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Abstract. Incorrect propagation speed of discontinuities may occur by straightfor-
ward application of standard dissipative schemes for problems that contain stiff source
terms for underresolved grids even for time steps within the CFL condition. By exam-
ining the dissipative discretized counterpart of the Euler equations for a detonation
problem that consists of a single reaction, detailed analysis on the spurious wave pat-
tern is presented employing the fractional step method, which utilizes the Strang split-
ting. With the help of physical arguments, a threshold values method (TVM), which
can be extended to more complicated stiff problems, is developed to eliminate the
wrong shock speed phenomena. Several single reaction detonations as well as multi-
species and multi-reaction detonation test cases with strong stiffness are examined to
illustrate the performance of the TVM approach.
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1 Introduction

In simulating the reactive Euler equations with the homogeneous source terms, often
applied in field of combustion and high speed chemical reacting, a well-known spuri-
ous numerical phenomenon which was observed firstly by Collela et al. [1], may occur if
the equations are solved in the under-resolved conditions, namely the coarse grid, large
time step or other combinations in conjunction with the type of spatial scheme and type
of temporal discretization etc. [2–4]. By properly defining a model problem with a stiff
source term, LeVeque and Yee [5] reveal that the typical spurious behavior which is the
propagation error of the detonation wave, is chiefly due to the numerical dissipation
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contained in the schemes, which smears the discontinuity fronts and activates the source
terms in a non-physical manner. Since then, this topic has attracted a great deal of atten-
tion.

Lafon and Yee [3,4] indicated that the spurious steady state of nonlinear source terms
can be linked to the wrong shock speed by getting trapped at one of the stationary solu-
tions, depending on the combination of numerical method, initial data, time step and grid
spacing. Griffiths et al. [2] analyzed the different methods of numerically treating the stiff
source and their accompanied spurious wave propagation phenomena. Yee et al. [6, 7]
followed to investigate the role of CFL playing in the spurious behavior and found the
counter-intuitive behavior, which leads to the conclusion that the traditional concept of
CFL guideline needs to be revised when extending to the reactive Euler equation sys-
tems. Recently, Zhang and Wang [8] give a reasonable explanation that the oscillation of
the parameter of an intermediate state which is a decisive factor to decide whether or not
the spurious solution will happen, is the likely cause of the counter-intuitive behavior.

Many other researchers focus on designing the new schemes or models to avoid this
spurious numerical solution in the under-resolved computational conditions. During the
last two decades, several innovative numerical methods, such as the level set and front
tracking methods [9–13]; random choice method [14–16]; fractional step method [17];
random projection method (RPM) [18–20]; subcell resolution method [22, 23]; MinMax
Method [21]; equilibrium state method (ESM) [24] and many other works [25–31], have
been proposed successively. A comprehensive review of the last two decades of this field
can be obtained in [22]. In spite of being able to remove or delay the appearance of the
spurious solution to some extent, these methods cannot be widely used due to some
limitations. For example, existing methods are either confined to a particular flow type
or restricted to certain stiffness of the reaction terms. When stiffness of the source term
increases, some of the methods would break down even for a single reaction case.

The present work is a sequel to [8] to extend the idea to the Euler equations with stiff
detonation. By examining the dissipative discretized counterpart of the Euler equations
for a detonation problem consisting of a single reaction, a detail analysis on the spurious
wave pattern is presented employing the fractional step method using the Strang split-
ting. Additionally, a novel method called the threshold values method (TVM for short)
is proposed as a modification to the fractional step method with the help of physical ar-
guments. Several single reaction detonation as well as multi-species and multi-reaction
detonation test cases with strong stiffness are examined to illustrate the performance of
the TVM approach.

2 The standard numerical method for the reactive Euler

equations

The governing equations are usually used to simulate the inviscid, one-dimensional prop-
agation of a detonation wave, representing conservation of mass, momentum, energy and
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species. Consider the simplest reactive Euler equations with only two chemical states
which are the burnt gas state and the unburnt gas state:

∂U

∂t
+

∂F

∂x
=S, (2.1)

where the vectors contain the conserved variables U, flux vector F and the source terms
S which convert the unburnt gas to the burnt gas via a single irreversible reaction.

U=









ρ
ρu
E
ρz









, F=









ρu
ρu2+p

u(E+p)
ρzu









, S=









0
0
0

−K(T)ρz









. (2.2)

The ρ, u, E and z are the mixture density, the velocity, the mixture total energy and the
mass fraction of the un-burnt gas respectively. The pressure p is given by:

p=(γ−1)

(

E−
1

2
ρu2−Q0ρz

)

, (2.3)

where Q0 is the chemical heat released in the reaction process. The temperature T is de-
fined as T= p/ρ. K(T), the reaction rate of the irreversible chemical process, is expressed
in the so-called ignition temperature kinetic [32], which is often used in the chemical
reaction with the high-temperature sensitivity and the large activation energies:

K(T)=

{

K0, T≥Tig,
0, T<Tig.

(2.4)

Due to numerical stability considerations, a common procedure to solve the reactive Eu-
ler equations is by the fractional step method using the Strang splitting [33] of the con-
vection and reaction terms (the standard method). In this method, the numerical solution
at each time level is computed in two steps: The homogeneous conservation law (i.e., the
convection step) and the ODE system (i.e., the reaction step) separately. For example, the
numerical solution at time level tn+1 is approximated by:

Un+1=R(∆t)A(∆t)Un. (2.5)

The convection operator A is defined to approximate the solution of this problem on the
time interval:

∂U

∂t
+

∂F

∂x
=0, tn ≤ t≤ tn+1. (2.6)

Based on the MUSCL approach with a TVD Minmod limiter [34], the advection problem
is solved numerically with the popular AUSM approach [35,36] by splitting the pressure
of the Euler governing equations into two parts, which can be extended to second or-
der. Second order Runge-Kutta time integration [37] is used in time discretization. The
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Figure 1: A typical spurious numerical phenomenon compared with the reference ZND solution.

reaction operator R is defined to approximate the solution on a time step of the reaction
problem:

dU

dt
=S, tn ≤ t≤ tn+1. (2.7)

For simplicity, we use the explicit method as the ODE solver in the reaction step since
both explicit method and linearized implicit method leads to the spurious behavior [21].

A simple ignition temperature model case solved by the standard method is utilized
to show and analyze the characteristics of the spurious numerical phenomenon. We con-
sider an one-dimensional detonation wave propagating with a constant wave speed SD.
This problem is solved on the computational domain of [0,30]. The initial values consist
of the burnt gas on the left-hand side and the unburnt gas on the right-hand side:

(ρ,u,p,z)=

{

(2,2,20,0), x≤10,
(1,0,1,1), x>10.

(2.8)

The γ, Q0, K0, Tig are 1.4, 20, 10000, 2 respectively. A famous spurious numerical phe-
nomenon may happen if this problem is computed by the standard method in the under-
resolved conditions: N = 300, ∆t= 0.0001. On the contrary, a reasonable ZND solution
can also be obtained by the standard method with the extremely fine mesh (N = 50000)
and the very small time step (∆t = 0.00001). Compared numerical results at the final
time (t=1.5) are provided in Fig. 1. We can note that there are several obvious differences
between the reference ZND solution and the non-physical solution i.e., nonphysical dis-
crete travelling waves [1]). First, the Von Neumann spike existing in the reference solu-
tion cannot be found in the non-physical solution because there are not enough meshes
in the reactive zone. Second, there is a bifurcating wave pattern appearing in the incor-
rect solution: the strong detonation wave changes into a weak detonation wave and a
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shock wave. Third, the velocity of the weak detonation wave is larger than that of the
shock wave and this implies that the constant state between them will grow gradually as
time goes on. Although the spurious solution is the numerical solution of the discretized
counterpart but not the physical solution of the original governing Euler equations [1],
we may think the shock structures illustrated in spurious behavior as a physical phe-
nomenon since a single discontinuity like weak detonation obeys the Rankine-Hugoniot
conditions locally [8]. Thus, we will provide a further explanation of the formation of
spurious solution in the stiff reactive Euler equations in a physical view, based on which
one may consider a new approach to deal with high stiffness problems as presented in
Section 3.

3 Modification to standard fractional method: Threshold values

method (TVM)

In this section, we will introduce a modification to the standard fractional method, the
threshold values method (TVM), by illustrating the formation of spurious behavior as
well as the idea of TVM. By solving the exact Riemann problem, TVM procedure applied
in a simple reaction problem is presented. Meanwhile, when the exact Riemann solu-
tion is absent or includes unsteady initial conditions problems, the extension method is
proposed based on the idea of TVM.

3.1 Illustration of TVM

The typical spurious solution by standard dissipative method that is represented in Sec-
tion 2 indicates a faster weak detonation than the following shock in the spurious behav-
ior. However, if we can detect the first grid point that forms the spurious behavior, i.e.,
the faster weak detonation than shock, then a correction to this grid point can be made,
the process of which is detailed as follows.

The detonation wave is smeared within several grid points as the lowercase letters (a,
b, c, d), which are enclosed by the dashed circles, presenting the pressure, as well as by
the dashed triangles, presenting the mass fraction, as illustrated in Fig. 2 (the triangle a
and c is overlapped by the triangle A and C). The ignition of a grid point must satisfy
the temperature that is higher than the ignition temperature Tig and the non-zero mass
fraction. Thus, the temperature and pressure at point b has already reached the ignition
temperature Tig, which means that ignition will occur immediately in the standard dis-
sipative method whereas point a, whose mass fraction has decreased to nearly zero (not
zero because of numerical viscosity), will no longer increase its temperature due to the
ignition.

After a short period ∆t, the temperature of the point b reaches the intermediate state
pressure P∗ by explicit ODE solver in reaction step R(∆t), presented by the point B∗. The
mass fraction decreases to zero at the same time, which forms the shock structure as indi-
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Figure 2: Illustration of the formation for the spurious numerical phenomenon and the idea of TVM. b represents
the burnt state and u represents the unburnt state.

cated in Fig. 2. The chemical reaction rate is involved with K0. When K0 is large, point b
will react completely to point B∗ and mass fraction will decrease to zero with releasing
chemical energy (Q0) instantaneously at the same time. However, if K0 is relatively small,
point b will arrive to the correct position as shown by point b1, which forms the equal
speed of shock and detonation that indicate the correct single discontinuity. Point B is the
grid point that first reaches the intermediate state, which stimulates the ignition of point c
because of the synthesized effect of the advection and the numerical viscosity as shown
by point C. The variation of mass fraction of point b makes the detonation move forward
after the reaction step of point b by the explicit ODE solver. If the weak detonation speed
is higher than shock speed at this reaction step, point C will be ignited to the intermediate
state similar to point b at the next reaction step, as shown by point C∗. Such a scenario
leads to the spurious shock structures comprising a weak detonation wave moving for-
ward and a shock wave that travels more slowly behind, as shown by the capital letter
points (A,B,C,D) enclosed by solid circles and triangles, as indicated in Fig. 2.

If the weak detonation speed (Swd) that results from the reacting grid point b to inter-
mediate point B is larger than the corresponding shock wave speed (Ss), we can discern
this wrong ignited point via an attempt (prediction) by solving the source term in reaction
step, as shown in Fig. 2 by the following equation:

{

if Ss ≥Swd, correct ignition,
if Ss <Swd, spurious ignition.

(3.1)

After the prediction step, each transition point that makes the weak detonation speed
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larger than the shock wave speed will be frozen during the reactive step. Thus, calculat-
ing the speed of the shock and weak detonation is essential to modifying the standard
dissipative method.

3.2 Review of [8]: obtain two wave speeds in problems with exact Riemann
solutions

Since the shock and weak detonation speed are closely related to burnt state and the
unburnt state, it is necessary to obtain the parameters behind and before the detonation
(state-4 and 2 in Fig. 3), which turns to solve a reactive Riemann problem in order to
calculate these two speeds.

Here, we shortly review the solution method of exact Riemann problem introduced
in previous study [8]. As shown in Fig. 3, two theoretical Riemann solutions for Eq. (2.1),
consisting of a left wave (either shock or rarefaction), a middle wave which is divided
by the contact discontinuity and a right wave of detonation, which are abbreviated to
the SCD case and the RCD case separately, will occur, depending on the different initial
data, for example that Eq. (2.8) will lead to a RCD case. As we know, relationships exist
between the variables on the two sides of a shock wave or a detonation wave. First, we
consider the plane of detonation connecting the area 2 and area 4. Detonation Hugoniot

Figure 3: The illustration of theoretical and spurious solution of detonation problem (R short for rarefaction
wave; S short for shock wave; C short for contact discontinuity; D short for detonation wave; WD short for
weak detonation wave; *-state is the transition point that ignited after prediction step in reaction solver).
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equations are given as follows:



















ρ2 (SD−u2)=ρ4(SD−u
4),

p4−p2=ρ2(SD−u2)(u4−u2),

p4

ρ4 (γ−1)
−

p2

ρ2(γ−1)
=

1

2
(p2+p4)

(

1

ρ2
−

1

ρ4

)

+Q0.

(3.2)

Set the p4 as a known variable, we can get the expression of u4 by solving Eq. (3.2):

u4−u2=

√

2(p4−p2)(p4−p2−(γ−1)ρ2Q0)

ρ2 [(γ+1)p4+(γ−1)p2]
=− f (p4,p2,ρ2,Q0). (3.3)

If p3 > p1, there will be a shock wave on the left side. Eq. (3.4) shows the relationships of
variables on the two sides of the shock wave:



















ρ1(SS−u
1)=ρ3(SS−u3),

p3−p1=ρ1(SS−u1)(u3−u1),

p3

ρ3(γ−1)
−

p1

ρ1(γ−1)
=

1

2
(p1+p3)

(

1

ρ1
−

1

ρ3

)

.

(3.4)

A similar treatment to Eq. (3.4) and a expression of u3 are obtained:

u3−u1=−
p3−p1

√

ρ1[(γ+1)p3+(γ−1)p1]
2

=−gS (p3,p1,ρ1). (3.5)

If p3<p1, a rarefaction wave will form on the left side. We can also get a similar expression
of u3 with two additional equations. The first one is the equation of Riemann invariants:

u1+
2c1

γ−1
=u3+

2c3

γ−1
, (3.6)

where c is the sound speed and can be computed by:

c=

√

γp

ρ
. (3.7)

The other one is the isentropic relation in rarefaction wave:

p1

ρ
γ
1

=
p3

ρ
γ
3

. (3.8)

The expression of u3 for a rarefaction wave is given as follows:

u3−u1=−
2c1

γ−1

[

(

p3

p1

)
γ−1
2γ

−1

]

=−gR(p3,p1,ρ1). (3.9)
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If set p3 = p1, one can discern the RCD from SCD case by comparing the magnitude of
release heat Q0 with the critical release heat Qcr:

u2−u1= f (p3,p2,ρ2,Qcr)= f (p1,p2,ρ2,Qcr)

⇒Qcr =
p1−p2

γ−1
−
(u2−u1)

2[(γ+1)p1+(γ−1)p2]

2(p1−p2)(γ−1)
. (3.10)

If initial value Q0 is greater than Qcr, then p3 > p1, which means the SCD case and vice
versa. Considering that the middle state is split into area 3 and area 4 by a contact dis-
continuity, we have u3=u4 and p3 = p4. The following equation results from subtracting
Eq. (3.3) from Eqs. (3.5) or (3.9) if the calculating case is determined as SCD or RCD case:

{

u2−u1=−gS (p3,p1,ρ1)+ f (p3,p2,ρ2,Q0), SCD case,
u2−u1=−gR (p3,p1,ρ1)+ f (p3,p2,ρ2,Q0), RCD case.

(3.11)

We can compute p3 by using Newton iteration method to solve Eq. (3.11). Then other
parameters (u3,ρ3) behind the detonation can be obtained easily. The corresponding Ss

and Swd for each transition point can be expressed as the following Eq. (3.12) by using
momentum equation in Eqs. (3.2) and (3.4). The heuristic diagram is shown in Fig. 3















Ss=u∗+
p4−p∗

ρ∗ (u4−u∗)
,

Swd=u2+
p∗−p2

ρ2 (u∗−u2)
.

(3.12)

One thing needs to be noticed is that when u∗ is very close to u4, the shock speed is set
to larger than the weak detonation speed to avoid the singularity result in calculating the
shock speed.

3.3 TVM introduction

3.3.1 TVM for reaction with exact Riemann solution

If the parameters p4 and u4 of exact Riemann solution can be calculated, then several
modifications of the standard method to achieve the correct shock speed can be made:

(1) Parameters behind the detonation are confirmed by solving an exact Riemann prob-
lem in the initialization step, which determines p4 and u4 in Eq. (3.12). ρ2, p2, and u2

equal to unburnt parameters.

(2) Temporary mass fraction consumption of transition points that satisfy T∗
> Tig are

obtained by solving the source terms by the explicit ODE method, which is the first step
of the method termed as Predictor U∗

i to obtain the intermediate state parameters p∗, ρ∗,
and u∗, as shown in Fig. 3:

U∗
i =R(∆t)Un

i . (3.13)
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In the predictor, p∗ is updated by Eq. (2.3). ρ∗ and u∗ do not update in the prediction step
and are equal to the local density and velocity because of the mass conservation in the
reaction operator. Thus, the speed of shock Ss and weak detonation Swd can be calculated
by Eq. (3.12).

(3) After the predictor, those transition points (T∗
> Tig) that satisfy Ss ≥ Swd in Eq. (3.1)

will be allowed to ignite in the reaction operator, which is called the second step of the
method termed as Corrector:

U∗∗
i =

{

U∗
i , if Ss≥Swd,

Un
i , if Ss<Swd.

(3.14)

(4) Finally, the conservation variables are normally updated by the advection operator in
normal way after the reaction operator is corrected by the wave speed relation:

Un+1
i =A(∆t)U∗∗

i . (3.15)

This proposed method is called the threshold values method because whether these tran-
sition points (T∗

>Tig) will be ignited or not all depend on a set of threshold parameters
(p∗, u∗, ρ∗). TVM can prevent the spurious numerical phenomena from appearing even in
the under-resolved conditions. This advantage will be proven by many simple reaction
test cases.

3.3.2 TVM for reaction without exact Riemann solution

As shown in Eq. (3.12), the shock speed and the weak detonation speed can be calculated
without the exact solution of the Riemann problem if the unknown parameters p4 and u4

(as well as 2-state parameters p2, u2 and ρ2 in such cases as unsteady initial conditions
are concerned) can be obtained, thereby indicating that the method can be extended to
more complicated problems such as multi-species, multi-reaction cases, and the unsteady
initial condition problems. Therefore, the key to the extension of TVM is to determine the
concerned parameters p4 and u4 after the detonation and the 2-state parameters p2, ρ2,
and u2 before detonation. In the following paragraph, a kind of mass fraction detector is
introduced and applied to determine the concerned parameters.

TVM for unsteady initial conditions problems and multi-species problems

If the unsteady state is considered, the parameters concerned such as p4 and u4 are
approximated as the pressure and velocity in the transition points whose mass fraction is
not zero (in all cases, |z|<10−2). The mass fraction detector works well in all cases because
the corresponding p4 and u4 are updated from the similar status of point A in Fig. 2 since
it is the exact point in front of the ignition grid point similar to point B. Accordingly,
if one parameter before detonation front is unsteady such as density in the example of
Section 5.1, then ρ2 is found in the transition point similar to point D (|z−1|< 10−2) in
Fig. 2 because it is the point that connects the ignition point in the prediction step to form
the weak detonation structure.
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Figure 4: Summarized flow chart of TVM for different reaction problems. i represents the index of the grid
points and N is the number of the grid points.

(5) Mass fraction detector in TVM for complicated problems: post-detonation parameters
p4 and u4 are updated from the transition point that satisfies |z|<10−2. The initialization
of p4 and u4 is chosen as the post-detonation parameters of the initial conditions. The
initialization step and update step for p4 and u4 are plotted in the flow charts of Fig. 4.

In the multi-species problems with only one reaction, the calculation steps are similar
to the TVM for unsteady initial condition cases. One minor revision is necessary, which is
that p4 and u4 are updated from the transition point that satisfies |zfuel|<10−2. Such as in
the H2 and O2 one-step chemical reaction introduced in Section 5.2, the 4-state parameters
are found in the transition point whose mass fraction of H2 satisfies |zH2

|<10−2.

TVM for multi-reaction problems

Although TVM can correctly restrain the wrong detonation wave, over-restraint can
occur in the transition points in multi-reactions, which makes the mass fraction of fuel
not consume correctly. Thus, in the reaction operator, the predictor of different reactions
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are calculated separately to get a detonation front whose position satisfies Ss > Swd in
Eq. (3.1). Then, as shown in Fig. 4(c), the true detonation front position is obtained by
choosing the smallest position of detonation front calculated from different reactions.
Once the detonation front is determined, the source term is solved again via a standard
implicit solver in the region after the detonation front position. The choice of 4-state
parameters p4 and u4 is same as the one in multi-species cases as introduced above.

(6) The corrector in reaction operator in multi-reaction problems is to get the true deto-
nation front position I Ifront (I I is the index number of the grid points and the detonation
is assumed to propagate in the direction to the large index number):

I Ifront=min
j

I Ij, j=1,···NR, (3.16)

where grid point I Ij is the maximum grid point that satisfies T > T
j
ig and Ss > Swd (T

j
ig

is the ignition temperature of the jth reaction). Then reaction operator is solved by the
standard method in the grid points that are smaller than I Ifront:

U∗∗
i =R(∆t)Un

i , i=1,··· I Ifront. (3.17)

In summary, several extensions are made based on the idea of TVM and the calculation
rules are summarized in Fig. 4. High order spatial discretization schemes will resolve
the spurious behavior to some extent [22, 23], although spurious behavior will persist in
certain realistic extreme flow conditions [38]. However, faster propagation of spurious
detonation will be restrained by TVM as long as the spurious bifurcating shock struc-
tures occur because TVM only modifies the source operator, not the advection operator
as related above. Such a scenario indicates that TVM can be used both in splitting scheme
and in other high-order schemes; furthermore, TVM will have the potential to simulate
the extreme flow conditions such as those described in [38].

4 Simple reaction examples with extreme conditions

This section presents the performance of the proposed method for four simple reaction
test cases. In order to illuminate the characteristic of the threshold values method, TVM
is compared by ESM method [24] and MinMax method [21]. In the first example, the
RCD and SCD cases are numerically simulated by four different methods whose results
are compared to the reference solution. In the following three examples, the effects of
three important parameters as related in Section 3.3 i.e., the chemical reaction rate K0, the
ignition of temperature Tig and the release heat Q0 are assessed on the appearance of the
spurious solution by the different methods.

4.1 Example 1: The standard case

Different initial data will lead to different Riemann solutions. In this example, two initial
data are chosen to obtain the RCD case and the SCD case respectively. All initial val-
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(a) RCD case of different methods (b) SCD case of different methods

(c) RCD case of different discretizations (d) SCD case of different discretizations

Figure 5: Numerical results for standard case by different spacial/temporal discretizations and different methods.

ues and important parameters for the RCD case are the same as Eq. (2.8), except that the
parameter u on the left side of the calculation area in Eq. (2.8) is 4 in the SCD case. Ref-
erence solution is solved by the standard method with 50000 grid points and extremely
small time step of 0.000001. Much less grid number which is 300 and larger time step
which is 0.0001 are considered in all four methods.

As represented in Figs. 5(a) and (b), all modified methods can restrain the spurious
behavior and reach the correct solution contrary to the spurious numerical solution by
the standard dissipative method in the conditions of the same number of gird points
and the same time step. Considering the similar shock patterns in the RCD and SCD
cases, all numerical test cases in the following three examples will be the SCD case (RCD:
p4=16.796 and u4=2.4609; SCD: p4=24.2456 and u4=3.4784 in TVM calculation).
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The spacial discretization and temporal integration can effect the spurious behav-
ior [3, 4], which are represented in Figs. 5(c) and (d). The grid number of all cases are
decreased to 100 for comparison of spurious behavior of different schemes. However,
temporal discretization effect is small and higher spatial discretization obtains a less spu-
rious behavior as shown in Figs. 5(c) and (d), which indicates the higher discretization
method cannot solve the spurious problem but only soothe the phenomena [8]. Thus all
numerical test cases in the following examples will be solved in first order temporal and
second order spacial discretization.

4.2 Example 2: Chemical reaction rate (K0)

The manner in which the chemical reaction rate K0 is chosen can affect the level of the
spurious behavior in the advection-reaction problems (Q0 = 20 and Tig = 2). As can be
seen in Fig. 6(a), except in K0 = 100 (representing the lower stiffness) showing a correct
solution, all other K0 conditions lead to the spurious phenomenon solved by the stan-
dard dissipative method. Besides, with the larger K0 (representing the higher stiffness),
the spurious behavior comes to appear more obvious. However, the degree of spurious
behavior seems to be the same when K0=10000 and K0=15000.

As illustrated in Fig. 6(b), all ameliorated methods mentioned above give the precise
solution referring to the reference solution when the chosen K0 is equal to 15000, which is
contrary to the solution by the standard dissipative method, showing a bifurcating wave
pattern (p4 =24.2456 and u4=3.4784 in TVM calculation).

The difference of the shock wave speed and the weak detonation wave speed DS with
the growth of the chemical reaction rate K0 is represented in Fig. 7. If K0 is smaller than
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Figure 6: Numerical results for ratio of chemical process.
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Figure 7: Intermediate state parameters with varying K0.

200, the spurious phenomenon will not appear for the quicker speed of the shock wave.
When K0 increases, the mass fraction of a transition point will decrease precipitately,
which generates a faster weak detonation wave movement. However, as K0 reaches to
an extremely high value (approximately equal to 5000), the difference between the shock
wave speed and the weak detonation wave speed DS converges to a constant, which
means the numerical solution will become the same spurious degree as shown in Fig. 6(a)
in the high K0 conditions. The reason for this phenomenon is that when K0 is larger than
an extreme value, the ignited transition point will get to the equilibrium state in one time
step and release chemical heat immediately, which leads to the constant weak detonation
wave speed as illustrated in Section 3.1.

4.3 Example 3: Ignition temperature (Tig)

The main emphasis in this example is to study the influence of different ignition temper-
atures in the behavior of spurious numerical solution of the SCD case (K0 = 10000 and
Q0 = 20). As shown in Fig. 8(a), the numerical solution solved by standard dissipative
method tends to be more spurious (the gap between the shock wave and the weak deto-
nation wave gradually enlarges) with the smaller Tig between five ignition temperatures.

In view of the different modified methods, the ignition temperature equal to 1.1 at
which spurious behavior is most likely to happen is treated by four different methods as
demonstrated in Fig. 8(b). Standard dissipative method solving this extreme case gives
a typical spurious solution as expected. On the contrary, the TVM method offer an accu-
rate result as the reference solution presented. Although the ESM method gives a wrong
shock pattern in settling this case, the degree of the spurious phenomenon of ESM seems
less than the one of the standard dissipative method. MinMax method seems robust in
the extreme ignition temperature problems (p4=24.2456 and u4=3.4784 in TVM calcula-
tion).



274 B. Yu et al. / Commun. Comput. Phys., 22 (2017), pp. 259-284

X

P
re

ss
u

re

0 10 20 30 40 50 60

5

10

15

20

25

Tig=1.1
Tig=1.5
Tig=2.0
Tig=2.5
Tig=3.0

(a) The results of standard method at

different Tig

X
P

re
ss

u
re

0 10 20 30 40 50 60

5

10

15

20

25

Standard
MinMax
ESM
TVM
Reference

(b) The results of different methods at

Tig=1.1

Figure 8: Numerical results for ignition temperature.
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Figure 9: Intermediate state parameters with varying Tig.

For clarity of the presentation of the influence of the ignition temperature Tig on the
spurious behavior, the intermediate temperature T∗ and the discrepancy between shock
speed Ss and weak detonation speed Swd, i.e., DS=Swd−Ss are plotted against the 200 ig-
nition temperature conditions (from Tig=1.1 to Tig=3 and ∆Tig=0.01) as shown in Fig. 9.
As ignition temperature increases, the shock velocity rises gradually making DS dimin-
ish to nearly zero; meanwhile, the intermediate temperature increases linearly. Besides,
the standard dissipative method will give a correct solution in the conditions of Tig >2.9
for the shock wave will move faster than the weak detonation wave. However, when
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the ignition temperature is extremely low, more intermediate state points whose temper-
atures are higher than the ignition temperature will be ignited wrongly to the spurious
state.

4.4 Example 4: Release heat (Q0)

Fig. 10(a) gives the contrast between the solutions solved by the standard dissipative
method with four different release heat Q0 (K0 =10000 and Tig =2). Only when Q0=15,
the standard dissipative method shows a correct solution. All other three release heat
conditions give the spurious solutions by the standard dissipative method. Besides, the
higher release heat generates a more spurious solution.

Contrast of different methods to solve Q0=30 case demonstrated in Fig. 10(b) shows
up some key differences. The most striking phenomenon is the comparison between the
standard dissipative method, ESM and MinMax method, all of which generate the sim-
ilar spurious pattern. Although ESM gives an erroneous solution likewise, the degree
of spurious behavior by ESM is much smaller than MinMax and the standard dissipa-
tive method. However, the proposed TVM method gets us the correct solution in the
under-resolved conditions as the reference solution (p4=26.2914 and u4=3.2546 in TVM
calculation).

With respect to the specific influence caused by Q0, the variation of shock wave veloc-
ity, weak detonation velocity and intermediate temperature with the change of parameter
Q0 (from Q0=10 to Q0=30 and ∆Q0=0.1) is demonstrated in Fig. 11. We can find that if
Q0 <16, the spurious behavior will not happen because of the higher shock wave speed
than the weak detonation wave speed. However, when Q0>16, the velocity of the weak
detonation and the intermediate temperature increases linearly as the shock velocity re-
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Figure 10: Numerical results for release heat.
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Figure 11: Intermediate state parameters with varying Q0.

mains the constant, which contributes to a larger difference between the weak detonation
wave speed and the shock wave speed and thus means a more obvious spurious solution.

4.5 Summary

The simple reaction cases indicate that three important parameters i.e., K0, Tig and Q0)
that also appear in the illustration of TVM are vital for the occurrence of spurious so-
lution. Traditionally, spurious behavior is believed to happen more easily under strong
stiffness, in which chemical reaction rate K0 is large. However, the case of different chem-
ical reactions indicates that when large chemical reaction rate is considered, no more spu-
rious behavior will occur and ESM method can easily represent the single discontinuity.
The effect of K0 is even smaller than those of Tig and Q0, thereby indicating that the spu-
rious behavior is not just related to chemical reaction rate, but is also strongly related to
the ignition temperature and heat release from the reaction.

5 Extension to more complicated problems

5.1 Problems with complex initial conditions

The first example uses Heaviside model and has been studied in [22] but with the stronger
stiffness. This one-dimensional detonation problem involves a collision with an oscilla-
tory wave in density. The computational domain is [0,2π] and the initial conditions are
given as follows:

(ρ,u,p,z)=











(2,4,40,0), x≤
π

2
,

(1.0+0.5sin2x,0,1,1), x>
π

2
.

(5.1)
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Figure 12: Computed results for unsteady initial conditions case at t=π/10. All methods with N=300 except
for reference solution with N=10000 by standard dissipative method.

The strong stiffness parameters are given by:

(γ,Tig,K0,Q0)=(1.2,2,4000,50). (5.2)

The chemical reaction rate is set higher than the one in [22,24], which makes the problem
more stiff and the spurious behavior will happen more easily. The reference solution is
solved by the standard splitting method with refined mesh (N = 10000) and CFL= 0.5.
The numerically solved pressure, temperature, density and mass fraction are plotted in
Fig. 12, where results solved by ESM, the standard dissipative method as well as TVM
with the same coarse mesh (N=300) and CFL=0.1 are also displayed. Although the un-
steadiness and the absence of exact Riemann solution, TVM obtains the correct solution
as reference results, which shows the robustness of TVM in strong stiffness problem.

The second example is the initial conditions that involves with the detonation collid-
ing with a rarefaction wave, which is also been studied in [22, 24]. The computational
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Figure 13: Computed results for unsteady initial conditions case at t=3. All methods with N=300 except for
reference solution with N=250000 by standard dissipative method.

domain is [0,100] and the initial conditions are:

(ρ,u,p,z)=







(2,4,40,0), x≤10,
(3.6428,6.2489,54.8244,0), 10< x≤20,
(1,0,1,1), x>20.

(5.3)

The parameters are chosen as:

(γ,Tig,K0,Q0)=(1.2,1.02,10000,80). (5.4)

The ignition temperature is lower, chemical reaction rate and release heat are higher than
those in [22, 24]. The reference solution is solved by the standard splitting method with
refined mesh (N = 250000) and CFL = 0.7. As comparison, the results solved by ESM,
standard method and TVM with the same coarse mesh (N=300) and CFL=0.04 are also
displayed in Fig. 13. It can be found that TVM obtains the correct detonation discontinu-
ity. However, results solved by ESM and standard dissipative method give the classical
bifurcating wave structures.
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5.2 Multi-species problem

In the following paper, the multi-species and multi-reaction cases are considered. Thus
the calculation method is necessary to be introduced. The governing equations of multi-
species and multi-reaction problems are similar as the ones in [24]. Elementary irre-
versible reactions involving NS species can be represented in the following form:

NS

∑
i=1

v′i,jχi ⇐⇒
NS

∑
i=1

v′′ i,jχi, j=1,···NR, (5.5)

where NR is the number of reactions. The stoichiometric coefficients v are integer num-
bers and χi is the chemical symbol for the ith species. The superscript ′ indicates forward
stoichiometric coefficients, while ′′ indicates reverse stoichiometric coefficients. The pro-
duction rate ωi of the ith species can be calculated as a summation of the rate of progress
variables for all reactions involving the ith species:

ωi=Wi

NR

∑
j=1

(v′′ i,j−v′ i,j)Kj

NS

∏
i=1

(

ρzi

Wi

)v′ i,j

, j=1,···NR, (5.6)

where W is the molecular weight. Kj is the reaction rate of the irreversible chemical reac-
tion of the jth reaction which is expressed in Heaviside form. The standard method still
uses the Strang splitting and AUSM with TVD minmod limiter as the convection opera-
tor in the multi-species Euler problems. A full implicit scheme is applied to update the
source term, which is different from the reaction operator in the simplest Euler equations:

Un+1=Un+
∆tS

1−∆tS′
, (5.7)

where S′ is the Jacobian of the reaction source term and can be expressed as:

S′=
∂S

∂U
=















∂ω1

∂(ρz1)
···

∂ω1

∂(ρzNS)
...

. . .
...

∂ωNS

∂(ρz1)
···

∂ωNS

∂(ρzNS)















. (5.8)

LU decomposition is used to solve Eq. (5.7).
A simple reacting model (three species and one reaction equation) is considered in

multi-species example. Similar case had been investigated in [20]. The reaction equation
is:

2H2+O2→2H2O. (5.9)

The necessary parameters are presented as follows:

(γ,Tig,K0,QH2
,QO2

,QH2O,WH2
,WO2

,WH2O)=(1.4,2,106,600,0,0,2,32,18). (5.10)
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Figure 14: Computed results for multi-species case at t= 0.8. All methods with N = 300 except for reference
solution with N=2000 by standard dissipative method.

The release heat of H2 is set higher to than the one in [20, 24] which makes an extreme
condition that more spurious behavior will occur as in simple reaction cases. The initial
data consist of the burnt gas on the left side and the unburnt gas on the right side. This
problem is solved on the interval [0,20]. The initial data are piecewise constants given by:

(ρ,u,p,zH2
,zO2

,zH2O)=

{

(2,8,20,0,0,1), x≤2.5,
(1,0,1,1/9,8/9,0), x>2.5.

(5.11)

The reference solution is obtained by the standard splitting method with refined mesh
(N=2000) and CFL=0.1. The reference solution consists of a detonation wave, followed
by a contact discontinuity and a shock as shown in Fig. 14. The numerical results by ESM,
the standard dissipative method as well as TVM with the same coarse mesh (N=300) and
CFL= 0.1 are also displayed. Different parameters of the results with different schemes
are plotted in Fig. 14. In this extreme condition, ESM and standard splitting method both
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illustrate the spurious behavior as expected. However, TVM gives the same detonation
wave speed as the reference solution.

5.3 Multi-reaction problem

In multi-reaction problem, a reacting model which consists of five species and two reac-
tions is considered as:

H2+O2→2OH, 2OH+H2→2H2O. (5.12)

The species N2 is treated as a catalyst. Similar example was investigated in [24]. All
parameters used in computation are set to the condition of both stiff reactions, given as
follows:







(γ,T1
ig,K1

0,T2
ig,K2

0)=(1.4,1.5,105,1.5,105),

(QH2
,QO2

,QOH,QH2O,QN2
)=(0,0,−100,−100,0),

(WH2
,WO2

,WOH,WH2O,WN2
)=(2,32,17,18,28).

(5.13)

The initial conditions are given as follows:

(ρ,u,p,zH2
,zO2

,zOH,zH2O,zN2
)=

{

(2,10,40,0,0,0.17,0.63,0.2), x≤0.5,
(1,0,1,0.08,0.72,0,0,0.2), x>0.5.

(5.14)

Fig. 15 indicates the numerical solutions by the proposed method with the coarse mesh
(N = 300) on the interval [0,2] and CFL= 0.1. Refined mesh (N = 4000) and CFL = 0.1
are applied by the standard method to obtain the reference solutions. In this bi-stiff re-
action system, ESM gives the typical spurious solutions as the ones by standard splitting
method. However, the same wave patterns with the correct speeds are captured by TVM
referring to the reference solutions. Only a short simulation time is offered since the refer-
ence solution breaks down to spurious bifurcating solutions at late time due to the strong
stiffness. However, the proposed method gives the correct single detonation front at late
time, which is not shown in this figure.

6 Concluding remarks

Spurious solution by the standard dissipative method will occur in the conditions of
the coarse grid and large time scale when simulating stiff reactive problems. Detailed
analysis on the formation of spurious wave pattern is presented that uses the standard
fractional step method using Strang splitting. With the help of physical arguments, this
paper concentrates on devising a modification to standard fractional method, thresh-
old values method (TVM), which can eliminate spurious behavior both in one-reaction
and multi-reaction problems with strong stiffness. Single reaction detonation as well as
multi-species and multi-reaction detonation test cases are examined to demonstrate the
superiority of the TVM approach in general. Extension of TVM to multi-dimensional
problems can be developed by choosing the proper post detonation parameters and will
be the focus of future work.
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Figure 15: Computed results for multi-reaction case at t=0.06. All methods with N=300 except for reference
solution with N=4000 by standard dissipative method.

Acknowledgments

The authors would like to thank the Center for High Performance Computing of SJTU
for providing the super computer π to support this research. This work is supported by
the National Natural Science Foundation of China (NSFC-91441205 and NSFC-91330203)
and National Science Foundation for Young Scientists of China (Grant No. 51606120).
Furthermore, Haiyan Lin and Chunhui Tang are appreciated in checking the revised
manuscript.

References

[1] P. Colella, A. Majda and V. Roytburd, Theoretical and numerical structure for reacting shock
waves, SIAM J. Sci. Stat. Comput., 7(4) (1986), 1059–1080.



B. Yu et al. / Commun. Comput. Phys., 22 (2017), pp. 259-284 283

[2] D. Griffiths, A. Stuart and H. C. Yee, Numerical wave propagation in an advection equation
with a nonlinear source term, SIAM J. Numer. Anal., 29(5) (1992), 1244–1260.

[3] A. Lafon and H. C. Yee, Dynamical approach study of spurious steady-state numerical so-
lutions of nonlinear differential equations, part iii: the effects of nonlinear source terms in
reaction-convection equations, Int. J. Comput. Fluid Dyn., 6(1) (1996), 1–36.

[4] A. Lafon and H. C. Yee, Dynamical approach study of spurious steady-state numerical so-
lutions of nonlinear differential equations part IV: stability vs. methods of discretizing non-
linear source terms in reaction-convection equations, Int. J. Comput. Fluid Dyn., 6(2) (1996),
89–123.

[5] R. J. LeVeque an d H. C. Yee, A study of numerical methods for hyperbolic conservation
laws with stiff source terms, J. Comput. Phys., 86(1) (1990), 187–210.

[6] H. C. Yee, D. V. Kotov, W. Wang and C.-W. Shu, Spurious behavior of shock-capturing meth-
ods by the fractional step approach: Problems containing stiff source terms and discontinu-
ities, J. Comput. Phys., 241 (2013), 266–291.

[7] H. C. Yee, D. V. Kotov, W. Wang and C.-W. Shu, Corrigendum to ”Spurious behavior of
shock-capturing methods by the fractional step approach: Problems containing stiff source
terms and discontinuities” [J. Comput. Phys., 241 (2013), 266–291], J. Comput. Phys., 250(1)
(2013), 703–712.

[8] B. Zhang and J.-H. Wang, A short note on the counter-intuitive spurious behaviors in stiff
reacting flow, J. Comput. Phys., 291 (2015), 52–59.

[9] B. L. Bihari and D. Schwendeman, Multiresolution schemes for the reactive euler equations,
J. Comput. Phys., 154(1) (1999), 197–230.

[10] R. Jeltsch and P. Klingenstein, Error estimators for the position of discontinuities in hyper-
bolic conservation laws with source terms which are solved using operator splitting, Com-
put. Visual. Sci., 1(4) (1999), 231–249.

[11] R. J. Leveque and K.-M. Shyue, One-dimensional front tracking based on high resolution
wave propagation methods, SIAM J. Sci. Comput., 16(2) (1995), 348–377.

[12] D. Nguyen, F. Gibou and R. Fedkiw, A fully conservative ghost fluid method and stiff deto-
nation waves, in: 12th Int. Detonation Symposium, San Diego, CA, 2002.

[13] Y. Sun and B. Engquist, Heterogeneous multiscale methods for interface tracking of com-
bustion fronts, Multiscale Modeling & Simulation, 5(2) (2006), 532–563.

[14] A. J. Chorin, Random choice solution of hyperbolic systems, J. Comput. Phys., 22(4) (1976),
517–533.

[15] A. J. Chorin, Random choice methods with applications to reacting gas flow, J. Comput.
Phys., 25(3) (1977), 253–272.

[16] A. Majda and V. Roytburd, Numerical study of the mechanisms for initiation of reacting
shock waves, SIAM J. Sci. Stat. Comput., 11(5) (1990), 950–974.

[17] C. Helzel, R. J. Leveque and G. Warnecke, A modified fractional step method for the accurate
approximation of detonation waves, SIAM J. Sci. Comput., 22(4) (2000), 1489–1510.

[18] W. Bao and S. Jin, The random projection method for hyperbolic conservation laws with stiff
reaction terms, J. Comput. Phys., 163(1) (2000), 216–248.

[19] W. Bao and S. Jin, The random projection method for stiff detonation capturing, SIAM J. Sci.
Comput., 23(3) (2001), 1000–1026.

[20] W. Bao and S. Jin, The random projection method for stiff multispecies detonation capturing,
J. Comput. Phys., 178(1) (2002), 37–57.

[21] L. Tosatto and L. Vigevano, Numerical solution of under-resolved detonations, J. Comput.
Phys., 227(4) (2008), 2317–2343.



284 B. Yu et al. / Commun. Comput. Phys., 22 (2017), pp. 259-284
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