{E}^{n+1}$ is an isometric immersion from an n-dimensional connected Riemannian manifold M^n into Euclidean space \mathbb{E}^{n+1} .

Let A be the shape operator of this immersion and $\lambda_1,...,\lambda_n$ be the eigenvalues of this self-adjoint operator. The mean curvature of M is given by

$$nH = \text{trace } A = \lambda_1 \dots \lambda_n$$

The k-th mean curvature of M is also defined by

$$\begin{pmatrix} n \\ k \end{pmatrix} H_k = s_k,$$

where $s_0 = 1$ and $s_k = \sum_{1 \le i_1 < \dots < i_k \le n} \lambda_{i_1} \dots \lambda_{i_k}$, for $k = 1, \dots, n$. It is obvious that $H_1 = H$ and $S = n(n-1)H_2$, where S is the scalar curvature of M.

The Newton transformations $P_k: C^{\infty}(TM^n) \to C^{\infty}(TM^n)$ are defined inductively by $P_0 = I$ and

$$P_k = s_k I - A \circ P_{k-1}, \ 1 \le k \le n.$$

Therefore,

$$P_k = \sum_{i=0}^k (-1)^i s_{k-i} A^i, \ 1 \le k \le n.$$

Thus the Cayley-Hamilton theorem implies that $P_n = 0$. It is well known that each P_k is a self-adjoint linear operator which commutes with A. For k = 0, ..., n, the second

order linear differential operator $L_k: C^{\infty}(M^n) \to C^{\infty}(M^n)$, as a natural generalization of the Laplace operator on Euclidean hypersurface M, is defined by

$$L_k f = \operatorname{trace}(P_k \circ \nabla^2 f),$$

where $\nabla^2 f$ is metrically equivalent to the Hessian of f and is defined by

$$\langle (\nabla^2 f) X, Y \rangle = \langle \nabla_X (\nabla f), Y \rangle$$

for all vector fields $X,Y \in C^{\infty}(TM^n)$. Here ∇f is the gradient vector field of f.

When k = 0, $L_0 = \triangle$. In this case, we have also $A \circ P_0 = A$ and $L_0^2 x = 0$, which means, M^n is a biharmonic hypersurface.

3 1-minimality and counterexample

In this section, we first consider the minimal hypersurfaces of \mathbb{E}^n with three distinct principal curvatures.

Theorem 3.1. Let $x: M^n \to \mathbb{E}^{n+1}$ be an isometric immersion from an n-dimensional connected Riemannian manifold M^n into Euclidean space \mathbb{E}^{n+1} . If M^n is a minimal hypersurface with three distinct principal curvatures, then M^n cannot be 1-minimal.

Proof. Let $\lambda_1 = ... = \lambda_p = \alpha$, $\lambda_{p+1} = ... = \lambda_{p+q} = \beta$, $\lambda_{p+q+1} = ... = \lambda_n = \gamma$ be principal curvatures of M^n , for $1 \le p \le n-2$ and $1 \le q \le n-2$. Therefor we have

$$\begin{split} s_2 = & \frac{1}{2} p(p-1) \alpha^2 + \frac{1}{2} q(q-1) \beta^2 + \frac{1}{2} (n - (p+q)) (n - (p+q) - 1) \gamma^2 + pq\alpha\beta \\ & + (n - (p+q)) (p\alpha + q\beta) \gamma. \end{split}$$

The minimality of M^n yields

$$\gamma = -\frac{(p\alpha + q\beta)}{n - (p+q)}.$$

So we have

$$s_2 = -\frac{1}{2(n - (p + q))} (p\alpha + q\beta)^2 - \frac{1}{2} (p\alpha^2 + q\beta^2).$$
 (3.1)

Now if M^n is 1-minimal, then (3.1) implies that

$$(p\alpha+q\beta)^2 = -(n-(p+q))(p\alpha^2+q\beta^2).$$

This concludes that $\alpha = \beta = \gamma = 0$, which contradicts the assumption.

Theorem 3.1 can be generalized to an arbitrary number of principal curvatures as in the following theorem,

Theorem 3.2. Let $x: M^n \to \mathbb{E}^{n+1}$ be an isometric immersion from an n-dimensional connected Riemannian manifold M^n into Euclidean space \mathbb{E}^{n+1} . If M^n is a minimal hypersurface with k, k > 1, distinct principal curvatures, then M^n cannot be 1-minimal.

Proof. Let $\lambda_1 = ... = \lambda_{p_1} = \alpha_1$, $\lambda_{p_1+1} = ... = \lambda_{p_1+p_2} = \alpha_2$,..., $\lambda_{\sum_{i=1}^{k-1} p_i+1} = ... = \lambda_n = \alpha_k$ be principal curvatures of M^n , for $1 \le p_i \le n - (k-1)$, $1 \le i < k-1$, and let $p_k = n - \sum_{i=1}^{k-1} p_i$. Therefor we have

$$s_2 = \frac{1}{2} \sum_{i=1}^{k-1} p_i(p_i - 1) \alpha_i^2 + \frac{1}{2} p_k(p_k - 1) \alpha_k^2 + \sum_{1 < i < j < k-1} p_i p_j \alpha_i \alpha_j + p_k (\sum_{i=1}^{k-1} p_i \alpha_i) \alpha_k.$$

We obtain from minimality of M^n ,

$$\alpha_k = -\frac{\sum_{i=1}^{k-1} p_i \alpha_i}{p_k},$$

so we have

$$s_2 = \frac{-1}{2p_k} \left(\sum_{i=1}^{k-1} p_i \alpha_i \right)^2 - \frac{1}{2} \left(\sum_{i=1}^{k-1} p_i \alpha_i^2 \right).$$
 (3.2)

Now if M^n is 1-minimal, then (3.2) implies that

$$(\sum_{i=1}^{k-1} p_i \alpha_i)^2 = -p_k \sum_{i=1}^{k-1} p_i \alpha_i^2.$$

This concludes that $\alpha_i = 0$, for i = 1,...,k, which contradicts the assumption.

An immediate corollary for this section is stated as follows.

Corollary 3.1. Let $x: M^n \to \mathbb{E}^{n+1}$ be an isometric immersion from an n-dimensional connected Riemannian manifold M^n into Euclidean space \mathbb{E}^{n+1} . If M^n is a minimal hypersurface, then M^n is 1-minimal if and only if M^n has exactly one vanishing principal curvature.

We conclude this section with a Counterexample for L_k —Conjecture.

Counterexample. By Corollary 3.1, a connected minimal L_1 -biharmonic hypersurface of \mathbb{E}^{n+1} with at least one non zero principal curvature cannot be 1-minimal.

4 2-minimality

In this section we study the property of 2-minimality for some hypersurfaces of Euclidean spaces in the specific cases.

Theorem 4.1. Let n be odd and $x: M^n \to \mathbb{E}^{n+1}$ be an isometric immersion from an n-dimensional connected Riemannian manifold M^n into Euclidean space \mathbb{E}^{n+1} . If M^n is a minimal hypersurface with two distinct principal curvatures, then M^n cannot be 2-minimal.

Proof. According to the calculation on the page 4 of [2], we have

$$s_3 = \sum_{i=0}^n \binom{m}{i} \binom{n-m}{3-i} \alpha^i \beta^{3-i}.$$

From the minimality of M^n , it follows that $\alpha = -\frac{n-m}{m}\beta$. Therefore

$$s_3 = \sum_{i=0}^{n} \binom{m}{i} \binom{m-m}{3-i} (-1)^i (\frac{n-m}{m})^i \beta^3.$$
 (4.1)

Now from (4.1), if M^n is 2-minimal, then $\alpha = \beta = 0$, which yields a contradiction.

In Theorem 4.1, if *n* is even, then we have another theorem.

Theorem 4.2. Let n be even and $x:M^n \to \mathbb{E}^{n+1}$ be an isometric immersion from an n-dimensional connected Riemannian manifold M^n into Euclidean space \mathbb{E}^{n+1} . Assume also that M^n is a minimal hypersurface with two distinct principal curvatures. If the multiplicity of principal curvatures are equal, then M^n is 2-minimal. Otherwise, M^n cannot be 2-minimal.

Proof. We have

$$\sum_{i=0}^{n} {m \choose i} {m \choose 3-i} (-1)^{i} = 0,$$

thus if the multiplicity of two principal curvatures are equal, then $s_3 = 0$, by (4.1). This means that, independent of β , M^n is 2-minimal. In other cases, the proof is similar to the proof of Theorem 4.1.

For three distinct principal curvatures in a spacial case, we have the following theorem.

Theorem 4.3. Let $n \ge 5$ and $x: M^n \to \mathbb{E}^{n+1}$ be an isometric immersion from an n-dimensional connected Riemannian manifold M^n into Euclidean space \mathbb{E}^{n+1} . If M^n is a minimal hypersurface with three distinct principal curvatures of multiplicity $\{n-2,1,1\}$, then M^n is 2-minimal if and only if the principal curvature of multiplicity n-2 is vanish.

Proof. Let α, β, γ be principal curvatures of M^n with multiplicity n-2,1,1 respectively. According to definition, we have

$$s_3 = \frac{(n-2)!}{3!(n-5)!} \alpha^3 + \frac{(n-2)(n-3)}{2} \alpha^2 (\beta + \gamma) + (n-2)\alpha \beta \gamma.$$
 (4.2)

Since M^n is minimal we have $\alpha = -\frac{\beta + \gamma}{n-2}$. So by substitution in (4.2) we get,

$$s_3 = T(\beta + \gamma)^3 - (\beta + \gamma)\beta\gamma = (\beta + \gamma)(T\beta^2 + T\gamma^2 + (2T - 1)\beta\gamma),$$
 (4.3)

where $T = \frac{n^2 - 4n + 3}{3(n-2)^2}$. Because of non-vanishing of the second parenthesis in (4.3) for $n \ge 5$, if M^n is 2-minimal, we conclude that $\beta = -\gamma$ and $\alpha = 0$. The converse is obvious from (4.2).

A direct computation shows that the result of Theorem 4.3 is also true for n = 3 and n = 4.

The last theorem is about 2-minimality property for minimal hypersurfaces with three distinct principal curvatures, when the dimension of hypersurface is a multiple of three.

Theorem 4.4. Let n=3m, for some $m \ge 3$ and $x: M^n \to \mathbb{E}^{n+1}$ be an isometric immersion from an n-dimensional connected Riemannian manifold M^n into Euclidean space \mathbb{E}^{n+1} . Assume also that M^n is a minimal hypersurface with three principal curvatures of equal multiplicity. Then M^n is 2-minimal if at least one of the principal curvatures is zero.

Proof. Let α, β, γ be principal curvatures of M^n . By definition of s_3 , we have,

$$s_3 = \binom{m}{3} (\alpha^3 + \beta^3 + \gamma^3) + m \binom{m}{2} (\alpha^2 \beta + \alpha \beta^2 + \alpha^2 \gamma + \alpha \gamma^2 + \beta^2 \gamma + \beta \gamma^2) + m^3 \alpha \beta \gamma.$$

Because of minimality of M^n , we have also $\alpha = -(\beta + \gamma)$. Therefore we get

$$s_3 = -m(\beta + \gamma)\beta\gamma$$
.

It is concluded that if M^n is 2-minimal, then one of the principal curvatures is zero. \Box

In Theorem 4.4, for the case m=2, 2-minimality of M^n is a direct result of its minimality.

References

- [1] L. J. Alias and N. Gürbüs, An extension of Takahashi theorem for the linearized operators of higher order mean curvatures, Geom. Dedicat, 121 (2006), 1957-1978.
- [2] M. Aminian and S.M.B. Kashani, L_k -Biharmonic hypersurfaces in Euclidean space, Taiwanese Journal of Mathematics, 19(3) (2015), 113-119.
- [3] B. Y. Chen, Some open problems and conjectures on submanifolds of finite type, Soochow J. Math., 17(2) (1991), 169-188.
- [4] B. Y. Chen, Total Mean Curvature and Cubmanifolds of Finite Type, Soochow World Scientific New Jersey, 1984.
- [5] F. Defever, Hypersurfaces of \mathbb{E}^4 with harmonic mean curvature vector, Soochow Math. Nachr., 196 (1998), 61-69.

- [6] Y. Fu, Biharmonic hypersurfaces with three distinct principal curvatures in Euclidean space, Tohoku Math J., 67(3) (2015), 465-479.
- [7] T. Hasanis and T. Vlachos , Hypersurfaces in \mathbb{E}^4 with harmonic mean curvature vector field, Math. Nachr., 172 (1995), 145-169.
- [8] N. Koiso and H. Urakawa,, submanifolds in a Riemannian manifold, Osaka J. Math., 55 (2018), 325-346.
- [9] R. C. Reilly, Variational properties of functions of the mean curvatures for hypersurfaces in space forms, J. Differential Geom., 8 (1973), 465-477.
- [10] H. Rosenberg, Hypersurfaces of constant curvature in space forms, Bull Sci. Math., 117 (1993), 211-239.