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Abstract.An acceleration scheme based on stationary iterative methods is presented
for solving linear system of equations. Unlike Chebyshev semi-iterative method
which requires accurate estimation of the bounds for iterative matrix eigenvalues,
we use a wide range of Chebyshev-like polynomials for the accelerating process
without estimating the bounds of the iterative matrix. A detailed error analysis is
presented and convergence rates are obtained. Numerical experiments are carried
out and comparisons with classical Jacobi and Chebyshev semi-iterative methods
are provided.
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1 Introduction

Linear algebraic system arises from almost every field of mathematical applications,
so the problem of solving linear algebraic system is of great importance. Numerous
methods have been presented for this purpose. In general, all the existing methods [1,
3, 4, 6, 9] fall into two categories: direct and iterative methods. In direct methods, one
tries to decompose the coefficient matrix A in the regular system

Ax = b, (1.1)

into some product form; for example in Gaussian elimination method, the coefficient
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matrix A is factored as A = LU, where L and U are lower and upper triangular matri-
ces, we then solve the equivalent two simple systems:

Ly = b, (1.2a)
Ux = y, (1.2b)

which can be solved by using backward and forward substitution methods. By iter-
ative method, one looks for a sequence of approximating solutions {x(k)} while the
coefficients matrix A is unchanged or is just split by some simple procedures.

A large family of iteration methods for solving (1.1) take the form

Mx(k+1) = Nx(k) + b, (1.3)

where
A = M − N, (1.4)

is a splitting of the matrix A. For instance, the well-known Jacobi iteration is a member
of this family with

M = D and N = −(L + U), (1.5)

where D is the diagonal matrix with its entries exactly the same as those in A, and L
and U are the lower and upper triangular matrices extracted directly from A:

L = (lij)n∗n with lij =

{
0, i ≤ j,
aij, i > j,

(1.6a)

U = (uij)n∗n with uij =

{
0, i ≥ j,
aij, i < j.

(1.6b)

Another example is the Gauss-Seidel iteration in which M, N are constructed as fol-
lows

M = D + L, N = −U. (1.7)

The following theorem guarantees the convergence of the iteration methods defined
by (1.3).

Theorem 1.1. Suppose A, M are invertible, and the spectral radius of matrix M−1N is less
than 1, then the iteration sequence {x(k)}∞

k=1 produced by (1.3) will converge to the solution
x = A−1b of the linear system (1.1) for any starting vector x(0).

The above iteration methods may be attractive because of its simplicity, however
the convergence of these so-called stationary methods are usually not satisfactory.
Therefore some acceleration scheme is usually applied to improve the convergence
of these methods. A well-known acceleration method is the Chebyshev semi-iterative
method, which is discussed in [8] as well as in [7]. The following is an introduction to
this method which is a variation of that in [4].
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2 The Chebyshev semi-iterative method

From now on we assume that the iterative matrix G ≡ M−1N is symmetric and its
eigenvalues satisfy:

−1 < α ≤ λn ≤ · · · ≤ λ1 ≤ β < 1. (2.1)

Suppose x(1), · · · , x(k) have been generated via the iteration (1.3), the Chebyshev semi-
iterative method seeks a set of coefficients {ak,i}k

i=0 such that

y(k) =
k

∑
i=0

ak,ix(i), (2.2)

represents an improvement over {x(i)}k
0. Notice that if

x(0) = · · · = x(k) = x,

then it is reasonable to assume that y(k) = x. Hence the following constraint

k

∑
i=0

ak,i = 1, (2.3)

should be imposed on the coefficients.
Let x be the exact solution of the linear system. Note that

e(i) ≡ x(i) − x = Gi(x(0) − x). (2.4)

This yields

y(k) − x =
k

∑
i=0

ak,i(x(i) − x) =
k

∑
i=0

ak,iGi(x(0) − x) =
k

∑
i=0

ak,iGie(0). (2.5)

Consequently,
∥y(k) − x∥2 ≤ ∥pk(G)∥2∥e(0)∥2, (2.6)

where

pk(z) =
k

∑
i=0

ak,izi.

Since
∥pk(G)∥2 = max

λi∈λ(G)
|pk(λi)| ≤ max

α≤λ≤β
|pk(λ)|, (2.7)

we need to create a polynomial pk(z) which is small on [α, β] subject to the constraint
pk(1) = 1 so that the norm of pk(G) as small as possible.

Note that when k is getting larger and larger, the summation in (2.2) would be
inconvenient or even impossible; fortunately Chebyshev polynomials satisfy a three-
term recurrence relation,

ci(z) = 2zci−1(z)− ci−2(z), i ≥ 2, (2.8)
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where
c0(z) = 1 and c1(z) = z.

If we define a polynomial

pk(t) =
ck(ζ(t))

ck(µ)
or ck(z) = pk(t) · ck(µ), (2.9)

where
z ≡ ζ(t) = −1 + 2 · t − α

β − α
and µ = ζ(1),

then pk(1) = 1 and it tends to be very small on [α, β]. Combining (2.8) and (2.9), we
have

pk+1(t) = ω1tpk(t) + ω2 pk(t) + ω3 pk−1(t), (2.10)

where

ω1(k) =
2τ1ck(µ)

ck+1(µ)
, ω2(k) =

2τ2ck(µ)

ck+1(µ)
, ω3(k) = − ck−1(µ)

ck+1(µ)
,

with

τ1 =
2

(β − α)
and τ2 =

(α + β)

(α − β)
.

Let

f (t) = tpk(t) =
k

∑
j=0

ak,jtj+1. (2.11)

From (1.3), one has
x(k+1) = Gx(k) + M−1b. (2.12)

Thus replacing tj by x(j) in f (t) yields a vector in the form Gy(k) + M−1b. Conse-
quently, a three-term recurrence among the {y(k)} is developed:

y(k+1) = (ω1(k)G + ω2(k)I)y(k) + ω3(k)y(k−1) + ω1(k)M−1b, (2.13)

where y(0) = x(0), y(1) = x(1), G = M−1N and I is the identity matrix. From (2.6) it is
easy to see that

∥y(k) − x∥2 ≤ ∥x − x(0)∥2

|ck(µ)|
. (2.14)

So the larger the µ is , the faster the series {y(k)} converge to the exact solution x.

Remark 2.1. 1. Exact lower and upper bounds of α and β are difficult to obtain ex-
cept in a few well structured problems; It is observed that the convergence behavior
of Chebyshev accelerating scheme is very sensitive to the accurate estimation of the
extreme eigenvalues of the iterative matrix;

2. Chebyshev polynomial has the so-called min-max property in [−1, 1], but it
grows much faster than other polynomials of the same order on points outside of the
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interval [−1, 1], this may cause the accumulating error grows very rapidly for values
between -1 and α, β and 1 , thus it is not necessarily a good idea to use higher order
Chebyshev polynomials in the accelerating scheme;

3. Calculation of higher order polynomial function values always has the risk of
excessive rounding-off errors, which in turn will bring unexpected consequence to
the solutions in this case. As a matter of fact, our experiments show increased errors
instead of improvements in relative error when the iteration number exceeds 10.

Based on the above observation, we present a so-called restarting scheme with-
out using Chebyshev polynomials to work as the accelerating process for stationary
iterative methods as stated in the sections followed.

3 A restarted iterative scheme

In this section we will present another acceleration method for the iteration family
defined by (1.3). Our idea looks similar with Chebyshev semi-iterative method, how-
ever instead of using successive refinement upon each iteration, we do refinement
once after a fixed number of iteration, and the improved approximation will be used
again to get more accurate approximation. So the whole process takes two loops: the
inner loop for basic iteration defined by (1.3) and the outer loop is imposed on the
refinement.

3.1 Construction of iterative scheme

Let k be a fixed integer (usually k ≤ 12 is good enough), x(1), x(2), · · · , x(k) are the
approximation to the solution x of system (1.1) generated by (1.3). The goal is to seek
a set of parameter {ai}k

i=0 such that the combination

y(i) =
k

∑
j=0

ajx(j), (3.1)

is a better improvement over x(i), (i = 1, 2, · · · , k). For the same reason as in Cheby-
shev semi-iterative method, we impose a constraint ∑k

i=0 ai = 1, so that when x(0) =
x(1) = · · · = x(k) = x will give us

y(i) = x. (3.2)

To carry out the discussion of iterative scheme, we now introduce some ”Chebyshev-
like” polynomials.

Let pk(x) is any polynomial with degree k which satisfies the following condition:

1. max
x∈[−1,α]

|pk(x)| < ϵ, where α < 1 and ϵ ≪ 1;

2. pk(1) = 1;

3. pk(x) increases monotonically in [α, 1].
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We can easily obtain such kind of polynomials by standard approximation tech-
niques: First define a piecewise continuous function which vanishes on [−1, α] and is
linear on [α, 1], then use interpolation techniques to get a good approximating poly-
nomial.

Now we construct our iterative method in the following:
Restarted Iterative Scheme:

Step 1 Construct a ”Chebyshev-like” polynomial

pk(x) =
k

∑
i=0

aixi,

where k is the degree of the pk(x).
Step 2 For i = 1 to k

do standard iteration (1.3)
end.

Step 3 Construct improved approximation

y(k) =
k

∑
i=0

aix(i),

where ai (i = 0, 1, · · · , k) are the coefficients of pk(x).

Step 4 Compute the relative error in L2 norm for the residuals of y(k). If not satisfying, set x(0) as
y(j) and repeat Step 2 to Step 4.

Apparently there are two loops in the above scheme: the inner loop in Step 2 and
the outer loop which consists of Steps 2, 3 and 4. Unlike Chebyshev semi-iterative
method, a successive refinement after each standard iteration (1.3) is not needed here,
this eliminates the possibility of big accumulated rounding error; furthermore, the
polynomials do not have to meet any recurrence relationship.

3.2 Error analysis

We will see in this section that the error formula is much more precise than what
one can get from Chebyshev semi-iterative method. We assume that the matrix G ≡
M−1N is symmetric with its eigenvalues {λi}n

i=1 satisfy (2.1).
Let

e(i) ≡ x(i) − x, e(i)y ≡ y(i) − x, i = 0, 1, 2, · · · .

Let (λi, vi) be the eigenpair of matrix G ≡ M−1N. Note that {vi}n
1 form a basis of Rn

and we can further assume that it is an orthonormal basis of Rn since G is symmetric.
Suppose e(0) can be expressed under this basis as the following

e(0) =
n

∑
i=1

divi. (3.3)
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Then we have the following result.

Theorem 3.1. Let pk(x) be a polynomial with degree k, (λi, vi) be the eigenpair of G which is
similar to a symmetric matrix, {di}n

1 be defined in (3.3). Then

∥e(r)y ∥2 =
n

∑
i=1

[d2
i p2r

k (λi)], r = 1, 2, · · · , (3.4)

Proof. Noting that

x(i) − x = (M−1N)i(x(0) − x) = Gi(x(0) − x), (3.5)

we have

y(r) − x =
k

∑
j=0

aj(x(j) − x) =
k

∑
j=0

ajGj(x(0) − x) = pk(G)(x(0) − x). (3.6)

Thus
∥y(r) − x∥2 ≤ ∥pk(G)∥2∥x(0) − x)∥2. (3.7)

Note the definition of e(i)y and e(0), (3.6) and (3.7) can be rewritten as

e(r)y = pk(G)e0, ∥e(r)y ∥ ≤ ∥pk(G)∥2∥e0∥. (3.8)

As we have noted before, the error estimation (3.8) is too rough. Hence we need to
explore the structure with more detail.

From (3.3) and (3.6), we have

e(r)y = pk(G)e0 = pk(G)
n

∑
i=1

divi

= ∑
i

di pk(G)vi = ∑
i

di

(
∑

j
ajλ

j
j

)
vi = ∑

i
di pk(λi)vi, (3.9)

which gives that

∥e0∥2 =
n

∑
i=1

d2
i , ∥e(r)y ∥2 =

n

∑
i=1

d2
i p2

k(λi). (3.10)

Now if we reset x(0) as the improved approximation y(i), then do the same iteration
and refinement to get another improved approximation y(r+1), following the same
analysis we get

∥e(r+1)
y ∥2 =

n

∑
i=1

[d2
i p4

k(λi)], (3.11)

where di(i = 1, 2, · · · ) are the original values.
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Generally if we repeat the above process r times, then the error estimate will have
the following form

∥e(r)y ∥2 =
n

∑
i=1

[d2
i p2r

k (λi)], r = 1, 2, · · · . (3.12)

This completes the proof. �

Remark 3.1. One is easy to construct a polynomial pk(z) such that |pk(x)| < 10−1 if |x| ≤
0.95 but k does not need to be very high. In our experiments, we found that k = 7 is good
enough.

Remark 3.2. From Remark 2.1 one can see that if the largest eigenvalue of G in magnitude
is not greater than 0.95, then for each loop of the above restarted iteration scheme, the norm
of the error would be reduced at least 90%. This means that it is possible for us to get a very
good approximation to the exact solution after just a few iterations, which makes it a very good
solver for large scale systems!

From Remark 3.2 one can see that the above restarted iteration scheme is extremely
efficient for those systems in whose

G ≡ M−1N

has a spectral radius not greater than a number less than but close to 1.

4 Numerical experiments

In this section we examine the results of some numerical examples to verify the con-
clusion in Theorem 3.1. Note that from Remark 3.2 we conclude that if we choose
pk(x) satisfying

|pk(x)| ≤ 0.1 for |x| ≤ 0.95,

then by the error formula (3.4) we see that the norm of e(r)y will decrease at least 90%.
The following examples show that restarted iterative method behaviors exactly like
what is predicted. All experiments have been done with Matlab.

Example 4.1. Generation of the system: we generate a system Ax = b of size 150 with
solution x = sin(πx)e1+x, A = M − N and M−1N being symmetric and 0 ≤ λ ≤ 0.96
for λ ∈ λ(M−1N), λ(G) denotes the spectrum of matrix G. k is chosen as 7.

Remark 4.1. 1. The spectrum of M−1N is chosen to fall between 0 and 0.96 for a better
demonstration of the restarted scheme;

2. The relative residual ∥b − A ∗ x∥/∥b∥ is used as the stopping criteria and for
observation as well.

Example 4.2. Generation of the system: we generate a system Ax = b of size 1000
with solution x as in Example 4.1, A = M − N and M−1N being symmetric and 0 ≤
λ ≤ 0.99 for λ ∈ λ(M−1N), λ(G) denotes the spectrum of matrix G. k is chosen as 7.
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Table 1: Example 4.1. Comparison between algorithms.

Jacobi Accelerated Jacobi Chebyshev semi-iter.
iter# rel err iter#* rel err iter# rel err
10 1.6732e-02 5 5.5102e-06 10 6.377
50 2.8303e-03 6 7.1765e-07 50 1.5738e-1
100 2.4902e-04 7 1.7439e-07 100 1.2924e-3
150 2.6169e-05 8 3.0166e-08 150 1.2812e-05
200 2.9986e-06 9 6.1530e-09 200 1.7618e-06
250 3.5303e-07 10 1.1449e-09 250 1.2632e-08
300 4.1790e-08 11 2.2409e-10 300 1.1395e-09
350 4.9405e-09 12 4.2512e-11 340 8.1047e-12
400 5.8215e-10 13 1.0266e-11
450 6.8269e-11 14 2.6330e-12
500 7.9035e-12 15 4.1299e-13

*: Each iteration of accelerated Jacobi method needs k(= 7) Jacobi iterations.

Table 2: Example 4.2. Comparison between algorithms.

Jacobi Accelerated Jacobi Chebyshev semi-iter.
iter# rel err iter#* rel err iter# rel err
200 4.1933e-04 5 8.516e-04 300 7.3532e-03
300 9.0763e-05 10 8.1074e-05 400 1.5552e-03
500 6.0424e-06 15 1.0509e-05 500 7.479e-05
700 5.0311e-07 20 1.5709e-06 600 1.0599e-05
900 4.7894e-08 25 2.5607e-07 700 2.0927e-06

1100 5.1402e-09 30 4.5088e-08 800 4.4771e-07
1300 6.0986e-10 35 8.5377e-09 900 4.3248e-08
1500 7.7409e-11 40 1.7185e-09 1000 3.1937e-09
1700 1.0119e-11 45 3.631e-10 1100 4.4871e-10
1900 1.2622e-12 50 7.9013e-11 1200 9.3449e-11

*: Each iteration of accelerated Jacobi method needs k(= 7) Jacobi iterations.
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Figure 1: Comparison between Jacobi, accelerated Jacobi and Chebyshev semi-iterative methods.

Fig. 1 shows the graphic view of the relative errors via the iteration numbers of
the three methods mentioned above. It seems obvious that our proposed method has
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much better numerical performance than the other two methods while Chebyshev
semi-iterative method does not show too much advantages over Jacobi method.

5 Summary and Comments

We studied an accelerative scheme for stationary iterative method in this paper, which
is based on polynomial accelerative technique as well as restarting strategy. Numer-
ical experiments are carried out to verify the efficiency of the proposed method. It is
observed that our method behaves much better than the classical Jacobi method and
the Chebyshev semi-iterative method.
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