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Abstract. This paper presents a Martingale regularization method for the stochas-
tic Navier—Stokes equations with additive noise. The original system is split into
two equivalent parts, the linear stochastic Stokes equations with Martingale solution
and the stochastic modified Navier-Stokes equations with relatively-higher regular-
ities. Meanwhile, a fractional Laplace operator is introduced to regularize the noise
term. The stability and convergence of numerical scheme for the pathwise modified
Navier-Stokes equations are proved. The comparisons of non-regularized and reg-
ularized noises for the Navier-Stokes system are numerically presented to further

demonstrate the efficiency of our numerical scheme.
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1. Introduction

In this paper, a Martingale regularization method is proposed to improve the com-
putational efficiency and accuracy of the stochastic Navier-Stokes equations (SNSEs)

with additive noise,

du —vAudt + (u-V)udt + Vpdt = fdt + o(t)AgdW in (0,7] x D x Q,

V-u=0 in [0,7] x D x Q,
u=20 on [0,7] x 0D x €,
u=ug on D x{,

(1.1
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where [0, 7] denotes a time interval of interest; D € R? d = 2,3 a space domain
with Lipschitz boundary; €2 a sample space of all the possible outcomes; v the viscosity
parameter; u = (ug,--- ,uq) : [0, T] x DxQ — R? the velocity field; p : [0, T] x D xQ —
R the corresponding pressure field; f : [0,7] x D x Q — R? a random forcing term;
o(t) : [0,7] — R a scalar function; and ug : D x Q@ — R? an initial condition. The
notation Ag := (—A)‘e denotes a fractional Laplace operator with # € R* [16] and
W = (Wi, -, Wy) : [0,T] x D x Q — R? denotes an infinite-dimensional Wiener
process. Further, assume that W;, [ = 1, - - , d are Wiener processes with bounded, self-
adjoint, positive semidefinite covariance operator ) which has eigenvalues {v; > 0}
and eigenfunctions {¢;(x)}. Then from [3], the Wiener process W can be characterized

by
W (t,z,w) 27 x)Bi(t,w), (1.2)

where 3;(t,w) = (8%, , 8}) is a sequence of real-valued independent and identically
distributed (i.i.d) standard Brownian motions. In this paper, the trace tr Q = )2, v
is not required to be finite. The infinite case can be incorporated with some feasible
regularization parameter 6 of the fractional Laplace operator.

The crucial part of the Martingale regularization method for (1.1) is having in hand
previous knowledge of an auxiliary stochastic process associated with the stochastic
Stokes equations

dn —vAndt+ V({dt = o(t)ApdW in (0,7] x D x Q,

V-n=0 in [0,7] x D x , (1.3)
n=0 on [0,T] x 9D x Q, '
n="mn0 on D x{,

where 1 : [0,7] x D x Q — R? is the corresponding auxiliary velocity and ¢ : [0, 7] x
D x  — R is the corresponding pressure. Theoretically, the stochastic Stokes equa-
tions (1.3) are somehow relevant to the divergence free projection of one stochastic
parabolic equations. Moreover, the solution of Egs. (1.3) with time-space white noise
in two dimension or higher has less regularities, e.g., n(t) ¢ L2(Q,H'(D)) [3]. The
fractional Laplace operator Ay is given here to regularize the noise term dW so as
to make the pathwise solution of (1.3) smoother and more amenable to computation.
Therefore, system (1.1) with a cylindrical Wiener process or a greatly non-smoother
Wiener process can be covered. Setting u = £ +n, p = ¢ + w, the induced velocity &
and pressure 7 satisfy the modified Navier—Stokes equations

dé¢ —vAgdt+ (E+1n) -V(€E+n)dt+Vrdt=£fdt in (0,7] x D x Q,
V-£€=0 in [0,7] x D x Q,
£E=0 on [0,7] x 9D x £,
£E=%& on D x .

(1.4)



Auxiliary Equations Approach for the Stochastic Unsteady Navier—Stokes Equations 3

The modified system (1.4) maintains higher regularities than the system (1.1). The
Martingale regularization method leads the simulation and analysis of the stochastic
Navier—Stokes equations (1.1) to the stochastic Stokes equations (1.3) which are linear
and the stochastic modified Navier-Stokes equations (1.4) with smoother noise. For
some rigorous theoretical analyses of the stochastic Navier—Stokes equations, readers
can refer to [2,4,5,7,11,13,17], etc. Some interesting topics of the stochastic partial
differential equations (SPDEs) are further detailed in [1,6,8,14,15,18].

The remainder of this paper is organized as follows. Section 2 specifies the notations
and the mathematical formulations of the Navier-Stokes equations throughout the pa-
per. Section 3 presents the properties of the auxiliary equations (stochastic Stokes
equations). Section 4 proofs the stability and the convergence of the pathwise solu-
tion of the modified Navier-Stokes equations under sufficient regularity assumptions.
Section 5 presents the numerical simulations and illustrates the results of numerical
experiments for the stochastic Navier-Stokes equations. Section 6 presents some con-
clusions.

2. Notations and preliminaries

Let L?(D) be the space of all real square integrable functions with norm and inner
product ||-|| and (-,-), respectively. For m,k € N, let H™(D) be a classical Sobolev
space,

H™(D) = {v € L*(D); 8*v € L*(D), |k| <m}
equipped with the norm

1/2
(AT p— o [ &

|k|<m
and denote by H["(D) the closure of C°(D) in H™(D). For s € R, we introduce the
fractional Sobolev space [16],
Hs(D) = {v € L*(D); o2 =) X(v,)* < oo} ,
=1
where {v;} denotes a complete set of orthonormal eigenfunctions in L?(D) and the
corresponding increasing eigenvalues {\;} satisfy the Laplace eigenvalue problems
_Awl:Alwl in -D7 wl‘aD:O7 l:1727

Further, the power of the negative Laplace operator —A is defined by the combination
{ir, i} as (=A)%v = 3772, A7 (v, 1)1 For additional details about H*(D) and H*(D),
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readers can refer to [16]. To capture the continuity of the random process, for 0 < o <
1, the Hélder continuous space C*(D) is defined as

Ch(D) = {v € CH(D); [[vllgrep) < OO} ’

with
[olleray = 3 sup [Pu(@)] + 3 [0
18|<k “€P 18|=k
and
[v]a — sup <|U(CL’) - Ug[y”) )
r,yeD,x#£y |£E - y|

Denote by (Q, #, P, { % }+>0) the complete filtered probability space; .# is the o-algebra
of events; the filtrations {.%#;};>¢ is an increasing family of sub-o-algebras of .7; P :
F — [0,1] is a probability measure with P(Q2) = 1. The expectation operator is de-
noted by E[-] := [,-dP on a random variable space. The stochastic Sobolev space
LE(Q2, H™(D)) is given

LE(Q, H™(D)) = {v: D x Q = R; E[|[v][F1m )] < +00}.

Vector-valued functions and spaces are denoted in bold font, e.g., v = (vi,--- ,vyq),
H™ (D) = (H™(D))?. Without ambiguity, no distinction is made in the notations of the
norms and inner products, i.e., [|-[|,,, is used for |||| ym py or ||:|[ggm(p)- Let X be the
velocity space and () the pressure space as

x=@mo),  Qi=ri={sc o) [ qan—o}.
D
The spaces of the divergence free functions are defined as

V={veX;(V-v,q) =0, VYqeQ}
Z={veX;V-v=0}

We define
a’(u7 V) =V (vua VV) ) b(V, q) = _<v "V, Q)7 C(u; v, W) = (u Vv, W)

The pathwise weak formulations of (1.3) and (1.4) are defined as, for a given sample
w € Q, seek pathwise solutions n(t) := n(t,-,w) € X, ((t) := ((t,-,w) € Q satisfying:

(n(6).v) = (1(0),v) - /0 a(n,v)ds - /0 b(v.C) ds

t
+/ (o(t)AgdW,v), Vv € X, (2.1a)
0

b(n(t),q) =0, Vg € Q, (2.1b)
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and seek £(t) := £(t,-,w) € X, 7(t) :==7(t,-,w) € Q satisfying:
t

t
v) = V) — v)ds — v)d
(1), v) = (£(0),v) /Oa@, )ds /Oc<s+n,s+n, )ds
t t
—/ b(v,w)ds+/ (f,v)ds, Vv eX, (2.2a)
0 0
b(&(t),q) =0, Vge Q. (2.2b)

Let {1} }r>0 be a family of regular triangulations of the spatial domain D with h an
index of the mesh size of T} (see [17]). We define the conforming finite element
spaces X;, C X and @}, C @ and the discrete divergence free subspace V;, C X;, on T},
as

Xy, = {vi € (CUD)% valr € (P™H(T))Y, T € T},

Qn ={an € C°(D)NQ; anlr € P'(T), T € Tp},
Vi ={vn € Xp; (V- vn,qn) =0, Vg, € Qn},
where r € NT. For v € H}(D), w € H}(D) and u weakly divergence free, we have
c(u;v,w) = —c(u; w, v),
c(u;v,w) = %(c(u; v,w) — c(u;w,v)) skew-symmetric form.
Then, for u, v, w € H'(D) there exists a constant C' > 0 such that
[c(w;v,w)[ < C HVUHL2(D) HVVHL2(D) HVWHL2(D) :

The same estimate holds for c(u, v, w).

The semi-discrete finite element approximations of (2.1) and (2.2) can be defined.
Then for the stochastic Stokes equations, we seek 1, (t) := n, (¢, -,w) € Xy, and ((t) :=
Cn(t,-,w) € Qp, such that

(9 (t), V1) = (74(0),va) — /0 a(mp, va) ds — /0 b(viC) ds

t
+ / (O’(t)Ag dw, Vh) , Vv, € X, (2.3a3)
0

b(nn(t),qn) = 0, Vagn € Qn,  (2.3b)

and for the stochastic modified Navier-Stokes equations, seek &, (t) = &(t,-,w) € Xy,
and 7 (t) = m(t, -,w) € Qp, such that

(&n(t),vi) = (&n(0), Vi) — /0 a(€p,vi)ds — /0 c(&n + 1 €n + M, V) ds

t t
- / b(vp, ) ds —I—/ (f,vy)ds, Vv, € Xy, (2.4a)

0 0
b(&n(t),qn) =0, Van € Qp. (2.4b)
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Let I;, : H*(D) n HA*Y(D) — Vy, Jy : L3N H?(D) — Qy be two interpolation
operators, (see [16]). For Vv € X, Vq' € @, assume that the interpolation operators
I, : X nHY(D) =V, and J, : Q N HP (D) — Q, satisfy the estimates

170v —Vlga(py < CHF 1V ggoer ) -
170v = Vllgzs ) + 115a = all 2y < CH IV gy + allggs )
and for Vvj, € Xy, Vg, € Qpn, the usual discrete inf-sup condition is true,

inf  sup b(vh—’qh) > 0. (2.5

m€Qnvyex, |[Vallx llanllg

Lemma 2.1 (Inverse inequality). Let {7}, }~¢ be a quasi-uniform family of triangulations
of D. There exists constant C' > 0 such that for vj, € Xy,

IV Valli2ipy < Ch72 [Valliz(p) -

Lemma 2.2 (Poincaré inequality). Let D be a bounded domain, then there exists a posi-
tive constant C such that, for v € H’g(D), k>1,

”VHLQ(D) <C HVVHLQ(D) .

Lemma 2.3 ([12]). Let & be a divergence free projection operator, then there is a constant
C > 0 so that for all v € H*(D),

12¥lgrpy < ClIvIIgrp) -

Lemma 2.4 (Discrete Gronwall lemma, no A¢-restriction [9]). Let C > 0 and a;, b;, d;
> 0 for integer | € N, be nonnegative numbers such that

N N-1
ay + ALY b <AtY ad+C, VN eN'
=0 =0

Then

N N-1
aN+Athl < Cexp (Atz dl> .

1=0 =0

3. The properties of the stochastic Stokes equations

In this part, we consider the properties of the stochastic Stokes equations (1.3).
Applying the divergence free projection operator & : L?(Q, H!(D)) — L?(Q, Z) to the
Egs. (1.3), we have the following equivalent system

{ dn —vZAndt = o(t) PAgdW, (3.1)

n(0) = mno.
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4
etuf

In the space-periodic case, ZAn = An. Let S(t) = A be an analytic semigroup.

(3.1) admits an explicit mild solution [3]
n(t) t)no +/ S(t—s)o(t)PAegdW (s), n(t) € L3(Q, 7). (3.2)

From Lemma 2.3, for n € L(9, Z) in (3.1), then there exists a v € L3(2,X) in (3.3)
such that

Inllz2@r2 0y < IVIL2@L2o)) -

3.1. Explicit solution of the stochastic parabolic equation
Based on Lemma 2.3, let us consider the following stochastic parabolic equation

{ dv —vAvdt = o(t)AgdW,

v(0) = 0, (3.3)

where the viscosity v and the random term are the same as that in (1.3). To avoid
certain technicalities, we assume that the covariance operator () in (1.2) and negative
Laplace operator —A admit the same orthonormal eigenfunctions {v;}. The case of
general eigenfunctions can be identically determined by {¢;}. Analogous to the poly-
nomial chaos expansion [10], let

v(t,z,w) Zl/); it ,w)

and substitute it into (3.3). It follows that the coefficient functions v;(t) := v;(¢,w),

l=1,2,---, are Ornstein-Uhlenbeck processes:
dvy(t) + vAvi dt = o(t) 7, dBy, (3.4)
v;(0) = 0. '
From [10], (3.4) admits an explicit solution
¢
vi(t) = vi(0)e ™M 4+ Y / o(r)e M) dgy(r), (3.5)
0
and for each component of v; = (v}, -+ ,v}), with Cy = max;e(o 7] |o(t)], the variance
functions are bounded as
I Ci —ount ,
Var(v;(t)) < 2V)\1+29(1 —e ), i=1,---,d. (3.6)
1
In sum, (3.3) admits an explicit solution as
¢
v(t,z,w) Z Uy (x / o(r)e M) dgy (7). (3.7)
0

Let us further consider the properties of the explicit solution of (3.7).
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Lemma 3.1. Assume that the orthonormal eigenfunctions {1;} € C'(D) and
(@) <C, V()| <CyV/A and  o(t) < C,, tel0,T].

If> ﬁ and > 2, Alﬁ% are finite for some 9 € (0, 1), then
l !

Eliv(t, )~ vis,9)P < O {Jt— s + e~}

and v(t) has a version with a-Hélder continuous path for « € (0, g).

Proof. We follow the proof procedure in [3] and the constant C' > 0 may be differ-
ent. The series (3.7) converges in L2(Q,L?(D)) forallt > 0 and x € D,

dC?C2%,
2 —2v
IMIZ2 02200 Z i (1=
dCQCg > Y
<=7 T < oo (3.8)

=1

With the interpolation arguments, for all ¥ € [0, 1], we have

() — di(y)| < C22ON 2 |z — g7 Va,y € D,
!e_t—e_S‘SCg\t—s\ﬁ, Cy > 0, Vi>0, s>0.

For different x,y € D, with It isometry property, we have

E[lv(t,z) = v(t,y)I]

)| ’Yl)\ 26’/ 0_2(7_)6—21/>\1(t—7') dr
0

2

2

C

2*X:W|SE—?J|19
=1

[ (x
020222 19)\19/2|x y| ’Yl)\ 29/ QV)\l(t*T) dT
0

| N

IN

with

v(t,x) — Z ot x) —u(t,y))*.
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Then for 0 < s <t < T, we have
HV(t ) = v(s,z)[’

_de | NA; 29/ 02(7)6—2”Az(t—ﬂ dr
S

2
+Zd\¢l )P 2w 2”/ ‘ Je P AE=T) g (r)emrhi=)| dr
=:dIi(t) + d]g(t, s).

For each term, we have

e t
I (t) <C? Z WJZ(JU)|2 '7l>‘120/ o 2VN(-T) 4

=1 s
—C202 Z gl (1- €—2V)\l(t—s))
a 1+260
e 2V)\l+
C2C%Cy & 9
= (2,/)1719 >\1+29 g lt—sl".

Moreover,

s 2
t 8 <C2 Z W}l ‘ 'Yl)\_ / ‘efl/Az(th) _ 671/)\1(577') dr
=1 0

o0

2 2 N (t—
Z 20°C, 1+29(1*e vAEe) <CZ 1+29 19|t*5|
=1 = A

Combing the above inequalities and applying Kolmogorov’s test [3], we have that the
random process v of (3.3) has a version with a-Holder continuous path with respect to
tZO,xeDandanyae(O,g). O

Corollary 3.1. When the regularization parameter § = 0, the stochastic parabolic equa-
tion (3.3) with a time-space white noise (cylindrical Wiener process) with v = C # 0,
I =1, has a solution v(t) ¢ L4(Q2, L%(D)) for d > 2. Moreover, with some regular-
ization parameter 6 > 0, (3.3) can be guaranteed to be sufficiently smooth.

4. Numerical analyses for the pathwise modified Navier-Stokes equations

Under sufficient assumptions in Lemma 3.1, the stochastic Stokes equations (1.3)
have a a-holder-continuous solution. Further, the modified Navier—Stokes equations
(1.4) have somehow higher regularities. In this section, we investigate the properties
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of the pathwise modified Navier—Stokes equations under weak regularity assumptions
which are consistent with Lemma 3.1. We assume the following regularities

n € CO(0, TR (D) NHY(D)), ¢ € CO([0,T]; L*(D),

& e CM([0, T, HPY (D) n B (D) NHy(D)), = e Ch([0,T]; L*(D)),

fc L*([0,T;L*(D)), 0<pB<1.

In the following, we assume that the solution of the stochastic Stokes equations is
exactly true and that u, = &, + 7, where 7 is a solution of the stochastic Stokes
equations (1.3). Let ¢, = nAt n=0,1,--- ,N—1land ty = NAt =T and &" = £(t,),

n+1
£nts — M, Eh = & +£ , analogous to n, f, respectively. We have a full
discrete scheme of (2.4) as follows for a given &} € Xy, seek &' € X, 7t € Qp
such that

n+1l 1 1
(5 5h,Vh)+a<£Z+2,Vh>+6<uz;uZ+2, W) + bva, 7t

At
= (f(thr%),Vh), v € Xy, (4.1a)
b( n+17q}1) 0, qn € Qh. (4.1b)

Theorem 4.1 (Stability). Assume that &) € V), and ||[Vn(t)|| < Cp < 400, t € 0,7,
then there exists a constant C such that
N-1

eV |[* +vae S

n=0
<cen(5) (5 + 3 3 [lnep)| + ).

Proof. Set (vp,qn) = 2At(§, nts , ) € Vi, x Qp in (4.1). The skew-symmetric
form of the convective term vamshes

( h7£ 7€

Since b(&},qn) = 0, qn € Qp, it follows that b(vy, "“) = 0. Then, we have the
following estimates

vg”“

n+2 n+2)

€17 = (1&g + 2uAtHV§Z+;

= —oAd(uyiuy 2 g ) oAt ). 6 )
— —2AtE(up; e g 3) 4 2AH(E (tns1): & )
— — A€ e 5”*2) — 2ALE (T, £"+2)+2At( £t 1), £n+2)

m gl
<2AL[E(gpn" T 6 )|+ 200t (s & ?)

+2At‘(( )fh )‘.
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For the convection terms, with Lemma 2.1, we have the following estimates,

denn" ) < vegl|[vnnts

2

e

V n+3 n n+i
<Z||ve* +;\|vsh\|2HVn +
V n+3 C n|2 n+1
<2llvert || + £ e[+

1 n 1

~ 1 —+ 1 +=
i h, g ) < |1Vl |V eh ||| ve

n+3 C n nt1
v ||+ vt ||t

For the forcing term, we have

n+3 v C 2
(F(tni1) €07 7) < [[f(E,10) < Zllvers | + =g, ]|
Combing the above inequalities together gives
6 = gl + vae vy
ZC’At n 2CAt n ntil|? | 2CAt 2
g ||+ R e [vard ||+ 22 lece)]|
Summing above inequalities from n = 0,1,--- , N — 1, obtains
€711~ [l€n [ +vAtZHvs”“
ZCAt ) QCAt |7, 204 =
n+d Z CARE 03 [ty

n=0 n=0 n=0

With the Lemma 2.4, we have

) N-—1 1112
|eN])” +vat 3 ||ve,
n=0

“exp (QCAt Z Hv ntl

2CAt Z Hf -

N—-1
2C At
) (2 S e
n=0

2
[+ H€2H2> |

‘ 2

11
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Since ||Vn(t)|| is upper bounded by C,,, we have

N-1

|eN]]” +vae >

n=0
20C2T\ [(20C°T o0 A N2 2
gexp( 2 >< - S et +HE2|!2>-
n=0

This concludes the stability of scheme (4.1) for the modified Navier-Stokes equations
with finite time interval. O

Vet

Theorem 4.2 (Convergence). Under above sufficient assumptions, for a given sample
w € Q let &(t,) and &} be pathwise solutions of (2.2) and (4.1), respectively. As-
sume that ug(w) € HY(D) N HA(D), ||[Vul|,, = maxe(o, 7 |[|Vu(t)|| and ||[Vus||,, =
maxyc(o, 7] ||Vup(t)|], there exists a constant C' independent of mesh size h and time step
At such that

N—-1 2
2 n+l n
ettn) —e¥|° + vt Y ||viens s“)‘
n=0
cT T
<cow (vl ) (5 Ivul 2 el
At tn o
+ B0 g, / V&P dr+ 2 |[vul?, (vn2 e
0

At N N
+ B g 2 / V& dr+ [ 2 [Vl | At
0

h2 +2
*I!Vuhll hQﬂIISHBHJr > / ||£t|\§+1 dr +vTh* |[¢|[34,

to

tN
2
(Al / V&I dr + ||| ) + CRP2 || 2, ) + vOTh? (€|,

to

Proof. For v;, € V}, the continuous equation in (2.2) att =t 41 satisfies
2

<§(tn+1)A; £(tn) ’ Vh> +u (vg”‘F%,Vvh)

+e(ult, 1)sult, 1), vie) = (w(t,

:(f(thr%),vh) + <£(tn+1)At— &(tn) _ €t(tn+§)7vh)

v (v5"+% — Vet 1), Vvh) . (4.2)

)V Vh)

+1
+3
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Meanwhile, the discrete equation in (4.1) satisfies

n+1_£ n+l n+l
Az Sho Sk vy | +v(VE, 2 Vvy) S, 2, v)

= (mp LV vn) = (£t 1), vi). 4.3)

Further, we set the errors between the true, numerical, interpolation solutions for ve-
locity and pressure as follows,

=" €y = (&" - I§") + (In€" - &) =ef + ey,

n

2=t =y = (n" = Jpm") 4+ ("t — ) = 27 4 2.

Hence, subtracting (4.3) from (4.2) follows the corresponding error equation

GZ—H — ez n—&—l ~
v +v (Veh Q,Vvh> + c(u(thr%);u(thr%),vh)

gy va) - (LY v

n+1 n
:_<1At7 >—u<v zvvh>

+ (5 Vvi) = () = m(t,41), V- Vi)

E(tnt1) — &ty .
+( | H)At ( )_gt(t%%)’vh +’/(V€ " —Vf(tm%),VVh)'
Taking
Vh = 2Ateh = At(e]™! +ef) € Vy,
we obtain
[lentt||* — [lef| 2 +2uAt‘ Vet

1 1 1
=— 2At’cv(u(tn+%); u(thr;), eZ+2) + 2Atc(uy; uz+2 , eZ+2)

-2 (e’}'H — eI,ehJr >

— 2UAt <Ve?+5,VeZ+5> + 2At (2 V- 1)
— 2A8(7(tns1) — w(tn+%
2 ((€0) — €000)) — Atelt )l )

+ 00 ((VE(tri) + VE(t) 29600, Ve )
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where (271, V - vj,) = 0 for 2! € Q. The reminder of the following part is to
bound each term in the above right hand side. For the nonlinear terms, by adding and

. ~, n+% n+%
subtracting c(u(tn+%); u, ’,e, ), wehave

~ -|-l —~ _A,_l +l
(1)t 1) e )+ (a7

~ ntl - ntl npol
—alty, e+ dult, e

T U g
n+%)7uh e, °)+c(upiu, tie, )
1 1

~ n+i a4l ~, n+s5 n+s3
=—cult, 1)iult, 1) —w, *e *) —dult, 1) —upsuy, *e, )

=:-0 — I

—¢(u(t

.. nt+l .
Reorganizing the term u(¢, +%) —u, > gives

n+3
u(tn+%) —u, °

1 n n n n
Zﬁ(tn+%) + n(tn+%) - §(€h+1 +n" T+ &+ )
ZE"H +&" 1,6 + Ig" n 1,6 + I¢" _ g+ g

2 2 2 2
£n+1 +£n nn-i—l +nn
FEt) — T () -
1 1 £n+1 +£n nn+1 +77n
=5 (f +ef™ ) + (et eyt &ty 1) - o 1) - T

n+s n+3 1 1
=e; 2 + e, 2 +€(tn+%) _£n+2 +n(tn+%) —'r]n+2.

The first nonlinear term is estimated as follows
1

n+% n+§)

1 1
n+s; n+2):’cv(u<tn+l);e1 e,
2

L :E(u(tn+%);u(tn+%) —u, °,e,

~ 1 p4l ~ 1
+ c(u(tn+%); S(tm%) - £n+2 ;€ 2) + C(u(tn+%)3 n(tn_g_%) - "7n+2 » €y,

=lip+ha+ 13

For each subpart, we have

1 1
Ly =eult, 1)ie] * e %)
1 1
< n+yz n+sz
< ¢||Vult,.y) ‘Hvef HVeh
2
1% n—i—l C 2 n+l
S% Ve, 2 —i—;HVu(tm_%)’ HVeI 2
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~ 1 ntid
Lo = c(u(tn+%);£(tn+%) _ £n+27eh 2)

n+ L n-l—l
< 0[|Vuttye )| [ty - 2| vy
2
v n+3 C ntiy]]?
Sszeh |+ et |Vt e
1,3 C(u( +%),77( +%) n » €, )

< C"VU(tn+1) ’ HV(n(thr%) n"tz) ‘ HveZJr%
<o ‘Veﬁ + 2 [Fut )| [Tt - |

The two terms
1.2 112
V(€ ts) — )| and ||V, ) - 0|
above are estimated as follows. From the Newton-Leibniz formula, we have

E(tnn) + €(tn) = 26lt,,p) = [ &lr)dr— [

tn+% tn

With the Cauchy-Schwarz inequality in time direction, taking gradient of the above
equation in space on both sides gives

HV (£(tn+1) +&(tn) — 2£(tn+%)> ‘ ‘2
(Ap)12 ( /t e dT) "

lnt1 9
—A / IV ()2 dr.
tn

2
<

It leads to
2 At tn+1
< —

< IvEEIP
tn

[Vt -

Since we have assumed that 7)(¢) is a-hdlder continuous in time, we set

[1]a = sup { |n(t,ﬁ) — 1|70€s,33)] :t,s€[0,T], and s # t,a.s. x € D} ,
-5

similar for £. Then, it follows

1

‘n(tm%) -

<5 ([nttnen) =t

) <l (3) ol

[ Mts) = ()
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It follows that

NG

:/D )V(n(tmr%) _"7n+%) 9 .

<C27% (V) |AL* < OVl | AL

n—&-%) -

The second nonlinear term is estimated as follows

P :E(u(tn+2) uh,uhJr2 ez+2)
—e(u(t,.,2) —ult)iuy 2 e F) + dulta) — ufrug e )
:’c”(u(thr%) —u(ty); u2+% Z+1) + c(ep; uh+%,ez+1) + c(ef; thr2 , ez+2)
=:o1 + Is2+ Io3.
For the sub-terms, we have
Iy = (ult,, 1) — ultn)iwy 2 )
= Bt 1) — Elt)uyE e ) Bty ) — i) e )

=111+ 1212,

12,1,125(5(tn+1) £(tn);u n+ anJrQ)

<ot o o

< 5 Hve”+2 +f‘ vt Hv 1) £(tn))H2,
I>12 ZE(n(thr%) —n(tn); uZ+2 eZJrz)

< ||Vt 1) — ne)|||[7u 3| || vert

C n+3
e

2
[V(t,,y) =)
For the terms associated to £ and 7, we have the following estimates,
thr 1
£(t,y) ~ €)= [ aran
tn

[ Vett,y) - vew|[ < at [ ivednir o

<lnla(3) 18

1t ) = (t)
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2 1 2a
[9ttyy) - te| | < civaz (3) 18 < oo i,
1 1 1 1
12,2:E(ez;uz+2792+2) T “Vez+2
2 2
v +1 C +l
< g5 [verH| | + | jwur | e
2 2
v n+i C n+= 2
=9 Ve, * +ﬁ ‘Vuh 2| llell”
1
I3 =¢ (ej,thr2 7L+2)<C||VeIHHVun+2 “Vez+2
< % Vet +"Vuz+2 Ve .

For the term associated with discrete derivative in time, we have

tn+1 1
(e}”1 —eI,eZ+ > = </ (er(7))¢ dr, ez+2>
tn

TL-‘rl tn+1
<||Ve, * / (er(7))¢dr
tn
VAt n—i—% 2 C tnt1 2
<o Ve T [ et ar

For the terms of the Stokes interpolation operators, we have

2

1 1 1 1 1
y<Ve}‘+2,VeZ+2>gy’w}‘+2 ‘VeZJrQ <2”6HVeZ+2 +Cv||vey
2
n+i ntl n+1
e <l |Vt < g [ventd| |+ St
For the pressure term, we have
tn+1
((tns1) = 7ty 1), V ert?) H/ |me(t)] dr Hv et
v ntd|[2 CAL [ten )
<sellVen®|| + == [ IIm@)IP dr.
tn

For the last two terms, from Newton-Leibniz formula, we have

tnil
€)= (1) ~ &t ) = [ 6 ~&ult )

)
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It follows that

tni1
_ (/t &(r) ~ &t 1) dr.ep )

tn+1 TL-‘rl
<ol [ e -ty | |[ver
tn
VAL || ned||2C [t 2
<% Ve, '’ +V/tn Et(T)—St(tn+%)) dr
At || n C
<220 oy + Cavezan,
ntl
’ (vatm) +VE() - 296(,,), Ve, )
1
tn 1 n+
u(At/ Vel dr)|jve;
tn
tn+1
< Veh +ucm/ ||V&(T)|* dr.
26 .
Combing all the above inequalities together obtains
1
ent!]|? - ]eﬂ\—%uAtHVeh
20At || ntt|[?, a2 . 2CAL 2||_ nti]]?
< ‘Vuh | el + =2 | [utt)|| || el
C(At)? tn+1 2C At 2 N
O [utt, | [ Iva@IP ar+ 2S5 [vug, )| 19z e
20 (At)? nil|[? [t 2C At n
+ 220 Vuh“ [ v ar +H v otz s
tn
20At n+i 2C tnt1
+ 298 oure | ywepe + 2 [ st ar
2 2 t
n+l 2CA A ntl
+2u0AtHv P R P S T ol e
tn

+ 2 atle 2 (a0 + vo(any? / Ve dr.

Summing up the above inequalities fromn = 0ton = N — 1 gives

N-1

[lef[[* —[1ef|I* +vat 3

n=0

n+%
Ve,
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N-1 N-1 2
< IVwl 3 Nl + == [Tl Y ||ve)
n=0 n=0
C(At o 20(NAt .
+ ( ) [Vul[3, /t IV&(7)]? +(V)HVu]zo[Vnﬁ\At\2
0

20(At t C(NAt .
+<V>\|Vuh||§o [ el ar+ 2020 a2 (92 ad?
0

2C At 20 [
IVl VeI + 57 | e dr
=0 0

N-1 2 N-1 2t
n 2C At 2C (At N
+20CAL Y " [|Ve +2 + CV Z"HW + C(V)/ || () dr
n=0 = to

20 20¢ tN 2

+ - (NAYEIL(AD> +vC(An? [ ||[VE&()|* dr.
to

Further, applying interpolation inequalities, we have

N-1

e[~ [[ef|I” +vat 3

n=0
N-1
2C’At 2CNAt
w12 lleql* +
n=0

n—&-%
Ve,

1Vl 5% |[€]15.41

N C(At) C(N At)

Va3, [Va]Z | At

tN
IVl / Ve ()| dr +

+2C(VA)

2C(NAt .
(y) Vsl (V2 |

tN
Va2 / Ve ()P dr +
to
2CN At
+

2C N
2 2 2
IVl 2 €l + 212 [ el o

to

2CN At 20(At2 tn
+ N Bt g1, + 22 g+ 22 [ o) e

+ 22 (v anle2(an® + vo(any? [ Iveamie ar

to

By the discrete Gronwall inequality, we have

N—-1 +l 2
HehH +1/Atz VeZ 2
n=0
2C'NA7§ 20N At
gexp( Vsl 2 )( Va2, 222 ]2,

C(At) C(NAt)

+ 1Vull% [Va]Z | At

[ Vull%, / Ve (]2 dr +



20 W. J. Zhao and M. Gunzburger

C(NAt)

20 (At)? tn o
+ 220 v, [ 9adnl? ar + Vsl (V]2 11
0

QCNAt 2C N
(T2 12 €3, + 2 p25e2 / &1, dr
0
20N At 20(At)* [N
+2VCNAth25HsH%H+ w2 il + 22 [ o) ar
to
2C

+ 22 (Vanlef (a0 + vo(ar? /

to

V&) dr + HeW) |

Applying the triangle inequality, we have

N-1 1 2
|[€(tn) — & }2 +uAt > V(T — £ 2) ’
=0
, N-1 ! ) N-1 L2
<2|[eN||” + 2wt S ||Ve, +2Hel " +2wat Y ||ve; '
n=0 n=0
In conclusion, we have Theorem 4.2. O

5. Numerical experiments

In this section, we give experiments of (1.1) with truncated time-space white noise
(cylindrical Wiener process) and regularized time-space white noise.

5.1. Numerical scheme

With appropriately selected regularization parameter 6, the stochastic forcing term
can be guaranteed AgW (t) € LZ(Q, H '(D)). For a given sample w € Q, N,, € N,
suppose that the initial values nj)(w), &) (w) € X, and ¢ (w), 7 (w) € Qp, for the
stochastic Stokes equations, solve for (n; (w), (' (w)) € Xy x Qp, n =1,2,--- | N, such
that for all (v, qn) € X, x @, from

n+1 n
N, — Ny n+3 n+l
(i& Vi) vi) £ b(vi. G
Nh
n+i n n
=(f; 7, Atz)\ o(tn) (Yu(x) (B (w) — B (W), Vi),
by, qn) =0,



Auxiliary Equations Approach for the Stochastic Unsteady Navier—Stokes Equations 21

and for the stochastic modified Navier-Stokes equations, solve for (§}'(w), 77} (w)) €
X}, % Qp, from
(EZH - &

1
n+s

+1 B +1
Vh) +a(€y i) + &R + s 6 4+ )

At
1
+ b(vh7 7.‘.2«4‘1) = (fn_‘_% - fln—'—2 ’ Vh)7

b( Z+17 qh) =0.

5.2. Deterministic case

To demonstrate the effectiveness of our schemes, we first choose the deterministic
Navier—Stokes equations as follows:

w —vAu+u-Vu+ Vp=Tf,
(5.1)

V-u=0,

on D = [0,1] x [0,1] and in the time interval [0, 1]. Initial value uy and the external
force f are determined by the exact solutions

up o (w,y,t) — 1002(1 — 2)%(y — 3y? + 2¢°) cos(2rt),
uy 1 (myy,t) = —10y%(1 —y)?(x — 322 + 223) cos(27t),
p : (z,y,t) — 102z —1)(2y — 1) cos(2nt).

To test our scheme, the original Navier-Stokes equations (5.1) are split into the Stokes
equations (5.2) and the modified Navier—Stokes equations. For the Stokes equations,

—vAn+ V(¢ =1,
{m van q 1 (5.2)

V-n=0.
Let the exact solutions n = (11, 12), ¢ be half of u, p as follows,

m : (z,y,t) — 5z}l —2)%(y — 3y* + 2y3) cos(2nt),
e ¢ (x,y,t) — —5y*(1 —y)?(z — 322 + 223) cos(27t),
¢ : (x,y,t) = 52z —1)(2y —1)cos(2nt).

The initial value ny and the external force f; are correspondingly determined. Then
the modified Navier-Stokes equations with velocity field & = (£, &2), pressure 7 can be
directly obtained by subtracting (5.2) from (5.1). The uniform triangulations {77}~
are constructed by partitioning the unit square D into n x n subrectangles and dividing
each sub-square element into two triangles by the diagonal line. The mesh size of T, is
denoted by h = 1/n. The finite element spaces are approximated by the stable P,/P;
Taylor-Hood elements for velocity and pressure, respectively.

In this experiment and subsequent experiments, we set the viscosity parameter
v = 0.01. To verify convergence in space, we fix a small At = 0.001 and choose
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Table 1: Errors and convergence rates for the deterministic case.

Ax Stokes Modified Navier—Stokes Navier-Stokes
e(m) e(n2) e(&1) e(&2) e(u1) e(us)
1/8 7.123E-05 7.123E-05 7.143E-05 7.117E-05 1.426E-04 1.424E-04
1/16 9.235E-06 9.235E-06 9.242E-06 9.233E-06 1.847E-05 1.847E-05
1/32 1.167E-06 1.167E-06 1.167E-06 1.167E-06 2.333E-06 2.333E-06
1/64 1.451E-07 1.451E-07 1.451E-07 1.451E-07 2.903E-07 2.903E-07

O(AzP) 2.980 2.980 2.981 2.980 2.981 2.980
At Stokes Modified Navier—Stokes Navier-Stokes
e(m) e(n2) e(&1) e(&2) e(uy) e(us)

1/60 | 5.152E-06 5.152E-06 5.475E-06 5.475E-06 1.047E-05 1.047E-05

1/80 | 2.896E-06 2.896E-06 3.170E-06 3.170E-06 5.934E-06 5.934E-06
1/100 | 1.852E-06 1.852E-06 2.095E-06 2.095E-06 3.832E-06 3.832E-06
1/120 | 1.285E-06 1.285E-06 1.506E-06 1.506E-06 2.688E-06 2.688E-06
O(At) 2.003 2.003 1.864 1.864 1.962 1.962

a sequence of Ah; = 1/2!, i = 3,---,7. The numerical solutions on a fine mesh
with Ah = 1/128, are regarded as the true solutions for the original Navier—Stokes
equations, the Stokes equations and the modified Navier-Stokes equations. To verify
the convergence rate in time, we choose a fixed small Ah = 1/64 and a sequence of
At; € {1/60,1/80,1/100,1/120}, then the true solutions of (5.1) and (5.2) are approx-
imated by the numerical solutions computed with a small time step At = 1/1200. We
use the notation e(-) to represent the L?(D) error at the final time instant t = 7. Table
1 tells us that the convergence rates for velocities n(T"), £(T"), u(T) are all 3 in space
and 2 in time which are consistent with the classical finite element theoretical results.

5.3. Truncated white noise

Adding the stochastic noise to the deterministic Navier—Stokes equations (5.1) leads
to the stochastic Navier—Stokes equations. The space-time white noise actually has very
poor regularity. As it is already pointed out in Corollary 3.1, for a linear parabolic equa-
tion with space-time white noise in 2D, the solution will not belong to L3(2, L?(D)).
In this part, we consider the properties of (1.1) with truncated space-time white noise
numerically. The space-time white noise is characterized by a cylindrical Wiener pro-
cess. We extract a subset of {¢;}"* of L2(D) from —Ay = \j¢b; on domain [0, 1] x [0, 1]
with homogeneous boundary condition. Thus, the truncated space-time white noise is
defined as

o Ni N
dW,,(t) = — Z Z sin(imz) sin(jmy) dB; ;(¢),
Nn i =1
where {3;;(t) = (8, 5;)} are the mutually independent one dimensional standard
Brownian motions. In this test, we set the total truncated number 128 x 128 = 16384
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Table 2: Errors and convergence rates in space with truncated white noise.

A Stokes Modified Navier—Stokes Navier—Stokes
es(m) es(12) es(&1) es(&2) es(u1) es(u2)
1/8 9.004E-02 9.054E-02 9.518E-03 9.617E-03 8.998E-02 9.045E-02
1/16 5.469E-02 5.498E-02 3.165E-03 3.197E-03 5.467E-02 5.496E-02
1/32 2.724E-02 2.728E-02 9.309E-04 9.320E-04 2.725E-02 2.727E-02
1/64 1.214E-02 1.215E-02 1.831E-04 1.821E-04 1.214E-02 1.215E-02

O(AzP) 0.968 0.970 1.887 1.895 0.967 0.970
Ax Stokes Modified Navier—Stokes Navier-Stokes
ew(m) ew(12) ew(61) ew(62) ew(u1) ew(u2)

1/8 | 6.116E-03 6.616E-03 8.171E-04 9.252E-04 6.207E-03 6.498E-03
1/16 | 3.773E-03 3.97/0E-03 2.434E-04 2.596E-04 3.790E-03 3.998E-03
1/32 | 1.860E-03 1.899E-03 6.862E-05 5.082E-05 1.864E-03 1.898E-03
1/64 | 8.681E-04 B8.569E-04 1.230E-05 1.254E-05 8.679E-04 8.571E-04

O(AzP) | 0.947 0.991 1.999 2.073 0.954 0.984

with N, =128, o(t,z) = 1 and Ay = I with § = 0. Then the strong and weak L]%, errors
at the final time instant ¢ = T are defined as

estw) = (E[|a —uem)|))". ewt) = B - Eu(en)]]].

respectively.

In our tests, we set M = 200 the number of the realizations. Table 2 shows that the
convergence rates for the stochastic modified Navier—Stokes equations are higher than
the stochastic Stokes equations. The reason is that the stochastic modified Navier—
Stokes equations are associated with a better regularized noise than the stochastic
Stokes equations. Therefore, it is meaningful to do pathwise theoretical analyses. Ta-
ble 2 and Table 3 show that the weak convergence errors are always smaller than the
strong convergence error. In view of the Monte Carlo error, the more number of the
simulations, the better results for the weak convergence test. Table 3 shows that the
regularity in time direction is somehow poor for the stochastic Stokes equation with
truncated white noise. While, the stochastic modified Navier-Stokes equations have a
improved regularities. It shows that the Martingale regularization method is effective
to simulate the stochastic problems.

5.4. Truncated regularized white noise

Let the regularization parameter ¢ be a real positive number, the noise term Ay dW
will have a better regularity than non-regularized dW. In turn, the solution of (1.1)
will be much smoother. As the truncated case in 5.3, the regularized noise is written as

Ny Np
(-A)?dw), = Z Z ]\2fh(ﬂ-2i2 + 72§27 sin(inx) sin(jry) dBs ;.

i=1 j=1
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Table 3: Errors and convergence rates in time with truncated white noise.

At Stokes Modified Navier—Stokes Navier-Stokes
) elm) e el elw)  elu)
1/60 2.176E-02 2.175E-02 2.648E-04 2.648E-04 2.176E-02 2.175E-02
1/80 | 2.030E-02 2.028E-02 2.281E-04 2.285E-04 2.030E-02 2.028E-02
1/100 | 1.908E-02 1.909E-02 2.024E-04 2.026E-04 1.908E-02 1.909E-02
1/120 | 1.806E-02 1.807E-02 1.832E-04 1.833E-04 1.806E-02 1.807E-02
O(At) 0.268 0.267 0.531 0.531 0.268 0.267
At Stokes Modified Navier—Stokes Navier-Stokes
ew(m) ew(n2) ew(£1) ew(&2) ew(u1) ew(u2)
1/60 1.536E-03 1.543E-03 1.967E-05 1.904E-05 1.536E-03 1.543E-03
1/80 1.448E-03 1.427E-03 1.644E-05 1.667E-05 1.448E-03 1.427E-03
1/100 | 1.336E-03 1.352E-03 1.467E-05 1.443E-05 1.336E-03 1.352E-03
1/120 | 1.280E-03 1.272E-03 1.352E-05 1.295E-05 1.280E-03 1.272E-03
O(At) 0.271 0.275 0.542 0.562 0.271 0.275

Table 4: Errors and convergence rates in space with regularized truncated white noise.

Az Stokes Modified Navier-Stokes Navier-Stokes
es(m) es(n2) es(&1) es(&2) es(u1) es(u2)
1/8 2.397E-04 2.392E-04 7.204E-05 7.176E-05 2.699E-04 2.691E-04
1/16 1.036E-04 1.039E-04 9.622E-06 9.609E-06 1.048E-04 1.051E-04
1/32 4.217E-05 4.211E-05 1.336E-06 1.337E-06 4.222E-05 4.216E-05
1/64 1.539E-05 1.540E-05 1.801E-07 1.802E-07 1.539E-05 1.540E-05
O(AzP) 1.318 1.317 2.878 2.876 1.371 1.370
Az Stokes Modified Navier-Stokes Navier-Stokes
ew (1) ew(12) ew(&1) ew(&2) ew(u1) ew(u2)
1/8 7.312E-05 7.310E-05 7.145E-05 7.118E-05 1.437E-04 1.434E-04
1/16 1.167E-05 1.168E-05 9.247E-06 9.235E-06 1.989E-05 1.984E-05
1/32 3.243E-06 3.181E-06 1.168E-06 1.167E-06 3.823E-06 3.774E-06
1/64 1.117E-06 1.102E-06 1.454E-07 1.453E-07 1.145E-06 1.130E-06
O(AzP) 1.995 2.003 2.981 2.979 2.329 2.336

With increasing the parameter 6, the noise term will become more and more regularity.
In this test, we set the § = 0.6, o(t) = 1. After regularizing the noise in space, it is
nontrivial to verify that (—A)~0%W ¢ LZ(Q, H~'(D)). In this case, the pathwise mod-
ified Navier-Stokes equations can be considered to be a classical deterministic case in
space. Tables 4, 5 illustrate that strong and weak convergence results for the stochastic
Stokes equations become much better than the cases of the truncated white noise in
Tables 2 and 3. For the modified Navier-Stokes equations, in Table 4, the convergence
rates are almost 3 which means that the modified Navier—Stokes equations have better
regularity than the stochastic Stokes equations. The weak convergence rates are al-
ways higher than the strong convergence rates. Compared with Table 3, Table 5 shows
better convergence results in time. The computational results are consistent with the
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Table 5: Errors and convergence rates in time with regularized truncated white noise.

At Stokes Modified Navier—Stokes Navier-Stokes
es(m) es(12) es(&1) es(&2) es(u1) es(uz)
1/60 | 4.232E-05 4.232E-05 5.778E-06 5.782E-06 4.333E-05 4.334E-05
1/80 | 3.594E-05 3.593E-05 3.455E-06 3.461E-06 3.633E-05 3.633E-05
1/100 | 3.164E-05 3.165E-05 2.367E-06 2.373E-06 3.184E-05 3.185E-05
1/120 | 2.848E-05 2.850E-05 1.760E-06 1.764E-06 2.860E-05 2.862E-05

O(At") 0.571 0.570 1.717 1.714 0.599 0.599
At Stokes Modified Navier—Stokes Navier-Stokes
ew(nl) ew(n2) Cw (El) Cw (52) Cw (ul) Cw (UQ)

1/60 | 5.896E-06 5.912E-06 5.465E-06 5.472E-06 1.081E-05 1.086E-05

1/80 | 3.758E-06 3.786E-06 3.158E-06 3.160E-06 6.339E-06 6.390E-06
1/100 | 2.880E-06 2.924E-06 2.081E-06 2.090E-06 4.409E-06 4.450E-06
1/120 | 2.390E-06 2.393E-06 1.495E-06 1.501E-06 3.350E-06 3.370E-06
O(At™) 1.305 1.302 1.872 1.867 1.692 1.689

traditional acknowledge of stochastic analysis. Martingale regularization method with
noise regularization feasibly improves computational efficiency of the system (1.1).
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of Scientific Research grant FA9550-15-1-0001.

6. Conclusions

In this paper, we studied the stochastic Navier-Stokes equations with a Martingale
regularization method. The noise is extended to a larger non-smooth class with a space
regularizer Ay. Under sufficient assumption, we presented the pathwise convergence
analysis for the modified Navier—Stokes equations. We compared the stochastic Navier—
Stokes equations with truncated/regularized time-space white noise numerically. The
computational results provide an evidence that this kind of regularization method is
powerful, effective and efficient. Beyond the stochastic Navier—Stokes system, Martin-
gale regularization method is meaningful to other nonlinear SPDEs.
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