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Abstract. The motion of hydro-magnetic fluid can be described by Navier-Stokes-
Maxwell system. In this paper, we prove global existence and uniqueness for the solu-
tions of Navier-Stokes-Maxwell system in 3 dimensional space for small data.
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1 Introduction

Consider the Navier-Stokes-Maxwell (NSM) system in R3

(u—Au+u-Vu+Vp=jxB,
Ei—VxB=—j,
B,+V xE=0, (1.1)
divu =0, divB=0,
u(x,0)=up(x), B(x,0)=Bo(x), E(x,0)=Ep(x),

where u is the velocity field of the hydro-magnetic fluid, E and B are electrical and mag-
netic fields respectively, p is the pressure, j is the current density, which is governed by
Ohm’s law

j=0(E+uxB).

The constant ¢ is resistance, ug, By, Ep are initial values. Without loss of generality, we
can choose the electric resistivity ¢ =1 hereinafter. The aim of this paper is to prove the
existence of mild solutions of (1.1) in Besov spaces.
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Definition 1.1. We say that (u,E,B) is a mild solution of (1.1) if it satisfies the integral
equations

t !
u(t):etAuo—/O APV (ueu) () — jx B)dF,

E\_ i (Eo _/t (t—tL (VX BY 1.
<B>—e <B0> Oe 0 dt’,

where P: L2 — {u € L?:divu =0} is Leray’s projection operator

P(u)j(x)= (27:),1/2;/ . (5J‘k— fé("z‘ﬁk(g»ei‘f“dg,

—1  curl
L= (—curl 0 )

The motion of charged viscous fluid can be described by the Navier-Stokes-Maxwell
equations, which was derived based on the classical Newtonian dynamics and Maxwell’s
electromagnetism theory.

In 2010, Masmoudi [16] obtained the global existence of the regular solutions of the
Navier-Stokes-Maxwell system in IR?, and proved the exponential growth rate. Duan [8]
derived the Navier-Stokes-Maxwell system from the Vlasov-Maxwell-Boltzmann system
by using the macro-micro decomposition of Liu, et al. [15], he also prove the global ex-
istence of solutions for the Cauchy problem of the compressible NSM system and an-
alyzed the large time behavior of the solutoins. In 2015, Germain et al. [10] study the
well-posedness of mild solutions of the NSM system. Chen and Jiigel [6] analyzed the
global existence of the solutions for the incompressible Navier-Stokes-Maxwell-Stefan
system and proved that the global solution converges to the homogeneous steady state
in time. Yang and Wang [21] proved that the regular solution of the compressible NS-
M system converges to the regular solution of the incompressible NSM system by using
a new energy functional. In 2016, Tan and Tong [19] studied the global existence and
large time behavior of the compressible Navier-Stokes-Maxwell system in IR® with linear
damping. Liu and Su [14] obtained global existence near the constant steady states for
the non-isentropic Navier-Stokes-Maxwell system. Ibrahim et al. [18] established the exis-
tence and asymptotic stability for the time periodic small solutions of the incompressible
Navier-Stokes-Maxwell system in the whole R®.

The study on the weak solutions of partial differential equations usually proceed in
suitable function spaces, Sobolev spaces for examples. Besov spaces can be viewed as
an extension of the classical Sobolev spaces. So the well-posedness of the solutions in
Besov spaces has theoretical value for mathematicians, especially in the case when the
well-posedness is unknown in classical Sobolev spaces. In 1992, Kobayashi and Mu-
ramatu [12] proved the local existence, uniqueness and regularity of the solutions for

and L is the matrix operator
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the Cauchy problem of the unsteady Navier-Stokes equations in Besov spaces. Kozono
et al. [13] proved the local existence for Navier-Stokes equations with initial data lying
in Besov spaces, and established the extension criterion on local solutions based on the
vorticity in homogeneous Besov spaces. In 2012, Bae et al. [1] proved the analyticity of so-
lutions in Besov spaces by using Gevrey estimates in critical Besov spaces, and obtained
the decay estimates. Chikami and Danchin [7] achieved the well-posedness of solutions
for the complete compressible Navier-Stokes equations in the critical Besov spaces. In
2016, Chemin et al. [5] proved the local existence of solutions of the viscous MHD sys-
tem in the whole space R", n=2,3, and obtained uniqueness in 3D case. Fefferman et
al. [9] obtained the local existence and uniqueness of the solutions for the non-resistive
magnetohydrodynamics equation in the optimal Sobolev spaces. In particular, Ibrahim
and Keraani [11] proved the existence and uniqueness of solutions to the Navier-Stokes-
Maxwell system in a product space of Besov and Hilbert spaces. The present work can
be viewed as a modification of theirs.
Our main result can be stated as follows.

Theorem 1.1. Set

X:=B,2(R%) x B}/2(IR%) x B)/*(R?).
There exists a small constant 5> 0 such that for any (uo,Eo,Bo) € X and || (uo,Eo,Bo)||x <9, there
exists a unique global solution (u,E,B) of (1.1) and

ueC(RY;BP)NLARY;BY?), E€L®(RY;B)}?), BeL®(RY;B)}?).

The organization of the paper is as follows. In next section, we will recall the defi-
nitions of Besov spaces, and the embeddings and fundamental inequalities in Besov s-
paces. In Section 3, the a priori estimates of the solutions to an approximation scheme is
obtained. The proof of Theorem 1.1 is given in Section 4.

2 Preliminaries

2.1 Function spaces

Besov spaces can be viewed as an extension of Sobolev spaces. For completeness of the
description, we first review the definitions and properties of Besov spaces. See more
details in for example [3,17,20].

Denote S the test function spaces,

S(R™):={feC®(R")|sup |x*"DF f(x)| < oo,Va,8€Z" },

xeR”

where a, are multi-indexes, a = (a1, ,a,), B=(B1,"**,Bn),

o 0,80 o —
Xt =x71a e x, DFf =
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Let S’ be the space of all linear functionals on S. Conventionally, S is called the Schwartz
space, and S’ is called the space of Schwartz distributions or tempered distributions.

In order to define the Littlewood-Paley operators, we first introduce the following
theorem on the partition of unity.

Theorem 2.1 ([17]). Suppose C is an annulus {{ € R":3/4<|{| <8/3}. Then there exist two
radial functions X (&) € D(B% (0)) and ¢(&) € D(C) such that 0< (&), 9(&) <1and

X@O+Y p@72)=1, VEER,
j0
P2778) =1, V& R"\ {0},
jez
suppp(2~/)Nsuppp(2 ) =0,  |j—f|>2,
suppx(-)Nsuppp(27/-) =0, j>1

Based on the partition of unity on the spectrum space. We impose the following nota-
tions:

x0)=F1R©@), ox)=F (),

where F,F ! are Fourier and inverse Fourier transforms respectively, and define

A'uzzAZ’jDu:Z”/ Yy u(x—y)dy, €z,
{] ¢(27/D) o P@ux—y)dy, ] 21)

Su=x(27'Dyu, jEZ
Definition 2.1 ([17]). Denote S;, the space of all Schwartz distributions u satisfying

lim Su=0, wueS'(R").

j——o0
Use the above notations, we obtain the Littlewood-Paley decomposition.

u=Y A,  ueSy(R"). (2.2)
jez

Definition 2.2 (Homogeneous Besov space, [17]). Suppose s €R, 1 <p,r <co. Define

B, = {feS,Q(R”)HIfIIB;,, <°°}r
where

. 1/r
Ifllgs, = (2N AIL)

jez
Proposition 2.1 ([17]). (B;,r, IE HB;,,) is a normed space. In particular, if s < %, then (B;,,r, IE

| B%r) is a Banach space; For any p >1, Bz/lp is also a Banach space.
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The space (B, |||z ) turns out to be the classical homogeneous Sobolev space H®.
2201183,

The following time-space Besov spaces are first introduced by Chemin and Lerner in
Definition 2.1 of [4] for r=p=2,a=1,s=n/2+1, and generalized later in [2].

Definition 2.3 (Definition 2.67 in [2]). Let p,r,a€[1,00] and s€R. Let i‘}B;/, =L(0, T;B;/,)
be the space of distributions 1 € S, such that

< o0.
I"(z)

95| A
lullzg gy, =214l 0 0
For convenience, we use i”B;,, to represent the space with T = 4-co.

The spaces E%B;J are related with the more classical ones L[a]Bi,’, =4L[a][]([0,T] ;B;rr)
via the Minkowski inequality. Actually, one can prove that

lullzgsy, <lullpgs, fr=a lluligs, 2 lulpgs, fr<e

pr

All the properties of continuity for the product, composition, remainder, and paraproduct
remain true in those spaces in general.

2.2 Embeddings and inequalities

Lemma 2.1 (Bernstein’s inequalities, [11]). There exists a constant C such that for any q,k€IN,
1<a<band f € L*(R"),

sup (|93, £l » < CR290+1G =) |3, £ 1,
la|=k

€Myl < 50p [0 Al SCH2 By o
al=

Lemma 2.2 (Proposition 2.20 of [2]). Let 1 <py < pp <coand 1<ry <rp <oo. For any real
number s, we have the continuous embedding
B3, (R") = By /1172 (R,

1.1

Lemma 2.3 (Proposition 2.39 of [2]). For 1 <p <gq < oo, we have the continuous embedding
Sn/p—n/
B)) T I(R") — L1(R").

Lemma 2.4 ([2]). We have the time estimate

w0l 245y, < C(Htll o o 0l s, + 10l o 1l 5 )

whenever s >0, p,a,a1,a2,a3,a4 € [1,00] and

,00
1 1 1 1 1
a

a, ar az dag
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Let u and v be tempered distributions in S; (IR"). We have by (2.2) that

uo= Z A]'/MA]‘Z).
ez

The key technique of paradifferential calculus is the following Bony decomposition
uv="T,o+T,u+R(u,0), u,0eS; (R"), (2.3)

where . S
Two:=)_ Siwulpw,  Ruv):= Y. Ajuljp.
= i=i'1<1
Lemma 2.5 (Theorem 2.47 of [2]). Let s€ R and t <0. There exists a constant C=C(s,t) such
that for any p,r1,r2 € [1,00], u€ B, . and ve B;

pr2’

1wl gy <Cllulgy,, Noll;,
with %:min{l,%—i—%}.

Lemma 2.6 (Theorem 2.52 of [2]). Let s1,52 € R such that s;+sp > 0. There exists a constant

C=C(s1,52) such that, for any p1,pa,r1,r2 € [1,00], u€ B}, and vEB ),

1RG0} gy <Cllallgs 12l

- 1.1 ,1 1.1 4,1
provzdedthatP.—E+E§1and;.—ﬁ+—<1,

Ty —

3 A priori estimates

In this section, we consider some properties of the Stokes and Maxwell equations.
Multiplying the first line of (1.1) by u, the second line by E, the third line by B, adding
them together, then integrating over IR", we obtain the well-known energy equality

d 1y
3 (Nl + I EIR A+ BIR:) + Tl +0 3 =o.

From the regularity theory of parabolic type system, we have the following estimate
in Besov spaces for the Stokes equation.

Proposition 3.1 (Theorem 3.37 & Remark 3.39 in [2], Lemma 2.3 in [11]). Let u be a smooth
divergence free vector field solving the Stokes equation

diu—Au+Vp=f, (t,x)€[0,T] xR?,
ult=0=to, x€R3.

Then for every 1 <r <p and s € R, there exists a constant C, independent of T, such that

Hu ”C([O,T];B;/l)ﬁigB;HZ/p <C (HMO HB’;,1 + HfHE’fB;f*”’) .
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We can apply energy estimate on the Maxwell system in our desired Besov spaces.

Proposition 3.2. If (E,B) solves equations

Ei—VxB+E=f,

Bi+V x E=0,

divB=0,

B(x,0)=Bo(x), E(x,0)=Ey(x),

(3.1)

on [0,T], then there is a constant C, which is independent of T, such that
|E® lissn s+ IBO gy C(IEoll o+ 1Boll o+ fl 2y )- 3:2)

Proof. Applying the homogeneous Littlewood-Paley operator A j to the first and second
line of (3.1), we obtain

d . .

Adding the inner product of (3.3) and A JE to the inner product of (3.4) and A jB, then
integrating with respect to x over R3, we have that

1d
2dt 2dt

using integration by parts and Young's inequality. '
Let M(t):=||AE|2,+[|A;B||?, and fix e=1/2, so My <C||A;f |12,

IIAEH%NL IIABII L2t I1AEl 2= AjE- A]f<€||AEH%z+ 1AifIIZ, (3.5)

1ABlI7 <M< M(0)+Cll Ajf 1722

The above inequality and (3.5) yield

d .
GMTM<CM(O )FCIAfIIT+ClUAf T2

By Gronwall-type inequality, we know that
t .
M(t) e M(O)+ [ e (CM(0)+ ClIAfIRa(5) + ClIAfIy2 ) ds
<CM(0)+CJ| Af 722 (3.6)
Taking supremum over [0, T] of (3.6), we obtain that
1AE N w2+ 11 2Bl Ee 12 < CllAEoll7+Cll AjBolIF2+CILA £ 172 - (3.7)
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Therefore
1EN g2+ 11Bll gy < C (||EO||B;,/12+ 1Boll 512+ ||szzTB;//12) : (3.8)
Taking integral of (3.6) over [0,T], we obtain by Fubini’s lemma that

T, Tt TP (A 2 -
<c( [ et [ [eidsat)M©)+C [ [ e 0181 (8)+ 1 ) dscs
<CM(0)+CII A2

where the constant C is independent of T. Estimate (3.2) is true. O

4 Proof of the Main Theorem

4.1 One useful lemma

Lemma 4.1. There exists a constant C such that

||f8‘|12T3211/2 SCHszzTB;f||8HE?B;,/12/ (4.1)
||f8HL2T3;1/12 §C||f||z%ggg2||g’|z;ogél/12/ (4.2)
||8Vf”zzngjll/2 §C|\f“zg33f'HS’HE?B;{IZI (4.3)

for all smooth functions f,g defined on some interval [0,T).

Proof. The inequality (4.3) can be obtained by replacing f by V f in (4.1). So we only need
to prove (4.1) and (4.2).

Step 1. To prove (4.1). By Bony’s decomposition, fg=Tsg+T,f+R(f,g). And we
have by Bernstein’s inequality that

HTngizng—ll/z SCZ27j/2’|AjTngL2TL2
' j

SCZ;Zij/ZHAijLZTLZHS]'—lgHL‘%"Lw
]

<CY 22 A (X 220 Arslizee)
j k<j-2

<CY 22 Aifllin (L 2722 Mgl 512
]

k<j—2

<C(T22Af 21z ) (5;2”2||Akgr|mz) <ClIf 2 a2 18l 5272
)
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Similarly,
18l 2,22 <CY 2721 A Tygll 2.0
' j

§C22_j/2’|Ajg||L%°L2Hsj—lfIILzTLw
j

. o
<cy 221 b gl ( L 2722 Afllge) <C iz /a8l rpnye
j k<j—2 ’ ’

The remaining term
IR(f,8) ||1%3511/2 gCZZ‘f/ZHA]-R(f,g) ||L2TL2
' j

<C L 2‘f/2]|Ajf||L2TL2HA]"XHL‘;’LOO
li=i'1<1

o . o .
<C ) 2 ]/2||Ajf||L%L223] /2||Aj’g||L;°L2 §C||f||1z%3;/12’|8||1?3;/12-
li—j'|<1 ’ '

Step 2. To prove (4.2). By Bony’s decomposition and Bernstein’s inequality similarly,
we have

1oz gy SCT22IA el
' J

SCZ2]‘/2||A]'J[HL2TL2||5]'—18||L;°L°o
J

<CY 22 Al X 220 Axglligrz)
]

k<j—2

<CY2 A if g (L 272211 Angllg2)
j k<j—2

<C(L2721A i) (22721 Axgllisez ) <l gz vz 18 e
j K ' '

Similar inequlities of Tf ¢ and R(f,g) can be derived similarl. Hence the inequality (4.2)
holds. O

Now we are ready to prove the main result of this paper.

4.2 Proof of Theorem 1.1.

Step 1. Existence
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Set 1y = Eg= By =0. We use the following iteration scheme to construct a sequence of
approximate solutions (u,,E,,B,) on Rt x R3.

Oty y1— Aty 1 +Vpup1=—ty- Vg +Ey X B+ (uy X By) X By,
atEn—H _Curan-H +Eur1=—uyxBy,

0By 11+curlE, 1 =0,

diVB,H_l = diVLln_H = 0,

Uns1|t=0=Se,,, 40, Ent1li=0="5¢,,,E0, But1li=0=>Ss,,,Bo-
Since lim;_, ; 5; =1, the sequence 6,1 €IN can be chosen such that
1(S6,..1 —Se, ) (10, E0, Bo) [|x <27".

Denote
Z=(L*B,?NL*B3%) x (L*B, 2 NL*By/2) x LB, /2.
Obviously, we have by Lemma 4.1 that
||un -Vun—i—En X Bn+ (I/ln X Bn) X Bn ||I,ZB;11/2

<C (ol g2yrellanll gy + N EN 2yl | Bll oo+ 1l g Bl gy )

By Proposition 3.1, Proposition 3.2 and Lemma 4.1, the family of solutions (u,,E,,B;) are
well-defined and

a1l ooz

< C<||un+1(0) HB;,/]2+ ||unH[:233’/12 HlflnHiooB%Z‘F ||EH123;,/]2HB||iooB;’/12+ HMHizB%Z ||B||%ooB;,/lz)r
1Ew+1ll g g onrzpyz + 1 Bl oy

< C(IIEn+1(0) 5172+ 1B 1 (0) || grrz [l 212 HB”HD"B%).

Let gn = H (Mn,En,Bn) ||Z = ||1/ln Hin%zmiZB%Z + ||En ||i°°B%/12ﬁEZB%/12+ HBn HI:‘”B%Z Then the last
two estimates imply that , , ’ ,

En1<C <H“n+1 (0) HB%Z +||En+1(0) HB%2 +|Bn+1(0) HB%Z) +CEF+CE). (4.4)
Note that

441 (0) | 2+ | w1 (0) | gy 41 Bu+1.(0) [ 512

=1Se,.1t0ll g2+ 11Se,1 Eoll gy + 1S, 1 Boll g2

< . . 1 <.
_||M0||B;l/12+||Eo||3;,/12+||30||3;,/12 <é
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So by (4.4) and & =0, we have that £, <C¢ for any n €N for J sufficiently small. Set for
n>0 that

Dy, ::H (unJrl —un,Ent1—En,Bnia _B") HZ

=ty 11— tn ||ioo3;/12mizgg/12 +||Ens1—En Hioogiflzmizgé/f +1By+1— B Hioogi/lﬁ
Similar arguments applied to u, 1 —u, imply that

Dy <C1|(S6,..,—Sa,) (w0, o, Bo)lx+ CDyo1 (En1+E2 1 +E04E7)
<C27"+CéDy—1.

Hence D, is a Cauchy sequence in R and (u,,E,,B,) is a Cauchy sequence in Z, so it has
a limit (u,E, B) which is a mild solution of (1.1).

Step 2. Uniqueness
It is sufficiently to prove that every solution of (1.1) with initial data (uo,Eo, By) coin-
cides with the small solution we constructed in Step 1. Denote

Foonl/2 ~72p3/2 Foopl/2~72pl/2 Foopl/2
Zr= (LT B’ NLEBY2) x (LY By P NLE B, 2) x LY By 2.

Let (u1,E1,B1) be the small solution in Z we constructed in Step 1, and (uy,E,By) be

another solution in Zt and has the same initial data. The difference (i, E, B) = (u1,E1,B1) —
(u2,Ep,By) solves the system

i~ AT+V=G,
E,~VxB+E=H,
Bi+V xE=0, (4.5)
divii=0, divB=0,

| (x,0)=B(x,0)=E(x,0) =0,

where

G=ExBi+Eyx B+ x By xBi+uyx (BxB1+Byx B)—i-Vuy—uy- Vi,
H:—ﬁXB1—M2XB.

By Proposition 3.1, Proposition 3.2 and Lemma 4.1, we know that

2 /
Foopl/2
L¥ B4

1,E,B)ll2; < Cl|Gllgz 172 +ClI Hll gz
<C HEHE%B;,/leBlHi%OB;,/lZ_'_||B||E?B;,/12‘|E2||i%3;,/12+ ||ﬁ||[%gg£2||31||
1B syplinziz e (1B gy + 1Bl i)

1l gy - ezl g o+ 2 e e
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<CI@EB)lzr (IBill e +11Bi gy + e
+ ||Ezf|12TB;,/12+ ||M2||zz%ggl/12 (1+ ||B1|’E%°B;ﬁ2+ ||Bz||onoB;g2))~

Noting that the norm of uy,B; are small due to its construction, and ||u2||72 3/2, || E2| 72 g1/2
T-21 T-21
are small for T sufficiently small. We can choose T << 1 such that

C 1Bl e+ 1B gyl
+ HEzHizTB%l/lz—i— Hquz%B%Z (1—|— || B1 HE%"B%2+ HBZHE%"B;AZ)) <1.

So ||(i1,E,B)||z, =0, the solution is unique on [0,T]. Iterating on intervals [kT,(k-+1)T],
k=1,2,---, yields the uniqueness on [0,00). O

Remark 4.1. Similar to [11], we proved the global existence for small initial data. Noting
that the LY norm does not necessarily decrease as T goes to zero, so || (#,E,B)||z, is not
small for 0 < T << 1. Therefore, local-in-time existence was not achieved for large initial
data.
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