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Abstract. In this paper, we study the global regularity issue of two dimensional in-
compressible magnetic Bénard equations with partial dissipation and magnetic dif-
fusion. It remains open whether the smooth initial data produce solutions that are
globally regular in time for all values of the parameters involved in the equations. We
present conditional global regularity of the solutions. Moreover, we prove the global
regularity for the slightly regularized system.
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1 Introduction

This paper aims the global regularity of two dimensional magnetic Bénard equations.
The standard two-dimensional incompressible magnetic Bénard equations can be written
as 

ut+u·∇u=−∇p+ν∆u+b·∇b+θe2,
bt+u·∇b=η∆b+b·∇u,
∂tθ+(u·∇)θ−κ∆θ=u·e2,
∇·u=0, ∇·b=0,
u(x,y,0)=u0(x,y), b(x,y,0)=b0(x,y), θ(x,y,0)= θ0(x,y),

(1.1)

where (x,y)∈R2, t≥0, u=(u1(x,y,t), u2(x,y,t)) denotes the 2D velocity field, p= p(x,y,t)
the pressure, b = (b1(x,y,t),b2(x,y,t)) the magnetic field, θ(x,y,t) the temperature, e2 =
(0,1)T vertical unit vector, and ν, η and κ are nonnegative real parameters.
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A generalized 2D Magnetic Bénard equations can be written as
ut+u·∇u=−∇p+ν1 uxx+ν2 uyy+b·∇b+θe2,
bt+u·∇b=η1 bxx+η2 byy+b·∇u,
∂tθ+(u·∇)θ−κ1∂xxθ−κ2∂yyθ=u2,
∇·u=0, ∇·b=0,
u(x,y,0)=u0(x,y), b(x,y,0)=b0(x,y), θ(x,y,0)= θ0(x,y).

(1.2)

If ν1 = ν2 = ν and η1 = η2 = η, and κ1 = κ2 = κ, then (1.2) reduces to the standard mag-
netic Bénard equations (1.1). This generalization is capable of modeling the motion of
anisotropic fluids for which the diffusion properties in different directions are different.

In the absence of θ, the magnetic Bénard equation reduces to magneto-hydrodynamic
(MHD) equation. When all four parameters ν1, ν2, η1, and η2 are positive, the global
regularity of the classical solution to 2D MHD equations has been established, see, e.g.,
[7], [19]. On the other hand, it remains a remarkable open problem whether classical
solutions of the two-dimensional inviscid MHD equations, with all four parameters equal
to zero, preserve their regularity for all time or have finite time blowup. Many attempts
have been made but there are no any satisfactory results concerning the regularity of the
solution. When ν1 > 0, ν2 = 0, η1 = 0 and η2 > 0 or when ν1 = 0, ν2 > 0, η1 > 0 and η2 = 0,
the global regularity was established by Cao and Wu in [2]. Cao, Regmi, and Wu studied
two dimensional MHD equations with horizontal dissipation and horizontal diffusion
in [1]. They proved that any possible blow-up can be controlled by the L∞-norm of the
horizontal components.

There are numerous papers related to two dimensional MHD equations [1–8, 16, 20,
23, 25] and references therein, however only few papers are available related to magnet-
ic Bénard equations. Y. Zhou et al. in [32] obtained the global regularity results related
to the 2D magnetic Bénard problem with zero thermal conductivity. The authors used
energy estimates as well as a well known property of Hardy space and Bounded Mean
Value Oscillation (BMO) to prove the global regularity. Very recently, J. Cheng and L. Du
in [6] proved the global well-posedness of the 2D Magnetic Bénard equations with mixed
partial viscosity which included vertical or horizontal magnetic diffusion but no thermal
diffusivity. The authors also obtained the global regularity as well as some conditional
regularity of strong solutions of the problem with mixed partial viscosity, thus extending
the existing result of the problem with the full dissipation. Likewise, the global regularity
of generalized magnetic Bénard problem was studied by Y. Yamazaki in [28] by extending
the existing results on Boussinesq equation and magneto-hydrodynamic equations. The
author studied the problem with fractional Laplacian and logarithmic super criticality.
The author showed that when the diffusive term has a full Laplacian, then a sufficiently
smooth initial data evolves into a smooth solution under certain conditions. The author
also presented additional global regularity criteria for the velocity field, magnetic field
and the temperature field.
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This paper is devoted to the case when ν1 >0, ν2 =0, η1 >0, η2 =0. κ1 >0, and κ2 =0,
namely 

ut+u·∇u=−∇p+uxx+b·∇b+θe2,
bt+u·∇b= bxx+b·∇u,
∂tθ+(u·∇)θ−∂xxθ=u2,
∇·u=0, ∇·b=0,
u(x,y,0)=u0(x,y), b(x,y,0)=b0(x,y),

(1.3)

where we have set ν1 = η1 = κ1 = 1. This paper presents conditioned global regularity.
More precisely, we prove the following theorem.

Theorem 1.1. Assume that (u0,b0,θ0)∈ H2(R2), ∇·u0 = 0 and ∇·b0 = 0. Then, (1.3) has a
unique classical solution (u,b,θ) satisfying, for any T>0,

u,b,θ,∂xu,∂xb,∂xθ∈L∞([0,T];H2(R2))

provided
∫ T

0 ∥u1,b1∥2
BMOdt<∞.

This result is also true for the following system.
ut+u·∇u=−∇p+uxx+b·∇b+θe2,
bt+u·∇b= bxx+b·∇u,
∂tθ+(u·∇)θ−∂yyθ=u2,
∇·u=0, ∇·b=0,
u(x,y,0)=u0(x,y), b(x,y,0)=b0(x,y).

(1.4)

If we follow the proof of Theorem 1.1, we can further prove the following theorem.

Theorem 1.2. Consider
ut+u·∇u=−∇p+uyy+b·∇b+θe2,
bt+u·∇b= byy+b·∇u,
∂tθ+(u·∇)θ−∂xxθ=u2,
∇·u=0, ∇·b=0,
u(x,y,0)=u0(x,y), b(x,y,0)=b0(x,y).

(1.5)

Assume that (u0,b0,θ0)∈ H2(R2), ∇·u0 = 0 and ∇·b0 = 0. Then, (1.3) has a unique classical
solution (u,b,θ) satisfying, for any T>0,

u,b,θ,∂xu,∂xb,∂xθ∈L∞([0,T];H2(R2))

provided
∫ T

0 ∥u2,b2∥2
BMOdt<∞.

Remark 1.1. (1) In [6], authors presented conditional regularity results for the system
(1.3) and the results are different than we have presented here.
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(2) Our results improves the previously known results related to MHD equations with
horizontal dissipation and magnetic diffusion in [1].

We furthermore consider slightly regularized version of (1.3), namely either for any
ϵ,δ>0 

ut+u·∇u=−∇p+ν2 uxx+ϵ(−∆)δu+b·∇b+θe2,
bt+u·∇b=η2 bxx+ϵ(−∆)δb+b·∇u,
∂tθ+(u·∇)θ−∂xxθ=u2,
∇·u=0, ∇·b=0,
u(x,y,0)=u0(x,y), b(x,y,0)=b0(x,y),

(1.6)

or 
ut+u·∇u=−∇p+ν2 uxx+ϵ(−∆)δu+b·∇b+θe2,
bt+u·∇b=η2 bxx+ϵ(−∆)δb+b·∇u,
∂tθ+(u·∇)θ−∂yyθ=u2,
∇·u=0, ∇·b=0,
u(x,y,0)=u0(x,y), b(x,y,0)=b0(x,y).

(1.7)

We prove the following theorem.

Theorem 1.3. Assume that (u0,b0,θ0)∈H2(R2), ∇·u0 =0 and ∇·b0 =0. Then, (1.6) or (1.7)
has a unique classical solution (u,b,θ) satisfying, for any T>0,

u,b,θ,∂xu,∂xb,∂xθ∈L∞([0,T];H2(R2)).

Similar result is true if we consider the vertical dissipation and vertical magnetic dif-
fusion.

The general approach to establish the global existence and regularity consists of two
main steps. The first step is local existence and uniqueness and the second step is global
a priori bounds. For this type of system, local existence follows from standard approach
( we omit here). We only concentrate to obtain the global bound. The main difficulty to
obtain global bound for aforementioned system is H1 bound. In H1 bound, we encounter
the terms

∫
j∂xb1 ∂yu1 and

∫
j∂xu1 ∂yb1. Unfortunately, we do not know how to bound the

other two terms in order to close the inequality due to insufficient vertical dissipation and
vertical magnetic diffusion. This is where the direct energy method breaks down and the
global regularity problem becomes very hard.

The rest of this paper is divided into three sections. The last two sections are devoted
to the proof for each of the theorems stated above.

2 Preliminaries

To simplify the notation, we will write ∥ f ∥2 for ∥ f ∥L2 ,
∫

f for
∫

R2 f dxdy and write ∂
∂x f ,

∂x f or fx as the first partial derivative, and ∂2

∂x2 f or ∂xx f as the second partial throughout
the rest of this paper. BMO represents the bounded mean oscillation.
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The following anisotropic type Sobolev inequality will be frequently used. Its proof
can be found in [2].

Lemma 2.1. If f ,g,h,∂yg,∂xh∈L2(R2), then∫∫
R2
| f gh|dxdy≤C∥ f ∥2∥g∥

1
2
2 ∥∂yg∥

1
2
2 ∥h∥

1
2
2 ∥∂xh∥

1
2
2 , (2.1)

where C is a constant.

The following simple fact on the boundedness of Riesz transforms will also be used.

Lemma 2.2. Let f be divergence-free vector field such that ∇ f ∈ Lp for p∈ (1,∞). Then there
exists a pure constant C>0 (independent of p) such that

∥∇ f ∥Lp ≤ C p2

p−1
∥∇× f ∥Lp .

3 Proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1. As explained in the introduction,
it suffices to establish the global a priori bound for the solution in H2. For the sake of
clarity, we divide this process into two subsections. The first subsection proves the global
H1-bound while the second proves the global H2-bound.

3.1 H1-Bound

We first state the global L2-bound.

Lemma 3.1. Assume that (u0,b0,θ0) satisfies the condition stated in Theorem 1.1. Let (u,b,θ) be
the corresponding solution of (1.3). Then, (u,b,θ) obeys the following global L2-bound,

∥u(t),b(t),θ(t)∥2
L2+2

∫ t

0
∥∂xu,∂xb,∂xθ∥2

L2)dτ≤C(∥(u0,b0,θ0)∥2
2)

for any t≥0.

We can easily prove the global L2 bound. Taking the L2-inner product of (u,b,θ) with
(1.3), respectively, and adding together yields

1
2

d
dt

(
∥u(t)∥2

L2+∥b(t)∥2
L2+∥θ(t)∥2

L2

)
+∥∂xu(τ)∥2

L2+∥∂xb(τ)∥2
L2+∥∂xθ(τ)∥2

L2

=
∫

θe2 ·u+
∫

u2 θ≤C∥u∥L2∥θ∥L2 .
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Combining together, we easily obtain the global L2 bound.

∥u(t),b(t),θ(t)∥2
L2+2

∫ t

0
∥∂xu(τ)∥2

L2 dτ+2
∫ t

0
∥∂xb(τ)∥2

L2 dτ+2
∫
∥∂xθ∥2

2 dτ≤C,

for any 0 < t ≤ T, where C depends only on the initial data. We next prove the global
H1-bound for u,b and θ. More precisely, we prove the following result.

Proposition 3.1. Assume that (u0,b0,θ0) satisfies the condition stated in Theorem 1.1. Let
(u,b,θ) be the corresponding solution of (1.3). Then (u,b,θ) satisfies, for any T>0,

u,b,θ∈C([0,T];H1(R2)). (3.1)

Consider the equation for ω=∇×u and j=∇×b to estimate H1,{
ωt+u·∇ω=ωxx+b·∇j+∂xθ,
jt+u·∇j= jxx+b·∇ω+2∂xb1(∂xu2+∂yu1)−2∂xu1(∂xb2+∂yb1).

(3.2)

We then obtain

1
2

d
dt

(
∥ω∥2

L2+∥j∥2
L2

)
+∥ωx∥2

L2+∥jx∥2
L2

=2
∫

j
(
∂xb1(∂xu2+∂yu1)−2∂xu1(∂xb2+∂yb1)

)
+
∫

∂xθω

=:I1+ I2+ I3+ I4+ I5. (3.3)

For notational convenience, we will omit dxdy from the spatial integral. The first term
can be bounded by using Lemma 2.1

I1=

∣∣∣∣2∫ ∂xb1 ∂xu2 j
∣∣∣∣≤C∥∂xu2∥L2 ∥∂xb1∥

1
2
L2 ∥∂x∂yb1∥

1
2
L2 ∥j∥

1
2
L2 ∥∂x j∥

1
2
L2 .

Applying Young’s inequality and the simple fact that

∥∂xb1∥L2 ≤∥j∥L2 , ∥∂x∂yb1∥L2 ≤∥∂x j∥L2 ,

we have
I1≤

1
8
∥∂x j∥2

L2+C∥∂xu2∥2
L2 ∥j∥2

L2 .

Similarly,

I3=

∣∣∣∣2∫ ∂xu1 ∂xb2 j
∣∣∣∣≤ 1

8
∥∂x j∥2

L2+C∥∂xu1∥2
L2 ∥j∥2

L2 .

The terms I2 and I4 have to be handled differently. By integration by parts,

I2=2
∫

∂xb1 ∂yu1 j=−2
∫

b1∂x∂yu1 j−2
∫

b1∂yu1 ∂x j (3.4)
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which gives that

I2≤
1
8
(∥ωx∥2

2+∥jx∥2
2)+C∥b1∥2

BMO(∥j∥2
2+∥ω∥2

2).

Similarly

I4=−2
∫

∂xu1 ∂yb1 j=−2
∫

∂xu1∂yb1∂xb2−2
∫

∂xu1∂yb1∂yb1=: I41+ I42.

The last two terms admit

I41≤
1
8
∥ωx∥2

2+
1
8
∥jx∥2

2+C∥b∥2
2∥∂xb∥2

2(∥ω∥2
2+∥j∥2

2),

I42=−4
∫

u1∂yb1∂xyb1≤
1
8
∥∂x j∥2

2+
1
8
∥u1∥2

BMO∥j∥2
2.

Furthermore,

I5≤
∣∣∣∣∫ ∂xθω

∣∣∣∣≤∥θ∥2
2+∥ωx∥2

2.

After combining all inequalities

1
2

d
dt

(
∥ω∥2

L2+∥j∥2
L2

)
+∥∂xω∥2

L2+∥∂x j∥2
L2 ≤

1
2
∥∂xω∥2

2+
1
2
∥∂x j∥2

2

+C(∥u1∥2
BMO+∥b1∥2

BMO+∥∂xb∥2
2+∥θ∥2

2)(∥j∥2
2+∥ω∥2

2).

Gronwall’s lemma yields,

∥ω∥2
L2+∥j∥2

L2+
∫ t

0
∥∂xω∥2

L2+
∫ t

0
∥∂x j∥2

L2 ≤CeC
∫ t

0 (∥u1∥2
BMO+∥b1∥2

BMO+∥∂xb∥2
2).

Now we need to know the H1 bound for θ. Taking inner products of the third equation
in (1.3) with ∆θ and integrating by parts, we obtain

1
2

d
dt
∥∇θ∥2

2+κ ∥∇∂xθ∥2
2=−

∫
∇u·∇θ ·∇θ+(u·∇)∇θ ·∇θ−∇u2 ·∇θ, (3.5)

−
∫
∇u·∇θ ·∇θ=−

∫ (
∂xu1(∂xθ)2+∂xu2∂xθ∂yθ+∂yu1∂xθ∂yθ+∂yu2(∂yθ)2)

= J1+ J2+ J3+ J4. (3.6)

By the divergence free condition
∫
(u·∇)∇θ ·∇θ=0 and∫

∇u2 ·∇θ=
∫

∂xu2θx+
∫

∂yu2θy =: J5+ J6,
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we have

J1=−2
∫

u2∂xθ∂xyθ≤C∥∂xyθ∥
3
2
2 ∥u2∥

1
2
2 ∥∂xθ∥

1
2
2 ≤

1
48

∥∇∂xθ∥2
2+C∥u2∥2

2∥∂xθ∥2
2,

J2=
∫

∂xu2∂xθ∂yθ≤C∥∂xu2∥2∥∂xθ∥
1
2
2 ∥∂yθ∥

1
2
2 ∥∂xyθ∥2≤

1
48

∥∇∂xθ∥2
2+C∥∂xu2∥2

2∥∇θ∥2
2.

Similarly,

J3=
∫

∂yu1∂xθ∂yθ≤C∥∂yu1∥2∥∂xθ∥
1
2
2 ∥∂yθ∥

1
2
2 ∥∂xyθ∥2

≤ 1
48

∥∇∂xθ∥2
2+C∥∂yu∥2

2∥∇θ∥2
2,

J4=−2
∫

u1∂xyθ∂yθ≤ 1
48

∥∇∂xθ∥2
2+C∥u∥2

2∥∇u∥2
2∥∇θ∥2

2,

J5=
∫

∂xu2θx ≤∥∂xu2∥2∥∂xθ∥2, (3.7)

J6=
∫

∂yu2θy ≤∥∂yu2∥2∥∂yθ∥2.

Combining all inequalities together with Gronwall’s lemma yields,

∥∇θ(t)∥2
2+

∫ t

0
∥∇∂xθ∥2

2≤C

for any t≤T. This completes the global H1 bound for (u,b,θ).

3.2 H2-bound

Taking the inner with of (3.2) with (∆ω,∆j) yields

1
2

d
dt
∥∇ω∥2

2+∥∇ωx∥2
2=−

∫
∇ω ·∇u·∇ω dxdy+

∫
∇ω ·∇b·∇j dxdy

+
∫

b·∇(∇j)·∇ω dxdy+
∫

∂xθ∆ωdxdy,

1
2

d
dt
∥∇j∥2

2+∥∇jx∥2
2=−

∫
∇j·∇u·∇j dxdy+

∫
∇j·∇b·∇ω dxdy

∫
b·∇(∇ω)·∇j dxdy

+2
∫
∇[∂xb1(∂xu2+∂yu1)]·∇j dxdy−2

∫
∇[∂xu1(∂xb2+∂yb1)]·∇j dxdy.

Adding above equations and integrating by parts, we obtain

1
2

d
dt
(∥∇ω∥2

2+∥∇j∥2
2+∥∆θ∥2

2)+∥∇ωx∥2
2+∥∇jx∥2

2+∥∇∆θ∥2
2=:

8

∑
i=1

Ki,
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where

K1=−
∫
∇ω ·∇u·∇ω dxdy, K2=−

∫
∇j·∇u·∇j dxdy,

K3=2
∫
∇ω ·∇b·∇j dxdy, K4=2

∫
∇[∂xb1(∂xu2+∂yu1)]·∇j dxdy,

K5=−2
∫
∇[∂xu1(∂xb2+∂yb1)]·∇j dxdy, K6=

∫
∂xθ∆ωdxdy,

K7=
∫

∆(u·∇)θ∆θdxdy, K8=
∫

∆u2∆θdxdy.

Observe that

K1=
∫
(∇ω ·∇u·∇ω)dxdy

=
∫
(∂xu1ω2

x+∂xu2ωxωy+∂yu1ωxωy+∂yu2ω2
y)dxdy

=: K11+K12+K13+K14.

By Lemma 2.1, we have

K11≤C∥∂xu1∥2∥ωx∥
1
2
2 ∥ωxx∥

1
2
2 ∥ωx∥

1
2
2 ∥ωxy∥

1
2
2 ≤

1
48

∥∇ωx∥2
2+C∥ω∥2

2∥∇ω∥2
2.

Similarly, we obtain

K12≤C∥∂xu2∥2∥ωx∥
1
2
2 ∥ωxy∥

1
2
2 ∥ωy∥

1
2
2 ∥ωxy∥

1
2
2

≤C∥ω∥2∥∇ω∥2∥∇ωx∥2≤
1

48
∥∇ωx∥2

2+∥ω∥2
2∥∇ω∥2

2.

Furthermore,

K13≤
1
48

∥∇ωx∥2
2+∥ω∥2

2∥∇ω∥2
2, K14≤

1
48

∥∇ωx∥2
2+C∥ω∥

2
3
2 ∥ωx∥

2
3
2 ∥∇ω∥2

2.

Similarly,

K2=−
∫
∇j·∇u·∇j dxdy

=
∫

∂xu1 j2x+∂yu1 jx jy+∂yu2 j2y+∂xu2 jx jy =: K21+K22+K23+K24.

Observe that

K21≤C∥jx∥2∥∂xu1∥
1
2
2 ∥∂xyu1∥

1
2
2 ∥jx∥

1
2
2 ∥jxx∥

1
2
2

≤C∥ω∥
1
2
2 ∥ωx∥

1
2
2 ∥∇j∥ 3

2 ∥∇jx∥
1
2
2 ≤

1
48

∥∇jx∥2
2+C∥ω∥

2
3
2 ∥ωx∥

2
3
2 ∥∇j∥2

2,

K22≤
1
48

∥∇jx∥2
2+C∥ω∥

2
3
2 ∥ωx∥

2
3
2 ∥∇j∥2

2, K23≤
1
48

∥∇jx∥2
2+∥ω∥

2
3
2 ∥ωx∥

2
3
2 ∥∇j∥2

2,

K24≤
1
48

∥∇jx∥2
2+C∥ω∥2

2∥∇j∥2
2.
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On the other hand,

K3=
∫

ωx∂xb1 jx+ωx∂xb2 jy+ωy∂yb1 jx+ωy∂yb2 jy =: K31+K32+K33+K34.

Observe that

K31=
∫

ωx∂xb1 jx ≤C∥∂xb1∥2∥ωx∥
1
2
2 ∥ωxy∥

1
2
2 ∥jx∥

1
2
2 ∥jxx∥

1
2
2

≤C∥j∥2∥∇ω∥
1
2
2 ∥∇ωx∥

1
2
2 ∥∇j∥

1
2
2 ∥∇jx∥

1
2
2

≤ 1
48

∥∇ωx∥2
2+

1
48

∥∇jx∥2
2+C∥j∥2

2(∥∇ω∥2
2+∥∇j∥2

2).

Similarly,

K32≤
1
48

∥∇ωx∥2
2+

1
48

∥∇jx∥2
2+C∥j∥2

2(∥∇ω∥2
2+∥∇j∥2

2),

K33≤
1
48

(∥∇wx∥2
2+∥∇jx∥2

2)+C∥j∥2
2(∥∇ω∥2

2+∥∇j∥2
2),

K34≤
1
48

∥∇jx∥2
2+C∥jx∥2

2∥∇j∥2
2+C∥j∥2∥∇ω∥2

2.

Note that

K4=2
∫
∇[∂xb1(∂xu2+∂yu1)]·∇j dxdy

=2
∫

∂x[∂xb1(∂xu2+∂yu1)]jx+∂y[∂xb1(∂xu2+∂yu1)]jy dxdy

=: K41+K42.

Observe that

K41=−2
∫

∂xb1(∂xu2+∂yu1)jxx

≤C
(
∥∂xb1∥

1
2
2 ∥∂xyb1∥

1
2
2 ∥∂xu2∥

1
2
2 ∥∂xyu2∥

1
2
2 +C∥∂xb1∥

1
2
2 ∥∂xyb1∥

1
2
2 ∥∂yu1∥

1
2
2 ∥∂xyu1∥

1
2
2

)
∥jxx∥2

≤C∥j∥
1
2
2 ∥∇j∥

1
2
2 ∥ω∥

1
2
2 ∥ωy∥

1
2
2 ∥∇jx∥2

≤ 1
48

∥∇jx∥2
2+C∥ω∥2∥j∥2(∥∇ω∥2

2+∥∇j∥2
2).

We further split K42 into four parts

K42=2
∫
(∂xyb1∂xu2+∂xb1∂xyu2+∂xyb1∂yu1+∂xb1∂yyu1)jy dxdy

=: K421+K422+K423+K424.
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We also provide estimates to each of the four terms:

K421≤C∥∂xyb1∥2∥∂xu2∥
1
2
2 ∥∂xyu2∥

1
2
2 ∥jy∥

1
2
2 ∥jxy∥

1
2
2

≤C∥jx∥2∥ω∥
1
2
2 ∥ωx∥

1
2
2 ∥∇j∥

1
2
2 ∥∇jx∥

1
2
2

≤C∥∇j∥
3
2
2 ∥2∥ω∥

1
2
2 ∥∇jx∥

1
2
2 ∥ωx∥

1
2
2

≤ 1
48

∥∇jx∥2
2+∥ω∥

2
3
2 ∥ωx∥

2
3
2 ∥∇j∥2

2.

Similarly

K422≤
1
48

∥∇jx∥2
2+C∥jx∥2

2∥∇j∥2
2+C∥j∥2∥∇ω∥2

2,

K423≤
1
48

∥∇jx∥2
2+C∥ω∥2∥∇j∥2

2+C∥jx∥2
2∥∇ω∥2

2,

K424≤
1
48

∥∇ωx∥2
2+C∥jx∥2

2∥∇ω∥2
2+C∥j∥2∥∇j∥2

2.

Two more terms remain to be estimated. First, we work on K5:

K5=−2
∫
∇[∂xu1(∂xb2+∂yb1)]·∇j dxdy

=−2
∫

∂x[∂xu1(∂xb2+∂yb1)]jx+∂y[(∂xu1(∂xb2+∂yb1)]jy dxdy

=: K51+K52.

Observe that

K51≤C∥∂xu1∥
1
2
2 ∥∂xyu1∥

1
2
2 ∥∂xb2∥

1
2
2 ∥∂xxb2∥

1
2
2 ∥jxx∥2

+C∥∂xu1∥
1
2
2 ∥∂xyu1∥

1
2
2 ∥∂yb1∥

1
2
2 ∥∂xyb1∥

1
2
2 ∥jxx∥

1
2
2

≤C∥ω∥
1
2
2 ∥∇ω∥

1
2
2 ∥j∥

1
2
2 ∥∇j∥

1
2
2 ∥∇jx∥2

≤ 1
48

∥∇jx∥2
2+C∥ω∥2∥j∥2(∥∇ω∥2

2+∥∇j∥2
2),

K52=−2
∫
(∂xyu1∂xb2+∂xu1∂xyb2+∂xyu1∂yb1+∂xu1∂yyb1)jy dxdy

=: K521+K522+K523+K524.
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Note that K521 and K522 can be bounded as K422 and K421. We only need to bound K523
and K524.

K523=−2
∫

∂xyu1∂yb1 jydxdy

≤C∥∂xyu1∥
1
2
2 ∥∂xyyu1∥

1
2
2 ∥∂yb1∥

1
2
2 ∥∂xyb1∥

1
2
2 ∥jy∥2

≤C∥∇ωx∥
1
2
2 ∥jx∥

1
2
2 ∥∇ω∥

1
2
2 ∥j∥

1
2
2 ∥∇j∥2

≤ 1
48

∥∇ωx∥2
2+∥jx∥2

2∥∇ω∥2
2+∥j∥2∥∇j∥2

2.

Finally, note that

K6≤∥∇∂xθ∥2
2∥∇ω∥2≤

1
48

∥∇∂xθ∥2
2+C∥∇ω∥2

2.

After combining all inequalities, together with the Gronwall’s lemma yields

∥∇ω∥2
2+∥∇j∥2

2+
∫ t

0
(∥∇∂xω(τ)∥2

2+∥∇∂x j(τ)∥2
2)dτ≤C. (3.8)

For the global bound for ∥∆θ∥2, applying ∆ to the third equation in (1.3) with ∆θ and
integrating by parts, we obtain

1
2

d
dt
∥∆θ∥2

2+∥∆∂xθ∥2
2=

∫
∆(u·∇)θ∆θdxdy+

∫
∆u2∆θdxdy.

By Lemma 2.1∫
∆(u·∇)θ∆θdxdy=

∫
∆u1θx ∆θ+2∇u1 ·∇θx ∆θ+∆u2θy ∆θ+2∇u2 ·∇θy ∆θ.

Now we observe that∣∣∣∣∫ ∆u1θx ∆θ

∣∣∣∣≤∥∆u1∥2∥θx∥
1
2
2 ∥θxy∥

1
2
2 ∥∆θ∥

1
2
2 ∥∆θx∥

1
2
2

≤ 1
48

∥∆θx∥2
2+C∥θx∥

2
3
2 ∥θxy∥

2
3
2 ∥∆u1∥

4
3
2 ∥∆θ∥

2
3
2

≤ 1
48

∥∆θx∥2
2+C∥θx∥

2
3
2 ∥θxy∥

2
3
2

(
∥∆u1∥2

2+∥∆θ∥2
2
)

.

Similarly ∣∣∣∣∫ 2∇u1 ·∇θx∆θ

∣∣∣∣≤ 1
48

∥∆θx∥2
2+C∥∇u1∥

2
3
2 ∥∇∂xu1∥

2
3
2 ∥∆θ∥2

2,∣∣∣∣∫ ∆u2θy∆θ

∣∣∣∣≤ 1
48

∥∆∂xu2∥2
2+

1
48

∥∆θx∥2
2+C∥θy∥2

2
(
∥∆u2∥2

2+∥∆θ∥2
2
)

,∣∣∣∣∫ 2∇u2 ·∇θy∆θ

∣∣∣∣≤ 1
48

∥∆θx∥2
2+C∥∇u2∥

2
3
2 ∥∇∂xu1∥

2
3
2 ∥∆θ∥2

2.
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Finally, ∣∣∣∣∫ ∆u2∆θdxdy
∣∣∣∣≤ 1

48
∥∆u2∥2

2+C∥∆θ∥2
2.

Collecting all inequalities and applying Gronwall’s lemma, we obtain

∥∆θ∥2
2+

∫ t

0
∥∆∂xθ∥2

2≤C

for any t≤T. This completes the proof of Theorem 1.1. �

4 Global regularity of slightly regularized system

This section establishes that (1.6) possesses global regular solutions if the initial data are
sufficiently smooth. More precisely, we prove Theorem 1.3. The difficult part to show
the global regularity is obtaining global H1 bound since global H2-bound is similar to
Theorem 1.1.

To obtain the global bound for the H1-norm, we take advantage of the vorticity for-
mulation. Taking the curl of (1.6), we find that ω=∇×u and j=∇×b satisfy{

ωt+u·∇ω+ϵ(−∆)δω=b·∇j+ωxx+∂xθ,
jt+u·∇j+ϵ(−∆)δ j=b·∇ω+ jxx+2∂xb1(∂yu1+∂xu2)−2∂xu1(∂yb1+∂xb2).

(4.1)

The main difficulty to show the global regularity is H1-bound for (u,b). We only sketch
the proof of H1 bound.

Taking the inner product of (4.1) with (ω, j) and integrating by parts, we obtain

1
2

d
dt

(
∥ω∥2

2+∥j∥2
2
)
+∥∂xω∥2

2+∥∂x j∥2
2+ϵ∥Λδω∥2

2+ϵ∥Λδ j∥2
2

=: J1+ J2+ J3+ J4+ J5, (4.2)

where

J1=2
∫

∂xb1 ∂yu1 jdxdy, J2=2
∫

∂xb1 ∂xu2 jdxdy,

J3=2
∫

∂xu1 ∂yb1 jdxdy, J4=2
∫

∂xu1 ∂xb2 jdxdy, J5=
∫

∂xθωdxdy.

The bounds for J1, J2 J3 and J4 can be found in [1], which are ( for q large enough such
that qδ>2)

|J1|≤
1
48

∥∂xω∥2
2+

ϵ

4
∥Λδ j∥2

2+C∥b1∥
2qδ

qδ−2
q ∥j∥2

2+
1

48
∥∂x j∥2

2

+
ϵ

4
∥Λδω∥2

2+C∥b1∥
2qδ

qδ−2
q ∥ω∥2

2,

|J2|≤
1
48

∥∂xω∥2
2+

1
48

∥∂x j∥2
2+C∥∂xb1∥2

2
(
∥ω∥2

2+∥j∥2
2
)

.
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We can bound J3 similar fashion as J1,

|J3|≤
1

48
∥∂xω∥2

2+
1

48
∥∂x j∥2

2+
ϵ

4
∥Λδ j∥2

2+C∥u1∥
2qδ

qδ−2
q ∥j∥2

2.

J4 can be bounded in a a similar fashion as J2 and

|J4|≤
1
48

∥∂x j∥2
2+C∥∂xu1∥2

2∥j∥2
2.

J5 obeys
J5≤∥θ∥2∥∂xω∥θ .

Inserting the estimates for J1, J2, J3, J4 and J5 in (4.2) yields the desired global H1-bound
for (u,b). The H1- bound for θ is similar to the previous section. One can follow line
to line from previous section to show the global H2-bound. This completes the proof of
Theorem 1.3. �
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