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Abstract. Stress boundary conditions for the lattice Boltzmann equation that are con-
sistent to Burnett order are proposed and imposed using a moment-based method.
The accuracy of the method with complicated spatially-dependent boundary condi-
tions for stress and velocity is investigated using the regularized lid-driven cavity flow.
The complete set of boundary conditions, which involve gradients evaluated at the
boundaries, are implemented locally. A recently-derived collision operator with mod-
ified equilibria and velocity-dependent collision rates to reduce the defect in Galilean
invariance is also investigated. Numerical results are in excellent agreement with ex-
isting benchmark data and exhibit second-order convergence. The lattice Boltzmann
stress field is studied and shown to depart significantly from the Newtonian viscous
stress when the ratio of Mach to Reynolds numbers is not negligibly small.
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1 Introduction

Since its initial developments [1–3], the lattice Boltzmann method (LBM) has become an
established branch of computational fluid dynamics (CFD). Its foundations can appear
to be conceptually different from traditional methods of CFD: rather than discretising
continuum mass, momentum, and possibly constitutive equations directly, the LBM is
derived from a velocity-space truncation of Boltzmann’s equation for gases [4]. This ki-
netic formulation yields a linear, constant coefficient hyperbolic system of equations in
which all nonlinearities are confined to algebraic source terms. The linear differential op-
erators are discretised exactly by integrating along their characteristics and the govern-
ing equations of motion are recovered by seeking slowly varying solutions to the kinetic
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equation. The locality of the lattice Boltzmann algorithm gives it the opportunity to ex-
ploit massively parallel modern computer architectures, including graphics processing
units (GPUs), leading to very fast computations [5].

The lattice Boltzmann equation converges with second-order accuracy in grid spacing
to the solution of the discrete Boltzmann equation, which at fixed Mach and Reynolds
numbers differ from the (weakly) compressible Navier-Stokes equations only by finite
Mach number artefacts and O(Kn2) contributions to the stress, where Kn is the Knudsen
number [6–8]. By von-Karman’s relation, Kn ∝ Ma/Re. The finite Mach number errors in
standard lattice Boltzmann models are of order O(Ma3). They appear in the stress tensor
and break Galilean invariance. They arise because the discrete Maxwellian equilibria are
truncated at second-order in velocity and cannot be removed completely on the standard
nearest neighbour integer lattices that are commonly in use (e.g D2Q9, D3Q15, D3Q19,
or D3Q27 lattices). Hazi and Kavran [9] proposed adjusting the third order moment to
restore Galilean invariance in axis-aligned shear flows but defects still existed in the diag-
onal components of the momentum flux tensor. Building on this, Dellar [10] showed that
these defects can be eliminated when the LBM density is constant and reduced to O(Ma5)
otherwise if a collision operator with velocity-dependent relaxation times is used. A sim-
ilar approach was proposed by Geier et al. [11] to reduce the defects under diffusive
scaling by adjusting the equilibria in the cumulant lattice Boltzmann method.

Although usually neglected, the deviatoric stress that is naturally embedded in the
LBM moment PDE system is governed by non-Newtonian constitutive equation that in-
cludes “Burnett order” contributions, as shown by Dellar [12]. Thus, computations of the
stress with the LBM with large relaxation times can yield physically meaningful results
that do not agree with the Navier-Stokes equations. This has implications for lattice Boltz-
mann methods for rarefied flow, the LBM at low Reynolds numbers, and the calculation
of forces on bodies using the LBM (since the non-equilibrium contribution to the moment

flux Π
(1)
αβ =−µ(∂αuβ+∂βuα)+O(τ2)) and, as discussed in detail here, the implementation

of boundary conditions. Imposing stress boundary conditions that are local, second-
order accurate, and consistent with the moments of the truncated Boltzmann PDE is not
easily achieved with most lattice Boltzmann implementations. Furthermore, the stress
at a boundary may depend on the velocity in a non-trivial way and even constraints on
the velocity field can be difficult to implement precisely with lattice Boltzmann when
uwall =uwall(x) is not constant.

At first, imposing boundary conditions on the lattice Boltzmann algorithm appears
straightforward: one must supply values for the distributions fi (see equation 2.1) on
“incoming” characteristics pointing into the domain. The popular D2Q9 lattice (Fig. 2)
has three unknown incoming distributions at boundaries aligned with grid points and
lattice Boltzmann boundary conditions specify the values of these distribution functions
in terms of those that are known. Incoming distributions at boundary nodes can be de-
termined by a simple reversal in the particles’ velocity; an approach known as “bounce-
back”. Some steady state solutions of the linearised (continuous) Boltzmann equation
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with bounce-back boundary conditions were found by Cercignani [13]. Ladd [14] showed
that the lattice Boltzmann method with bounce-back and momentum exchange bound-
ary conditions can recover exact solutions to Couette flow (a linear velocity profile) when
the boundary is placed precisely half-way between layers of grid points. His simulations
of force-driven Poiseuille flow, with bounce-back boundary conditions, however, were
subject to error. It is now well-known that this error is due to an unphysical “numerical
slip” at solid boundaries that is second-order in grid spacing, ∆x, provided the boundary
is placed correctly between grid points [7, 15].

The slip error can be removed using a multiple relaxation time (MRT) or a two relax-
ation time (TRT) model with a very specific relationship between the relaxation times of
the momentum flux (which defines the viscosity) and the third moment of the lattice dis-
tribution functions: the numerical slip is eliminated if the product of these two relaxation
times, often called the “magic parameter” Λ, is set to be 3/16 in so-called lattice units [15].
That is, the boundary condition on the third moment is tuned until the tangential veloc-
ity vanishes at the required location. The magic parameter Λ also affects the effective
stencil for the flux of the non-conserved moments and thus influences the stability and
accuracy of the entire algorithm [16–19]. In particular, Λ= 1/4 removes the recurrence
in higher moments, and so is sometimes considered to be the most stable choice of relax-
ation times [16,17]. The choice Λ=1/6 removes a fourth-order spatial error and Λ=1/12
a third order spatial error [19,20] but none of these numerically favourable options elim-
inate the numerical artefact due to bounce-back boundary conditions. In addition, it is
not always easy to impose hydrodynamic boundary conditions other than no-slip for
stationary walls with the bounce-back methods. But it must be noted that, despite some
known errors, the bounce-back method is often the most useful way of implementing
boundary conditions for the LBM in complex geometries: as well as its flexibility in ir-
regular domains, in comparison with other methods it is numerically stable at quite high
Re numbers even when used with the BGK collision operator, and the spurious slip is
small when τ is very small.

Maxwell’s diffuse reflection boundary condition [21] involves the incoming
Maxwellian distribution function with the overall amplitude set to zero to ensure zero
mass flux through the wall. The wall velocity is specified in the Maxwellian, allowing
the effects of moving walls to be incorporated with relative ease, while the wall density
is found from the zero mass flux condition. A discretisation of Maxwell’s diffuse reflec-
tion boundary condition to a finite set of particle velocities was first proposed by Broad-
well [22] and studied further by Gatignol [23]. This approach has since been adopted
by Ansumali and Karlin for the lattice Boltzmann equation [24] and studied further by
Kim et al. [25] and Brookes et al. [26]. In steady unidirectional flows, the on-node D2Q9
implementation of Maxwell-Broadwell boundary conditions with a unit accommodation
coefficient (diffuse reflection) is equivalent to setting the incoming distribution functions
to their equilibrium values [27]. The numerical slip velocity persists [28] and is one order
in grid spacing, ∆x, larger than in bounce-back [7]. In fact, all lattice Boltzmann models
which have distributions of particles travelling tangential to a boundary will include a
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numerical slip error if the applied boundary conditions do not explicitly consider these
“grazing” molecules [23].

Most LBM implementations of boundary conditions are formulated in terms of the
distribution functions, fi. However, hydrodynamics are recovered from moments of the
fi. The lattice Boltzmann equation has a finite set of particle velocity distribution func-
tions which can be mapped to a moment basis by a linear, invertible, transformation.
Thus an alternative method for implementing boundary conditions would be to impose
conditions on the hydrodynamic moments at a boundary and then translate these into
conditions for the unknown variables. This needs to be done in a way that uniquely de-
termines the incoming fi (see Section 5 and Table 1). The spirit of this method was first
proposed by Noble et al. [29] who imposed constraints on the two fluid velocity com-
ponents, u = 0, to determine the two incoming distributions at an axis-aligned planar
boundary on the hexagonal FHP lattice [30]. The D2Q9 lattice is more complicated. It has
three incoming distributions at boundaries aligned with grid points and thus requires
three moment constraints. This was recognised by Wagner and Yeomans [31] who used
a similar methodology to impose continuity of the normal velocity and tangential com-
ponent of the pressure tensor for Lees-Edwards sliding periodic boundary conditions for
shear flow. Bennett [32] generalised the approach of Noble et al. [29] with the “moment-
based method”. The moment-based method may be considered as a systematic study
of which moment conditions are compatible with uniquely determining incoming distri-
bution functions. At solid boundaries aligned with grid points, for example, it usually
imposes conditions on each component of the momentum and an additional boundary
condition on the tangential component of the momentum flux (i.e the stress); the only
remaining independent hydrodynamic moment for the D2Q9 velocity set (see Table 1 in
Section 5). This approach, like all other on-node boundary conditions, is not easily ex-
tended to complicated geometries where boundaries are not aligned with grid points. It
does, however, provide a general methodology for imposing hydrodynamic conditions
(on velocity, pressure, or stress) locally and precisely at grid points and has been shown
to be very accurate [33]. The moment-based method has already been employed to im-
plement diffusive slip in binary gases [34], Navier-Maxwell slip [35, 36], contact angles
in multiphase flows [37], and Dirichlet and von-Neumam conditions for natural convec-
tion [38].

Previous applications of the moment method determine the tangential momentum
flux at a boundary by imposing ∂xux = 0. Moreover, it was always implicitly assumed
that the deviatoric stress, T, is given by Newtonian constitutive equation [32–35, 37–39].
A closer inspection shows that the stress obtained from the D2Q9 discrete velocity Boltz-
mann equation includes a non-zero Burnett contribution at second-order in relaxation
time that reassembles a non-objective viscoelastic constitutive equation [12]. Thus, the
Navier-Stokes stress boundary condition is inconsistent with the underlying partial dif-
ferential equation and a correct, more sophisticated, set of constraints is sought. This
becomes yet more complicated with a boundary moving with a spatially-dependent ve-
locity, as is the case with the regularised lid-driven cavity flow.
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Figure 1: Plot of the tangential stress in planar channel flow using the LBM with moment-based boundary
conditions (“Numerical”) compared with the solution from the discrete Boltzmann equation (“Analytical”).
The plot on the left uses the original Navier-Stokes stress condition and the plot on the right the Burnett stress
condition.

To demonstrate and highlight this inconsistency we consider the indicative case of
steady planar channel flow with no-slip walls. The velocity field is one-dimensional,
u= (ux(y),0), so the tangential component of the stress in the Navier-Stokes equations
vanishes, Txx =0. However, the solution computed by the lattice Boltzmann equation is
somewhat different, as shown in Fig. 1. Here the Reynolds number in Re= 100 and the
parabolic profile is indicative of behaviour beyond the Navier-Stokes level of description.
The general quadratic solution comes from the lattice Boltzmann equation, and not its
boundary conditions. In the plot on the left of Fig. 1 the original moment-based method
with the “Navier-Stokes” stress boundary condition has been used. The spurious oscil-
lations emanating from the walls are striking. We argue that these arise from imposing a
boundary condition for the Navier-Stokes stress, rather than for the stress embedded in
the discrete Boltzmann equation. More specifically, the solution of the tangential stress
from the discrete Boltzmann equation in this flow is Txx =−2µτ(u′

x)
2 (c.f. Section 4.1),

where µ is the dynamic viscosity, τ is the BGK relaxation time, and the prime denotes
differentiation with respect to the normal coordinate y. This stress does not vanish at
solid walls but the original moment-based boundary conditions sets Txx = 0. This mis-
match causes oscillations in the numerical solution at the walls that can infect the entire
flow domain, possibly generating numerical instabilities. By imposing a consistent con-
dition for the stress (see Section 5) we can remove the spurious behaviour and compute
very accurate solutions to the tangential stress. It should be noted that the moment-based
method with the Navier-Stokes stress conditions gives the exact solution for the velocity
in Poiseuille flow on just three grid points.

Lid-driven cavity flow has been used many times to assess lattice Boltzmann models.
Hou et al. [40] provided the first detailed numerical evaluation of LBE computations of
cavity flow but more recent developments have allowed for a significant improvement in
accuracy [41]. Gorban and Packwood [42] and Brownlee et al. [43] used the classical lid-
driven cavity flow to study the stability of lattice Boltzmann algorithms and concluded
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that multiple relaxation time models and filtering techniques are superior to BGK and
entropic collision models. Mohammed and Reis [39] used the cavity flow to assess the
moment-based method with simple boundary conditions and although they reported
very accurate results in agreement with the most sophisticated numerical methods when
using an MRT collision operator they also found that the method becomes unstable at
higher Reynolds numbers on coarse meshes when used with the BGK collision opera-
tor (as is this case with other on-node methods – they are less stable than bounce back
when used with BGK). The classic lid-driven cavity flow has stress singularities in the
upper corners where the moving horizontal lid meets stationary vertical walls. In was
suggested in [39] that this may be the cause of instabilities of the moment-based bound-
ary conditions at high Re on coarse meshes. To circumvent the singularity we simulate
here the so-called “regularized” cavity [44], where the velocity of the lid (north horizontal
boundary) in box 0≤ x,y≤1 is a smooth function of the horizontal coordinate x:

u|lid=(ux(x,1),uy(x,1))=(16x2(1−x)2,0), 0≤ x≤1, (1.1)

rather than a constant. All boundaries are no-slip and u=(0,0) at all other boundaries.
The maximum velocity of the lid is ux(1/2,1) = 1. Like the simpler and more common
constant velocity case, characteristic features of this flow include the development of
vortex regions in the cavity: for small to moderate Reynolds numbers a primary vortex
develops near the centre of the domain with two weaker ones in the vicinity of the bottom
corners; for larger Reynolds numbers a further vortex develops in the upper left-hand
corner.

The velocity condition (1.1) influences the stress field since it has non-vanishing gra-
dients. This is important for moment-based methods that attempt to impose hydrody-
namic constraints directly (see Section 5). Moveover, this adds an extra layer of complex-
ity when one realises that the constitutive equation for stress is non-Newtonian. More
specifically, it will be shown in Section 5 that the tangential stress on the boundary that
needs to be implement in the lattice Boltzmann algorithm is

Txx=
2µ(∂xux−τux∂xxux)−2

T2
xy

Πyy

1+2τ∂xux
+O(Ma3), (1.2)

where µ is the dynamic viscosity of the fluid, τ is the stress relaxation time, Txy is the
off-diagonal component of the deviatoric stress, and Πyy is the normal component of the
momentum flux. It is clear that it is non-Newtonian, for otherwise Txx=2µ∂xux (and for a
Newtonian fluid with a homogenous velocity boundary conditions Txx =0) and not eas-
ily implemented with methods formulated in terms of the distribution functions. Despite
their complexity, these quite general stress and velocity conditions can be imposed sim-
ply and locally at grid points with the moment-based methods discussed in this article.
The method developed here is validated against data from spectral simulations and used
to examine the LBM stress field in low Reynolds number flows. Furthermore, an LBM
without cubic defects in Galilean invariance which is shown to reduce the Mach number
error in Eq. (1.2) to O(Ma5) is discussed and used for additional assessment.
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2 The discrete Boltzmann equation

The discrete Boltzmann partial differential equation

∂ fi

∂t
+ξ i ·∇ fi =− 1

τ

(

fi− f
(0)
i

)

(2.1)

describes the evolution of a finite set of distribution functions fi corresponding to pop-
ulations of particles moving with a finite set of discrete particle velocities {ξ i} [4, 45].
The left hand side of Eq. (2.1) describes the propagation of fi with velocity ξ i. The right
hand side of Eq. (2.1) describes the net effect of particle interactions, which is to relax the

distributions to their local equilibria f
(0)
i with a single relaxation time τ (the BGK opera-

tor [46]). We focus on the D2Q9 lattice [2] shown in Fig. 2 but the methodology presented
here is applicable to other discrete velocity sets.

The equilibria f
(0)
i are functions of the fluid density ρ and velocity u, as defined in

Eq. (2.4) below, and can be derived from a small Mach number Ma= |u|/cs (cs=c/
√

3 for
D2Q9 when c≫|u| is the particle speed) expansion of the discretised (in particle veloc-
ity space) Maxwell-Boltzmann distribution. Up to second-order in Ma the equilibrium
functions are [2, 4],

f
(0)
i =wiρ

(

1+3ξ i ·u+
9

2
(ξ i ·u)2− 3

2
|u|2

)

, (2.2)

where the D2Q9 weights are given by

wi=











4/9, i=0,

1/9, i=1,2,3,4,

1/36, i=5,6,7,8.

(2.3)

Macroscopic quantities are defined as the moments of fi. The set of 9 particle ve-
locities permits 9 independent moments. Six of these correspond to the hydrodynamic
quantities of density, momentum, and momentum flux:

ρ=∑
i

fi; ρu=∑
i

fiξ i; Π=∑
i

fiξ iξ i. (2.4)

Taking moments of the discrete Boltzmann equation (2.1) yields the evolution equations

∂tρ+∇·(ρu)=0, (2.5a)

∂t(ρu)+∇·Π=0, (2.5b)

∂tΠ+∇·Q=− 1

τ

(

Π−Π
(0)

)

, (2.5c)

where Q=∑i fiξ iξ iξ i. The right hand sides of Eqs. (2.5a) and (2.5b) vanish because mass

and momentum are conserved by collisions (moments of Eq. (2.2) give ∑i f
(0)
i = ρ and

∑i ξ f
(0)
i = ρu). The momentum flux Π relaxes towards its equilibrium Π

(0) on the colli-
sional timescale τ, as shown by Eq. (2.5c).
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Figure 2: The nine particle propagation velocities ξ0,. . .,ξ8 in the D2Q9 integer lattice.

2.1 Classical recovery of fluid equations

We seek solutions to the discrete Boltzmann equation (2.1) that vary slowly over
timescales much longer than the collision time τ. That is, we expand the non-conserved
moments and the time derivative as a series in the collision time τ:

Π=Π
(0)+τΠ

(1)+··· , Q=Q(0)+τQ(1)+··· , ∂t =∂t0+τ∂t1
+··· . (2.6)

The expansion of the time derivative is necessary to suppress secular terms that would
otherwise disorder the expansion on long timescales t=O(1/τ) [47,48]. Substituting the
above into the moment system (2.5a)-(2.5c) and neglecting terms of O(τ2) yields, after
some algebra,

∂tρ+∇·(ρu)=0, (2.7)

∂t(ρu)+∇·
(

Π
(0)+τΠ

(1)
)

=0, (2.8)

where

Π
(0)=

1

3
ρI+ρuu, Π

(1)=−1

3
ρ
(

∇u+(∇u)T
)

+∇·(ρuuu). (2.9)

The last term in Π
(1) is an error term of O(Ma3) which breaks Galilean invariance [49].

A method for restoring Galilean invariance completely for incompressible flows, and
reducing the defect to O(Ma5) otherwise, was recently proposed by Dellar [10]. This will
be discussed further in Section 3.2. A similar approach for restoring or improving to the
same order Galilean invariance was developed under the diffusive scaling by Geier et
al. [11].
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3 Lattice Boltzmann implementation

A numerical algorithm for solving the discrete Boltzmann equation can be obtained by
first integrating (2.1) along a characteristic for time ∆t:

fi(x+ξ i∆t,t+∆t)− fi(x,t)=
∫ ∆t

0
Ci(x+ξ is,t+s)ds, (3.1)

where Ci represents the collision operator on the right-hand side of (2.1). The left hand
side of (3.1) is exact, and the integral on the right-hand side can be approximated using
the trapezoidal rule:

fi(x+ξ i∆t,t+∆t)− fi(x,t)=
∆t

2

(

Ci(x+ξ i∆t,t+∆t)+Ci(x,t)
)

+O(

∆t3
)

. (3.2)

This is a second-order accurate but implicit system of algebraic equations. Following He
et al. [50] we perform the change of variables

f i(x,t)= fi (x,t)+
∆t

2τ

(

fi (x,t)− f
(0)
i (x,t)

)

. (3.3)

The previous implicit scheme (3.2) can now be rearranged into an explicit algorithm for
the f i at the new timestep:

f i(x+ξ i,t+∆t)= f i (x,t)− ∆t

τ+∆t/2

(

f i(x,t)− f
(0)
i (x,t)

)

. (3.4)

Thus we discard the fi and evolve instead the f i according to (3.4). The grid spacing and
time step are related to each other through the discrete particle velocity c=∆x/∆t≫1.

Density and momentum are conserved by collisions, and so can be obtained directly
from moments of the f i:

ρ=∑
i

fi =∑
i

f i, ρu=∑
i

fiξ i=∑
i

f iξ i. (3.5)

Non-conserved moments, such as the momentum flux Π (which includes the stress), are
found by taking moments of the transformation equation (3.3), which gives

Π=
2τΠ+∆tΠ

(0)

2τ+∆t
, (3.6)

where Π=∑i f iξ iξ i.
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3.1 Multiple relaxation times

The D2Q9 lattice Boltzmann equation has 9 independent moments but only 6 of these are
needed to recover the Eqs. (2.7), (2.8), and (2.9). The three additional “ghost” moments do
not directly contribute to these equations but they can have a profound effect on the nu-
merical stability of the lattice Boltzmann algorithm. To simulate flows at high Reynolds
numbers without excessive resolution, one must generally over-relax the velocity distri-
bution functions, f i, rather than relaxing them to equilibrium monotonically [51]. This

causes the non-equilibrium part of f i to oscillate from timestep to timestep; potentially
jeopardising numerical stability. Multiple relaxation time (MRT) models are usually con-
structed to over-relax the hydrodynamic moments only, while damping oscillations in the
ghost (or “kinetic”) moments. For a detailed discussion of the theory of, and motivation
for, MRT models, we refer the reader to [3, 14, 42, 43, 51, 52].

Following Dellar [51], we construct an orthogonal basis in R
9 with respect to the

weighted inner product with weights wi by defining the non-hydrodynamic, or “ghost”,
moments

JJJ =
8

∑
i=1

hi fiξ i, N =
8

∑
i=1

hi fi, (3.7)

where hi =(1,−2,−2,−2,−2,4,4,4,4)T. The moments Jx, Jy and N are related to Qxxy,
Qxyy, and Rxxyy as follows:

Qxxy=
1

3
ρuy+

1

6
Jy, Qxyy=

1

3
ρux+

1

6
Jx, (3.8)

Rxxyy=−1

9
ρ+

1

3
Πxx+

1

3
Πyy+

1

9
N . (3.9)

The velocity distribution function f i can now be written as

f i=wi

(

ρ+3(ρu)·ξ i+
9

2

(

Π− ρ

3
I
)

:

(

ξ iξ i−
1

3
I

))

+wihi

(

1

4
N+

3

8
ξ i ·JJJ

)

, (3.10)

where the “barred” variables are moments of f i. The equilibrium ghost moments are

N (0)
=J (0)

α =0. One now performs collisions directly upon the non-conserved moments
Π, JJJ , and N (each potentially relaxing according to its own collisional timescale) and
then reconstructs the post collision distribution function according to Eq. (3.10). A com-
mon MRT model ensures that the non-hydrodynamic momentsJJJ and N decay instanta-
neously to the equilibria (which are zero) after collisions (so that their relaxation times are
1/2 in lattice units). This approach was proposed initially by Ladd [14] and has recently
been referred to as the “regularized” lattice Boltzmann equation [53].

Two-relaxation time (TRT) models relax odd and even order moments at different
rates. That is, Π and N relax to their equilibria with a relaxation time τ determined
by the fluid velocity, and JJJ relaxes to its equilibrium according to a different relaxation
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time, τJ , judiciously chosen to optimise numerical stability. We use two values of the
magic parameter Λ= ττJ . The choice Λ= 1/4 truncates the recurrence relation for the
non-conserved moments, and has been shown to offer favourable stability properties
[16, 17, 54], while Λ=1/6 removes a fourth-order spatial error [19, 20].

3.2 Cubic correction to the stress tensor

The third-order moment Q(0) of the (continuous) Maxwell-Boltzmann equilibrium func-
tion has terms of third order in Mach number [46]. These are missing in the third mo-
ment of the lattice Boltzmann quadratic equilibria (2.2) and their absence results in the
τ∇·(ρuuu) error term in the viscous stress tensor Π

(1) in Eq. (2.9) that breaks Galilean
invariance. The D2Q9 lattice does not have enough degrees of freedom to specify all
components of Q(0) independently of lower order moments.

The off-diagonal components of Q(0) can be corrected on the D2Q9 lattice and set
to [9]

Q
(0)
xxy=

1

3
ρuy+ρu2

xuy, Q
(0)
xyy=

1

3
ρux+ρuxu2

y.

Thus, from Eqs. (3.8) and (3.9),

J (0)
x =6ρuxu2

y, (3.11)

J (0)
y =6ρu2

xuy. (3.12)

This is sufficient to correct the error in Π
(1)
xy but not in Π

(1)
xx or Π

(1)
yy . However, it can be

shown that

τΠ
(1)
xx =−2

3
ρτ∂xux+τ∂x

(

ρu3
x

)

=−2

3
ρτ∂xux+3τρu2

x∂xux+τu3
x∂xρ

=−2

3
ρτ

(

1− 9u2
x

2

)

∂xux+τu3
x∂xρ. (3.13)

A similar expression can be found for τΠ
(1)
yy . Following Dellar [10], the lattice Boltzmann

collision operator can be adjusted to apply a relaxation time τxx = τ[1−9u2
x/2]−1 to Πxx.

If we replace τ in the last line of Eq. (3.13) with τxx, τΠ
(1)
xx becomes

τΠ
(1)
xx =−2

3
ρτ∂xux+τ

(

2

2−9u2
x

)−1

u3
x∂xρ. (3.14)

The second term in Eq. (3.14) is O(Ma5), thus reducing the non-Galilean invariant error

by two orders in Mach number. Likewise, the error in τΠ
(1)
yy can be reduced by O(Ma2)

by taking its collision time to be τyy=τ[1−9u2
y/2]−1.
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3.3 Implementation of the collision step

We implement the cubic correction model with multiple relaxation times as follows. The
non-conserved moments relax to their equilibria according to

Π
′
xy=Πxy−

∆t

τ+∆t/2

(

Πxy−Π
(0)
xy

)

, (3.15)

Π
′
xx=Πxx−

∆t

τxx+∆t/2

(

Πxx−Π
(0)
xx

)

, (3.16)

Π
′
yy=Πyy−

∆t

τyy+∆t/2

(

Πyy−Π
(0)
yy

)

, (3.17)

JJJ ′=JJJ − ∆t

τJ+∆t/2

(

JJJ −JJJ (0)
)

, (3.18)

N ′
=N− ∆t

τN+∆t/2

(

N−N (0)
)

, (3.19)

where the primes denote post-collisional quantities and N (0)=0. The collision algorithm
is then:

1. compute the moments of f i;

2. compute the equilibrium moments;

3. relax the moments according to Eqs. (3.15)-(3.19);

4. reconstruct the distribution functions using Eq. (3.10) and the post-collisional mo-
ments.

If the cubic correction is used, J (0)
x and J (0)

y are given by Eqs. (3.11) and (3.12) and τxx

and τyy are given above; otherwiseJ (0)J (0)J (0)=0 and τxx=τyy=τ. Here the relaxation time τJ is

determined according to the value of Λ and we set τn=τ. Note that J (0)
x =J (0)

y =0 at no-
slip boundaries and the cubic correction does not interact with the boundary conditions
considered here.

4 Constitutive equation embedded in the LBM

Eqs. (2.7)-(2.9) derived from the discrete Boltzmann equation using the expansion trun-
cated at first order in τ are the Navier-Stokes equations for a weakly compressible Newto-
nian fluid with an ideal equation of state for the pressure p=ρ/3 and dynamic viscosity
µ = ρτ/3. However, the discrete Boltzmann equation (like the continuous Boltzmann
equation) predicts further contributions to the stress field beyond the Navier-Stokes or-
der, at O(τ2) – the so-called Burnett order. If we take moments of Eq. (2.1) with respect
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to the peculiar velocity ci =ξ i−u, the left hand side of Eq. (2.5c) becomes [12, 55, 56]

∂tΠαβ+∂γQαβγ=∂t

(

Π
(0)
αβ −Tαβ

)

+∂γ

[

Sαβγ+uα

(

pδβγ−Tβγ

)

+uβ(pδγα−Tγα)

+ uγ

(

pδαβ−Tαβ

)

+ρuαuβuγ

]

, (4.1)

where Tαβ = pδαβ−∑i ciαciβ fi = Π
(0)
αβ −Παβ is the deviatoric stress tensor, and Sαβγ =

∑i ficiαciβciγ. The mass and momentum conservation equations (2.7) and (2.8) can be

used to evaluate ∂t

(

ρuαuβ

)

, which arises from the temporal derivative of Π
(0)
αβ on the

right-hand side of (4.1). Following Dellar [12] we assume the collision operator is con-
structed so that the relaxation time for third order moment is small compared to the stress
relaxation time so that it is always close to equilibrium, but we do not neglect the O(Ma2)
and smaller terms. This yields the LBM deviatoric stress

Tαβ+τ
[

∂tTαβ+uγ∂γTαβ+Tαγ∂γuβ+Tβγ∂γuα+Tαβ∂γuγ

]

=µ
(

∂βuα+∂αuβ

)−τ∂γ

(

ρuαuβuγ

)

. (4.2)

Eq. (4.2) is the equation for stress that is embedded within the lattice Boltzmann model
and it is clearly non-Newtonian (for the incompressible Navier-Stokes equations Tαβ =
µ
(

∂βuα+∂αuβ

)

). Thus one expects to see LBM computations for the stress to depart from
the Navier-Stokes stress when τ is small (i.e. when Kn ∝ Ma/Re ≫ 0). Eq. (4.2) resem-
bles the Upper Convected Maxwell (UCM) model of viscoelasticity [57] but there is a
compressible term and an O(Ma3) term, and the third and fourth terms in the square
brackets have opposite signs in the UCM model. Lattice Boltzmann boundary conditions
that do not consider the underlying moment PDE system may be vulnerable to additional
numerical errors and instabilities.

4.1 Wall stress

We discuss here the wall stresses at a moving boundary with particular reference to the
upper horizontal wall of the regularised lid-driven cavity flow discussed in Section 1.
That is, where

(ux(x,1),uy(x,1))=(16x2(1−x)2,0), 0≤ x≤1, (4.3)

in a box 0≤x,y≤1 with no-slip walls. Similar expressions can be derived easily for other
boundaries and the conditions are simplified for stationary walls or walls moving with
a constant velocity. We assume the flow at the wall is quasi-steady (so we can neglect
the temporal derivative of T) and near incompressibility. Then the components of the
deviatoric stress (4.2) at the boundaries are

Txx+τ
[

ux∂xTxx+2Txx∂xux+2Txy∂yux

]

=2µ∂xux−τ∂x

(

ρu3
x

)

, (4.4)

Txy+τ
[

ux∂xTxy+Txy∂yuy+Txy∂xux+Tyy∂yuy

]

=µ∂yux, (4.5)

Tyy+τ
[

ux∂xTyy+2Tyy∂yuy

]

=2µ∂yuy. (4.6)
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Since we assume ∇·u= 0 at the wall and we are allowing for the case u= u(x), ∂yuy =
−∂xux at the wall. Furthermore, to consistent order the convective term in Eq. (4.6) is
τux∂xTyy = 2τµux∂yuy =−2τµux∂xux, which can be computed exactly since u= u(x) is
given. Thus, the normal component of the stress is

Tyy=
2µ(τux∂xxux−∂xux)

1−2∂xux
. (4.7)

Note that in the case of a boundary moving with a constant velocity, Tyy =0. By similar
arguments, the off-diagonal component becomes

Txy=τ∂yux

(ρ

3
−Tyy

)

=τΠyy∂yux, (4.8)

where we have used the fact that ∂xyux =−∂yyuy, by the continuity condition, and made
the approximation that this is zero since the velocity near the boundary is predominately
in the x direction. Note that if ux is constant then Txy = µ∂yux, which is the Newtonian
shear stress at the wall. Finally, we find an expression for the tangential component of
deviatoric stress at the moving boundary. We will drop the O(Ma3) term for the time
being and note that to consistent order the convective term in Eq. (4.4) is τux∂xTxx =
τux =2τµux∂xxux. Then rearranging (4.4) gives

Txx=
2µ(∂xux−τux∂xxux)−2

T2
xy

Πyy

1+2τ∂xux
. (4.9)

All terms in Eq. (4.9) can be computed exactly and locally at grid points. Note that the
tangential stress at the boundary reduces to Txx =−6T2

xyρ=−µτ(∂yux)2 when ∂xux =0.

When the cubic correction discussed in Section 3.2 is implemented and τ is replaced
by τxx =τ(1−9/2u2

x)
−1 the constitutive equation (4.4) becomes

Txx+
τ

1−9/2u2
x

(

ux∂xTxx+2Txx∂xux+2Txy∂yux

)

=
τ

1−9/2u2
x

(

2

3
ρ∂xux−∂x

(

ρu3
x

)

)

=
τ

1−9/2u2
x

(

2

3
ρ∂xux−3ρu2

x∂xux−u3
x∂xρ

)

=τ

(

2

3
ρ∂xux−

u3
x

1−9/2u2
x

∂xρ

)

. (4.10)

That is, the right hand side of Eq. (4.10) is the same as the right hand side of Eq. (3.14)
and the non-Galilean invariance error of Eq. (4.9) is reduced by two orders of magnitude
in Mach number.
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5 Moment-based boundary conditions

We consider solid boundaries that are located precisely on lattice nodes. After each
streaming step the distribution functions at a boundary node with particle velocities
pointing into the fluid are not known. To fix ideas, imagine a horizontal boundary lo-
cated along the top row of grid points. Here, f 4, f 7 and f 8 (see Fig. 2) are unknown after

each streaming step and must be supplied by the boundary conditions. All other f i at the

boundary are known from the algorithm. To find the three unknown f i we need three
linear independent equations.

While the Boltzmann equation in continuous kinetic theory has an infinite hierarchy
of velocity moments, the lattice Boltzmann equation has an invertible relation between
the f i and a finite set of independent moments. Thus one may consider specifying bound-

ary conditions for a sub-set of moments that suffice to determine the unknown f i. To de-
cide which moments one should impose boundary conditions upon, Bennett [32] listed
the combinations of the unknown distribution functions that contribute to each moment
at a boundary. To illustrate the principle, we look at how f 4, f 7 and f 8 are arranged
in each moment at the upper boundary. The zeroth-order moment (density), for exam-
ple, may be written as ρ=( f 4+ f 7+ f 8)+ f 0+ f 1+ f 2+ f 3+ f 5+ f 6, where the bracketed f i

are unknown. Table 1 shows which combination of the three unknowns appear in each
of the nine moments, including the fourth-order moment defined by Rxxyy = ∑i f iξ

2
xξ2

y.
Moments in different rows of Table 1 are linearly independent.

Table 1: Moment groups at the upper boundary.

Moments Combination of unknowns

ρ, ρuy, Πyy f 4+ f 7+ f 8

ρux, Πxy, Qxyy f 8− f 7

Πxx, Qxxy, Rxxyy f 7+ f 8

To determine the three unknown variables we must choose one moment from each
row of Table 1, impose constraints on these moments, and then solve for f 4, f 7, and f 8. It
is natural to choose the hydrodynamic moments rather than higher-order moments that
do not appear in the governing equations. To ensure no slip and no flux at the boundary,
we simply set ux = uw

x and uy = 0, where uw
x is the velocity of the upper boundary. The

only other linearly independent hydrodynamic moment in Table 1 is Πxx. Therefore we
impose a physically suitable boundary condition on Πxx, and convert it into a condition
on Πxx using Eq. (3.6).

The boundary condition for the tangential component of Π requires some attention.
The original moment-based implementation, which is used in all related works, sets

Πxx = Π
(0)
xx (equivalent to Txx = 0), which is justified by noting that Πxx ∼ Π

(0)
xx +τΠ

(1)
xx

and Π
(1)
xx ∝∂xux=0 along a boundary (cf. Eq. (3.13)). However, the velocity of the top wall
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is not constant in the regularized cavity (see Eq. (1.1)). Moreover, the lattice Boltzmann
deviatoric stress is actually governed by Eq. (4.2) which produces an O(τ2) Burnett con-
tribution. Thus the original Navier-Stokes condition on Πxx is not consistent with the
underlying PDE moment system that the LBM is computing. Section 4.1 showed how
one can find consistent conditions for the deviatoric stress T, for example Eq. (4.9) for
a wall moving with velocity u = (ux(x),0). These can be formulated as conditions on
Π=Π

(0)−T, and thus on Π and the unknown f i.
The boundary condition for Πxx at the upper boundary of the flow considered here

is Πxx =Π
(0)
xx −Txx =ρ/3+ρu2

x−Txx, where the deviatoric stress is given by Eq. (4.9) and
ux=16x2(1−x)2 is the imposed tangential velocity of the boundary. In view of the trans-
formation (3.3) we formulate the stress boundary condition as

Πxx =
2τ+∆t

2τ
Πxx−

∆t

2τ
Π

(0)
xx

=
ρ

3
+ρu2

x−
2τ+∆t

2τ
Txx.

The three moment equations ρux, ρuy, and Πxx with their respective boundary conditions
are easily solved to find the unknown distribution functions,

f 4= f 1+ f 2+ f 3+2 f 5+2 f 6−Πxx, (5.1)

f 7=− f 3− f 6−
1

2

(

ux−Πxx

)

, (5.2)

f 8=− f 1− f 5+
1

2

(

ux+Πxx

)

. (5.3)

The expression for Πxx above contains the density at the boundary. This can be found in
terms of the velocity and the known distribution functions using

ρ=∑
i

f i=−ρuy+ f 0+ f 1+ f 3+2
(

f 2+ f 5+ f 6

)

, (5.4)

and the boundary condition uy=0. The boundary condition (4.9) for Txx, and hence Πxx,
involves the diagonal component of the deviatoric stress Txy at the boundary. This is com-

puted locally from known (outgoing) f i and the imposed condition on the momentum
tangential to the wall. For example, at the top boundary

Txy=Π
(0)
xy −Πxy=−Πxy=−2τ+∆t

2τ
Πxy (5.5)

=
2τ+∆t

2τ

(

ρux− f 1+ f 3−2 f 5+2 f 6

)

. (5.6)

Similar expressions determine the unknown distribution functions at the other bound-
aries (note that uT = ∂TuT = 0 at the three other boundaries, where the subscript T
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denotes the axis-aligned planar tangential component). Condition (4.9) also involves
Πyy, which again can be computed locally. For example, at the top boundary, Πyy =
−ρuy+2( f2+ f5+ f6)=2( f2+ f5+ f6). Converting to “barred” variables for implementa-
tion, this becomes

Πyy=
6τΠyy+ρ

2τ+1
, (5.7)

where Πyy=2
(

f 2+ f 5+ f 6

)

and ρ at the wall is given by Eq. (5.4).

There are five unknown f i at each corner node, so five moment constraints are re-
quired. For consistency, we choose the same moments that are used for the adjoining
boundaries, i.e. ρux, ρuy, Πxx and Πyy. For the final constraint we use the off-diagonal
component of the deviatoric stress and set Txy = 0 (see Eq. (4.8)). This is equivalent to
imposing Πxy=0 at the corners.

6 Numerical simulations

To assess the method with complicated boundary conditions we apply the moment based
formulation with the Burnett correction to the stress discussed in Section 5 to the regular-
ized lid-driven cavity problem. We first assess the accuracy of the method by comparing
our results with benchmark data obtained using a spectral method for Reynolds numbers
in the range 100≤Re≤5000, and then study the LBM stress field in this flow at lower Re
(and hence higher Kn). The regularised cavity flow is inside the 0≤x≤1, 0≤y≤1 box with
no-slip boundaries. The upper boundary moves with a steady but spatially-dependent
positive horizontal velocity and the three other boundaries remain stationary. The veloc-
ity of the upper boundary is given by Eq. (1.1). The velocity of the upper boundary, ux,
smoothly decays to zero at the corners, which removes the corner stress singularities that
occur in the more common benchmark problem with a constant velocity. The maximum
velocity at the upper boundary, U=ux(1/2,1)=1, is used to define the Reynolds number
and the particle velocity c=∆x/∆t=10 so that the Mach number based on the maximum
velocity of the lid is Ma=

√
3/10.

Table 2 shows the maximum value of the streamfunction on successive meshes com-
puted using the BGK collision operator with and without the cubic correction. The
streamfunction ψ is computed from the lattice Boltzmann velocity field by first approxi-
mating the vorticity as

ω=
v(x+∆x,y)−v(x−∆x,y)

2∆x
− u(x,y+∆x)−u(x,y−∆x)

2∆x
,

and using a multigrid Poisson solver to obtain ψ from ∇2ψ=−ω with ψ=0 on the bound-
ary [58]. The table shows the smallest grids that were able to maintain stability at different
Reynolds numbers for grids of size N2, where N=2n+1, n∈N (note that ∆x=1/(N−1)),
and the spectral results of Shen [44] are shown for comparison. The stress boundary con-
ditions and the removal of the corner singularities enable us to simulate the flow up to a
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Table 2: Resolution dependence of the primary streamfunction computed with the moment method using the
BGK collision operator. Results are shown with and without the cubic correction.

Without cubic correction With cubic correction

Re=100 ψP ψP

N=33 0.08342 0.08330

N=65 0.08364 0.08355

N=129 0.08366 0.08358

N=257 0.08368 0.08359

N=513 0.08368 0.08360

Shen [44] 0.08368 0.08368

Re=400 ψP ψP

N=129 0.08529 0.08575

N=257 0.08581 0.08581

N=513 0.08589 0.08582

Shen [44] 0.08584 0.08584

Re=1000 ψP ψP

N=257 0.08710 0.08703

N=513 0.08720 0.08713

Shen [44] 0.08719 0.08719

Reynolds number of 1000 on reasonably sized grids. This could not be achieved with the
Navier-Stokes condition with the moment-based boundary conditions for the classical lid
driven cavity flow [39]. Thus the removal of the stress singularity with the consistent con-
dition does improve the stability of the algorithm, but we still need more grid points than
the bounce-back method to reach high Reynolds numbers (in [41], only 1292 grid points
were needed to obtain sensible predictions when Re=1000 using a BGK collision opera-
tor with bounce-back, and this was using the standard lid-driven cavity flow). Therefore
we conclude that although the removal to singularities with the consistent stress condi-
tions offers improvements in terms of stability, there are other factors that influence the
stability of the moment-based approach. This is a topic for future research. The accuracy
of the results in comparison with spectral method computations is excellent.

Table 3 shows the maximum value of the streamfunction ψ and its location computed
with TRT LBE using the two special choices Λ=1/4 and Λ=1/6. The effect of the grid
resolution N is also shown (note that ∆x=1/(N−1)). Cells in the tables with “-” indicate
unstable simulations. Simulation results are shown with and without the cubic correction
described in Section 3.2. Clearly the LBM with moment-based boundary conditions and
a TRT operator with Λ=1/4 is very stable, allowing us to reach high Reynolds numbers
on coarser meshes than the BGK model. When Λ=1/6 the stability properties appear to
be similar to the BGK case. The computations show good qualitative agreement with the
known flow characteristics, including the primary vortex towards the centre of the cavity,
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Table 3: Resolution dependence of the primary streamfunction computed with the moment method using
different values of the magic parameter. Results are shown with and without the cubic correction.

Without cubic correction With cubic correction

Λ=1/4 Λ=1/6 Λ=1/4 Λ=1/6

Re=100 ψP x y ψP x y ψP x y ψP x y

N=17 0.08436 0.6250 0.7500 - - - 0.08595 0.6250 0.7500 - - -

N=33 0.08353 0.5938 0.7500 0.08253 0.5938 0.7500 0.08348 0.5938 0.7500 0.08245 0.5938 0.7500

N=65 0.08365 0.6094 0.7500 0.08361 0.6094 0.7500 0.08356 0.6094 0.7500 0.08353 0.6904 0.7500

N=129 0.08367 0.6094 0.7578 0.08366 0.6094 0.7578 0.08358 0.6094 0.7578 0.08358 0.6094 0.7578

N=257 0.08368 0.6055 0.7539 0.08368 0.6094 0.7539 0.08359 0.6055 0.7539 0.08359 0.6055 0.7539

N=513 0.08368 0.6074 0.7539 0.08368 0.6074 0.7539 0.08359 0.6074 0.7539 0.08359 0.6074 0.7539

Re=400 ψP x y ψP x y ψP x y ψP x y

N=17 0.09613 0.5625 0.6250 - - - - - - - - -

N=33 0.08583 0.5938 0.6250 - - - - - - - - -

N=65 0.08565 0.5781 0.6094 - - - 0.08567 0.5781 0.6094 - - -

N=129 0.08584 0.5781 0.6172 0.08578 0.5781 0.6172 0.08576 0.5781 0.6172 0.08571 0.5781 0.6172

N=257 0.08589 0.5781 0.6172 0.08589 0.5781 0.6172 0.08581 0.5781 0.6172 0.08581 0.5781 0.6172

N=513 0.08590 0.5781 0.6172 0.085917 0.5781 0.6172 0.08582 0.5781 0.6172 0.08582 0.5781 0.6172

Re=1000 ψP x y ψP x y ψP x y ψP x y

N=17 0.1204 0.5625 0.5625 - - - - - - - - -

N=33 0.08898 0.5313 0.5625 - - - - - - - - -

N=65 0.08642 0.5469 0.5781 - - - - - - - - -

N=129 0.08692 0.5391 0.5703 - - - 0.08690 0.5391 0.5703 - - -

N=257 0.08714 0.5430 0.5742 0.08712 0.5430 0.5742 0.08707 0.5430 0.5742 0.08705 0.5430 0.5742

N=513 0.08720 0.5430 0.5723 0.08720 0.5430 0.5723 0.08713 0.5430 0.5723 0.08713 0.5430 0.5723

Re=5000 ψP x y ψP x y ψP x y ψP x y

N=65 0.07509 0.5156 0.5313 - - - - - - - - -

N=129 0.08514 0.5156 0.5391 - - - - - - - - -

N=257 0.08732 0.5195 0.5391 - - - - - - - - -

N=513 0.08794 0.5195 0.5391 0.08795 0.5195 0.5391 0.08788 0.5195 0.5391 0.08789 0.5195 0.5391

and two smaller vortices near the lower corners. A further vortex is found in the upper
righthand corner when Re=5000. Fig. 3 shows the streamfunction and the pressure when
Re=5000 and Λ=1/4.

To assess the convergence and order of accuracy of the moment method we compute
the global relative error norms

||Ξ||2 =
∑x ||Ξ(x)−Ξre f (x)||2

∑x ||Ξre f (x)||2
, Ξ∈{u,p}, (6.1)

where Ξre f is the reference solution and ||·||2 denotes the Euclidean L2 norm. Fig. 4 plots
the relative error norm for velocity and pressure at a Reynolds number of Re= 1000 us-
ing Λ = 1/4. Both fields show second-order convergence, confirming the accuracy of
the moment based boundary conditions. We have studied the convergence for different
Reynolds number and observed the same order of convergence in all cases. For com-
pleteness, results for the standard lid driven cavity test with a constant upper boundary
velocity are given in Appendix A.
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Figure 3: The streamfunction (left) and pressure at Re=5000 computed with the moment method and Λ=1/4.
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Figure 4: Plot showing second-order convergence of velocity and pressure for Re=1000 and Λ=1/4.

Table 4 compares the results computed by the moment method with Λ=1/4 with the
benchmark data of Shen [44]. Shown are comparisons of the value of the streamfunction
at the centre of the primary, lower left, lower right, and upper left vortices, and its lo-
cation. The lattice Boltzmann computations are in excellent agreement with the results
from the spectral method of Shen [44], confirming the validity of the proposed model.

6.1 Computations of the stress at low Reynolds numbers

In this subsection we inspect the LBM deviatoric stress at smaller Re in the same flow to
highlight its non-Newtonian behaviour. The grid size in all cases is 1292 and results are
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Table 4: Comparison of the streamfunction computed with the moment method and TRT collisions with the
spectral element results of Shen [44]. There is no vortex in the upper left hand corner for Re∈{100,400,1000}.

Primary Left right upper

Re=100 ψP x y ψL x y ψR x y ψU x y

Λ=1/4 0.08368 0.6250 0.7500 −1.3569×10−6 0.033 0.035 −4.8811×10−6 0.953 0.049

Cubic, Λ=1/4 0.08359 0.6250 0.7500 −1.3561×10−6 0.033 0.035 −4.8745×10−6 0.953 0.049

Shen [44] 0.08368 0.609 0.750 −1.3987×10−6 0.031 0.031 −4.6676×10−6 0.953 0.047

Re=400

Λ=1/4 0.08590 0.5781 0.6172 −5.6405×10−6 0.045 0.043 −2.5655×10−4 0.900 0.113

Cubic, Λ=1/4 0.08582 0.5781 0.6172 −5.6302×10−6 0.045 0.043 −2.5613×10−4 0.900 0.113

Shen [44] 0.08584 0.578 0.625 −6.63146×10−6 0.031 0.047 −1.9774×10−4 0.922 0.094

Re=1000

Λ=1/4 0.08720 0.5430 0.5723 −8.3586×10−5 0.078 0.068 −9.8733×10−4 0.871 0.115

Cubic, Λ=1/4 0.08713 0.5430 0.5723 −8.3513×10−5 0.078 0.068 −9.8657×10−4 0.871 0.115

Shen [44] 0.08719 0.547 0.578 −8.2841×10−5 0.078 0.063 −5.67626×10−4 0.922 0.094

Re=5000

Λ=1/4 0.08794 0.5195 0.5391 −8.3731×10−4 0.080 0.123 −2.1133×10−3 0.814 0.082 −7.7211×10−4 0.085 0.912

Cubic, Λ=1/4 0.08788 0.5195 0.5391 −8.3742×10−4 0.080 0.123 −2.1129×10−3 0.814 0.082 −7.7192×10−4 0.085 0.912

Shen [44] 0.08803 0.516 0.531 −7.5268×10−4 0.094 0.094 −7.7475×10−4 0.922 0.094 −6.7780×10−4 0.078 0.092

independent of further mesh resolution. The particle velocity c=∆x/∆t=10 so that the
Mach number based on the maximum velocity of the lid is Ma=

√
3/10 in all computa-

tions in this section. The tangential deviatoric stresses are non-dimensional and scaled
by c2, and the graphs that follow are plotted every 6 data points. The TRT collision op-
erator with “magic parameter” Λ=1/4 was used in all simulations. This is not so much
because of stability but because when Re is small, the relaxation time τ is large (unless
we have fine spatial and temporal discretisations), but the analysis discussed in Section
4 requires the relaxation time of the third order moment Qαβγ =∑i ficiαciβciγ to be small

so that Qαβγ ∼Q
(0)
αβγ. This is achievable with TRT Λ=ττJ =1/4. Different collision mod-

els with τJ > 1 and τ < 1 can lead to very different predications for the stress because
the moment Qαβγ decays very slowly its equilibrium and becomes a “quasi conserved”
quantity.

Fig. 5 plots the tangential component of the deviatoric stress, Txx(x,1/2), and the vis-
cous stress, σxx(x,1/2)= µ∂xux|y=1/2, on the horizontal through the centre of the cavity
using the TRT LBM when Re = 10 (left plot). The Knudsen number is Kn ∼ Ma/Re =√

3/100. The velocity gradients are zero at the wall and near centre of the flow and
both stresses are largest in magnitude near a quarter length away from the boundaries.
The tangential component of the deviatoric stress, Txx(1/2,y), and the viscous stress,
σxx(1/2,y), on the vertical through the centre of the cavity are shown in the plot on the
right in Fig. 5 and there are discernible differences near the moving wall, where we have
imposed the Burnett stress condition. The differences between the LBM stress and vis-
cous stress in both plots is difficult to discern because they are of size τ2.

When the Reynolds number is lowered to Re=0.5 (Kn∼Ma/Re=
√

3/5) we can see
from the left hand plot in Fig. 6 that Txx(x,1/2) and σxx(x,1/2) are still very similar but
with small differences due to the Burnett contributions to Txx becoming visible. The dif-
ference between the LBM and Newtonian stress is far more prominent along the vertical
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Figure 5: Plot showing (left) the deviatoric stress Txx(x,1/2) (circles) and the Newtonian viscous stress
σxx(x,1/2) along the horizontal centreline, and (right) Txx(1/2,y) (circles) and σxx(1/2,y) along the verti-
cal centreline computed from the LBM when Re=10.
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Figure 6: Plot showing (left) the deviatoric stress Txx(x,1/2) (circles) and the Newtonian viscous stress
σxx(x,1/2) along the horizontal centreline, and (right) Txx(1/2,y) (circles) and σxx(1/2,y) along the verti-
cal centreline computed from the LBM when Re=0.5.

centreline, which includes the moving boundary, as seen on the plot on the right in Fig. 6.
The tangential components of the stresses are very similar in the bottom half of the do-
main but nearer the moving boundary they are strikingly different: the Newtonian stress
at (1/2,1) is σxx = 2µ∂xux|(1/2,1)= 0 but the LBM derivatoric stress contains non vanish-

ing terms. Dropping the Reynolds number still further to Re= 0.1 (Kn∼ Ma/Re=
√

3)
highlights the fact that the LBM computes a non-Newtonian stress, as shown in Fig. 7,
where Txx(x,1/2) has noticeably different turning points to σxx(x,1/2). Along the ver-
tical centreline the Newtonian tangential stress, σxx(1/2,y) has a local minima close the
movings boundary, at y∼0.9, but this local minimum is moved towards the centre of the
domain in the LBM deviatoric stress. Thus it is clear that although the LBM does not in-
clude kinetic effects in the velocity it does have appreciable Burnett contributions in the
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Figure 7: Plot showing (left) the deviatoric stress Txx(x,1/2) (circles) and the Newtonian viscous stress
σxx(x,1/2) along the horizontal centreline, and (right) Txx(1/2,y) (circles) and σxx(1/2,y) along the verti-
cal centreline computed from the LBM when Re=0.1.
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Figure 8: Plot showing the normalised shear stress along the horizontal centreline, Txy(x,1/2) (left) and vertical

centreline, Txy(1/2,y). Filled triangles are for Re=10, empty triangles for Re=0.5, and circles for Re=0.1.

stress at Ma/Re≫ 0 that are usually neglected. They diminish in the diffusive scaling,
where Ma → 0 under grid refinement such that ∆t ∝ ∆x2, but not in the acoustic scal-
ing with a fixed Mach number. Furthermore, for rarefied flow with non-vanishing Mach
and Knudsen numbers, the contributions to T at Burnett order found from the LBM are
present and non negligible. They are embedded within the moments of the LBM and if
boundary conditions are to be imposed on any component of the stress then they should
be consistent with the PDE the algorithm is solving. We note again that nothing has been
added to the LBM to compute the deviatoric stress, Txx, other than ensuring consistent
boundary conditions are imposed.

Finally, the normalised LBM shear stresses, Txy/Tc
xy where Tc

xy = Txy(1/2,1/2), at
Re=10, 0.5, and 0.1 are shown in Fig. 8. The plot on the left shows the stresses along the
horizontal centreline, and the plot on the right is along the vertical centreline. Along the



190 T. Reis / Commun. Comput. Phys., 27 (2020), pp. 167-197

horizontal centreline the shear stress near boundaries vary considerably with Reynolds
number and the profile of Txy(x,1/2) departs further from a parabola and breaks its
symmetry as Re→ 0 with a fixed Mach number. Along the vertical centreline, the non-
Newtonian nature of the LBM for appreciable Knudsen numbers is seen everywhere.
Although the profiles are similar when Re=10 and Re=0.5, there is a significant depar-
ture form Newtonian behaviour when Re=0.1, where gradient terms that do not appear
in the viscous stress are larger.

7 Discussion

Boundary conditions for the lattice Boltzmann equation are usually formulated as con-
straints on the incoming distribution functions but often have an entirely equivalent in-
terpretation in terms of moment constraints [34,35]. Considering boundary conditions on
the f i (or fi in most standard LBMs) seems natural but it makes it difficult to guarantee
the precise satisfaction of hydrodynamic conditions at boundaries, especially conditions
more complex than no-slip walls, such as slip, stress or pressure conditions, for example.
An alternative approach is to consider imposing constraints directly on the hydrody-
namic moments, which can then be translated into the set of incoming f i. The “moment-
based method” of Bennett [32] may be viewed as an extension and generalisation of pre-
vious work by Noble [29] and Wagner and Yeomans [31]. By considering linearly inde-
pendent moments at a boundary one can impose three physically meaningful boundary
conditions. This brings the opportunity to implement a wider variety of boundary con-
ditions for the lattice Boltzmann equation. The original moment-based method imposed

a Navier-Stokes condition on the tangential stress, Txx=Π
(0)
xx −Πxx=0. However, a more

detailed inspection shows that the lattice Boltzmann equation includes a non-zero con-
tribution to the stress at the Burnett level [12]. Boundary conditions imposed on the
stress should incorporate this order O(τ2) term to be consistent with the stress in the
equivalent PDE moment system. We have analysed the LBM stress field, highlighted
its non-Newtonian behaviour, and derived consistent and quite general boundary con-
ditions that can be imposed directly on the LBM moments. The conditions are complex
when the boundary behaviour is complex, involving spatially-dependent velocities and
derivatives, but they are translated into relatively simple conditions on the incoming f i

that are implemented locally and precisely.

The accuracy of the method has been assessed using the regularized lid-driven cav-
ity flow [44]. The regularization removes the stress singularity in the upper corners of
the cavity by setting the velocity of the upper boundary to ux(x) = 16x2(1−x)2. The
spatial gradient of the velocity influences the equilibrium and non-equilibrium parts of
the momentum flux, Πxx, and this should be respected by the boundary conditions. We
have shown how this can be achieved locally within the consistent framework for the
stress. While it is clear that the implementation is more complicated that bounce-back,
for example, and thus computationally more expensive, the locality of the implementa-
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tion still allows us to exploit massively parallel modern computer architectures, leading
to intensive and fast algorithms. Furthermore, the moment-based method is comparable
to other commonly used lattice Boltzmann boundary treatments such as non-equilibrium
bounce-back in terms of the number of operations required and recent work implement-
ing the moment-based approach with CUDA and MPI parallelisations performs very
well in terms of strong and weak scaling laws (95% of the ideal strong scaling law) [59].
Numerically favourable values of the so-called “magic parameter” have been used to
ensure stable simulations even on very coarse grids and the results are in excellent agree-
ment with benchmark spectral data. Furthermore, a recently-published correction to the
third-order non-Galilean invariant error in the momentum flux has been included and
tested within our boundary conditions [10].

The LBM stress field has been computed and shown to depart significantly from the
Navier-Stokes stress when the ratio Ma/Re ∝ Kn≫0. This is due to the contributions to
the deviatoric stress at Burnett order. They do not vanish with mesh refinement under
the acoustic scaling and are present with fixed Mach, Reynolds, and Knudsen numbers.
The non-Newtonian stress is a feature of the LBM PDE moment system that may need
to be considered in low Reynolds number flows. It should not be neglected in rarefied
flow, although further analysis and research is needed to qualify and quantify its physical
characteristics. If one is simulating the stress in Navier-Stokes flow at small Re with
the LBM then a very small timestep may be needed to quash the Burnett contributions.

In addition, it is common to use the non-equilibrium part of the moment flux, Π
(ne)
αβ =

Παβ−Π
(0)
αβ , to obtain the gradients of the velocity field locally in the LBM. This may be

used for post-precessing or as part of the model (e.g shear-dependent viscosities in LBMs
for generalised Newtonian fluids). When Ma/Re is not vanishing small, additional and

large contributions to Π
(ne)
αβ may have a negative effect on the accuracy of the algorithm.

Like all lattice Boltzmann boundary implementations, the moment-based method has
potential shortcomings: its current lack of geometric flexibility appears to be the most ob-
vious. It does, however, have the attractive prospect of allowing for the exact satisfaction
of complicated and sophisticated boundary conditions locally at grid points. It allows for
a consistent stress condition to be imposed with relative ease and, as confirmed by the
current assessment, this is achieved without sacrificing the second-order accuracy of the
lattice Boltzmann equation.
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Appendix A: Results with constant boundary velocity

Here we briefly present results for the simpler, classical, lid-driven cavity flow with a
constant upper boundary velocity ux(x,1)=1. Table 5 shows the maximum value of the
stream function and its location with the moment method with Λ = 1/4 and Λ = 1/6
on successive meshes. Second-order convergence is observed. A comparison between
our results and existing benchmark data is given in Tables 6 and 7. We can conclude
that the moment based boundary conditions can predict very accurate results for this
benchmark flow. It is particularly revealing to compare our results with the spectral
solutions of Botella et al. [60] and the implicit cell-centred finite volume solutions of Sahin
and Owens [61]. There is an excellent agreement with these data sets.

Table 5: Mesh dependence of the primary and lower streamfunctions computed with the moment method.

Λ=1/4 Λ=1/6

Re=100 ψP x y ψP x y

N=17 0.10022 0.6250 0.7500 0.10121 0.6250 0.7500

N=33 0.10207 0.6250 0.7500 0.10227 0.6250 0.7500

N=65 0.10208 0.6250 0.7344 0.10281 0.6250 0.7344

N=129 0.10307 0.6172 0.7422 0.10308 0.6172 0.7344

N=257 0.10324 0.6172 0.7383 0.10324 0.6172 0.7383

N=513 0.10332 0.6152 0.7383 0.10332 0.6152 0.7383

Re=1000

N=33 0.11725 0.5313 0.5625 0.12038 0.5313 0.5625

N=65 0.11895 0.5313 0.5625 0.11956 0.5313 0.5625

N=129 0.11904 0.5313 0.5664 0.11914 0.5313 0.5625

N=257 0.11891 0.5313 0.5664 0.11899 0.5313 0.5664

N=513 0.11890 0.5313 0.5664 0.11897 0.5313 0.5664

Re=5000

N=129 0.12245 0.5156 0.5391 0.12321 0.5156 0.5391

N=257 0.12244 0.5156 0.5352 0.12260 0.5156 0.5352

N=513 0.12239 0.5156 0.5352 0.12241 0.5156 0.5352

Re=7500

N=257 0.12261 0.5117 0.5352 0.12287 0.5117 0.5313

N=513 0.12258 0.5137 0.5313 0.12258 0.5137 0.5315
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Table 6: Comparison of the streamfunction computed with the moment method with other methods.

Primary Left right

Re=100 ψP x y ψL x y ψR x y

Present Λ=1/4 0.1032 0.6172 0.7383 −2.101×10−6 0.0352 0.0352 −1.364×10−5 0.9453 0.0664

Present Λ=1/6 0.1032 0.6172 0.7383 −2.101×10−6 0.0352 0.0352 −1.364×10−5 0.9453 0.0664

Luo et al. TRT [41] 0.1035 0.6150 0.7378 −1.781×10−6 0.0341 0.0341 −1.270×10−5 0.9425 0.0614

Hou et al. [40] 0.1030 0.6196 0.7373 −1.720×10−6 0.0392 0.0353 −1.220×10−5 0.9451 0.0627

Ghia et al. [62] 0.1034 0.6188 0.7375 −1.940×10−6 0.0375 0.0313 −1.140×10−5 0.9375 0.0563

Sahin and Owens [61] 0.1035 0.6189 0.7400 −1.793×10−6 0.0332 0.0352 −1.266×10−5 0.9424 0.0610

Re=400

Present Λ=1/4 0.1139 0.5547 0.6055 −1.463×10−5 0.0508 0.0469 −6.499×10−4 0.8867 0.1250

Present Λ=1/6 0.1139 0.5547 0.6055 −1.463×10−5 0.0508 0.0469 −6.503×10−4 0.8867 0.1250

Luo et al. TRT [41] 0.1138 0.5546 0.6053 −1.426×10−5 0.0517 0.0478 −6.441×10−4 0.8840 0.1218

Hou et al. [40] 0.1121 0.5608 0.6078 −1.300×10−5 0.0549 0.0510 −6.190×10−4 0.8902 0.1255

Ghia et al. [62] 0.1139 0.5547 0.6055 −1.420×10−5 0.0508 0.0469 −6.420×10−4 0.8906 0.1250

Sahin and Owens [61] 0.1139 0.5536 0.6075 −1.427×10−5 0.0508 0.0461 −6.404×10−4 0.8835 0.1203

Re=1000

Present Λ=1/4 0.1189 0.5313 0.5664 −2.337×10−4 0.0820 0.0781 −1.730×10−3 0.8672 0.1133

Present Λ=1/6 0.1190 0.5313 0.5664 −2.337×10−4 0.0820 0.0781 −1.737×10−3 0.8633 0.1133

Luo et al. TRT [41] 0.1188 0.5312 0.5663 −2.321×10−4 0.0828 0.0789 −1.730×10−3 0.8358 0.1000

Hou et al. [40] 0.1178 0.5333 0.5647 −2.220×10−4 0.0902 0.0784 −1.690×10−3 0.8667 0.1137

Ghia et al. [62] 0.1179 0.5313 0.5625 −2.310×10−4 0.0859 0.0781 −1.750×10−3 0.8594 0.1094

Sahin and Owens [61] 0.1188 0.5335 0.5639 −2.330×10−4 0.0826 0.0776 −1.724×10−3 0.8658 0.1119

Botella et al. [60] 0.1189 0.4692 0.5652 −2.335×10−4 0.9167 0.0781 −1.729×10−3 0.1360 0.1118

Re=5000

Present Λ=1/4 0.1224 0.5156 0.5313 −1.372×10−3 0.0742 0.1367 −3.087×10−3 0.8047 0.0742

Present Λ=1/6 0.1226 0.5156 0.5313 −1.375×10−3 0.0742 0.1367 −3.081×10−3 0.8047 0.0742

Hou et al. [40] 0.1214 0.5176 0.5373 −1.350×10−3 0.0784 0.1372 −3.030×10−3 0.8078 0.0745

Ghia et al. [62] 0.1190 0.5117 0.5352 −1.360×10−3 0.0703 0.1367 −3.080×10−3 0.8086 0.0742

Sahin and Owens [61] 0.1221 0.5134 0.5376 −1.369×10−3 0.0720 0.1382 −3.065×10−3 0.8081 0.0741

Re=7500

Present Λ=1/4 0.1226 0.5117 0.5352 −1.522×10−3 0.0625 0.1523 −3.245×10−3 0.7891 0.0664

Present Λ=1/6 0.1228 0.5117 0.5352 −1.525×10−3 0.0625 0.1523 −3.238×10−3 0.7891 0.0664

Hou et al. [40] 0.1217 0.5176 0.5333 −1.510×10−3 0.0706 0.1529 −3.200×10−3 0.7922 0.0667

Ghia et al. [62] 0.1200 0.5117 0.5322 −1.470×10−3 0.0645 0.1367 −3.280×10−3 0.7814 0.0625

Sahin and Owens [61] 0.1223 0.5134 0.5376 −1.520×10−3 0.0645 0.1525 −3.223×10−3 0.7894 0.0642
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