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Abstract: We study the global behavior of complete minimal é-stable hypersurfaces

in R"™! by using L-harmonic 1-forms. We show that a complete minimal J-stable
—1)?

(5 > 7(71 5 ) ) hypersurface in R"*! has only one end. We also obtain two vanish-
n

ing theorems of complete noncompact quaternionic manifolds satisfying the weighted
Poincaré inequality. These results are improvements of the first author’s theorems on
hypersurfaces and quaternionic Kéhler manifolds.
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1 Introduction

Palmer!!! showed that there is no non-trivial L2-harmonic 1-form on a complete stable mini-
mal hypersurface in R"*1. Cao et al.l?! proved that a complete stable minimal hypersurface
in R"™! (n > 3) must have only one end. Cheng et al.®! showed that a complete oriented
weakly stable minimal hypersurface in R"*! (n > 3) must contain no nonconstant bounded
harmonic functions with finite Dirichlet integral and have only one end. If the ambient man-
ifold is not the Euclidean space, Chengl¥ gave one end theorem for complete noncompact
oriented stable minimal hypersurfaces immersed in an (n+ 1)-dimensional (n > 3) complete
oriented manifold of positive sectional curvature. Recently, by use of the rigidity of complete
Riemannian manifolds with weighted Poincaré inequality, Cheng and Zhoul®! showed that:

. . n
if M is an

-stable complete minimal hypersurface in R"*! (n > 3) and it has bounded

n
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norm of second fundamental form, then M either has only one end or is a catenoid. The
(n—1)?
n2
hypersurface in R™*! and it has the bounded norm of the second fundamental form, then
the space of L? integrable harmonic 1-forms H'(L?(M)) is trivial (see [6], Corollary 2.5).

In this paper, firstly, we can obtain the following result:

first author proved that if M™ (n > 2) is a complete minimal §-stable | J >

—1)2
Theorem 1.1  Suppose that M™ (n > 2) is a complete minimal 0-stable (5 > (nQ)>
n

hypersurface in R"*1. Then the space of L? integrable harmonic 1-forms HY(L?*(M)) is

trivial and M has only one end.

Remark 1.1  Theorem 1.1 generalizes Corollary 2.5 in [6] without the restriction of the
second fundamental forms.

Secondly, Lam(” showed that if M*" is a 4n-dimensional complete noncompact quater-
nionic Kéhler and the Ricci curvature of M satisfies
Ricps > —%Al(M) +90
for a positive constant 0, where A; (M) is the lower bound of the spectrum of the Laplacian

on M, then

H'(L*(M)) = {0}.
Suppose that M is a 4n-dimensional complete noncompact quaternionic manifold satisfying
the weighted Poincaré inequality with a non-negative weight function p(x) and the Ricci
curvature satisfies

Ricps(z) > —gp(a:) +o(x)

for a nonnegative continuous function o (o # 0). If p(x) = O(r2~

distance function from z to some fixed point p and 0 < a < 2, then H'(L?(M)) = {0} (see
[6]). Tt is interesting to see if a similar theorem holds without the restriction of growth rate

), where r,(x) is the

of the weight function. The following theorems had been established:

Theorem 1.2  Suppose that M is a 4n-dimensional complete noncompact quaternionic
manifold satisfying the weighted Poincaré inequality with a non-negative continuous weight
function p(z) (p(x) is not identically zero). Assume that the Ricci curvature satisfies
Ricpr(x) > —ap(x)
4
for a constant o with 0 < o < 3 Then HY(L*(M)) = {0}.

Theorem 1.3  Suppose that M is a 4n-dimensional complete noncompact quaternionic
manifold satisfying the weighted Poincaré inequality with a non-negative continuous weight
function p(x). Assume that the Ricci curvature satisfies
Ricpr(z) > —ap(x) — B
4
for constants a with 0 < a < 3 and 8 > 0. If the lower bound of the spectrum Ay (M) of the
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Laplacian on M satisfies
B

—

)\1(M) >

Lo >~

then

H(L*(M)) = {0}.

2 One End Theorem on Hypersurfaces in R""!

In this section, we give the proof of Theorem 1.1.

Let M™ be a minimal hypersurface of R"*!. Let v denote the unit normal vector field

of M and |A| be the norm of the second fundamental form A. A minimal hypersurface

" C R™H is called §-stable if, for each ¢ € C§°(M),

[ 1ape < [ 1wap

Proof of Theorem 1.1 First, a complete minimal hypersurface in R**! is noncompact.

For any point p € M and any unit tangent vector v belonging to tangent space at p, we can

choose an orthonormal frame {e;, es, ---,e,} on M at p such that e; = v. Since M is a

minimal hypersurface, there has the following inequality:

(5

A2 > h3 + =2 +22h

n n
: > hi,
=1

The Gauss equation implies that
n

Ricas (v, v) = Y (harhii — hi;) = Z h2,
=2
By (2.1) and (2.2), we have

Ricps (v, v) >

Let w € HY(L?(M)). Then h = |w| satisfies a formula (see [8]):

hAR > Ricys (w, w) + L|Vh|2

> — |A| 2h? + \Vh\Q
So, for each ¢ € C§°(M), we have
#*hAh > — |A|2h2¢ +— |Vh| ¢*.

Integration by parts implies that

( +>/ VhPRer < "1 / |APR2g? Q/quhv¢-Vh

h2 $? +61/ |pVh|* +
M

for each positive constant ¢;. That is,

1
= [ mwep
€1 Jm

(2.2)

(2.3)
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1 —1 1
(1 +— 61) |Vh|?¢* < L/ |AI?h?¢? + —/ |hV % (2.6)
n—1 M n M €1 JMm

By the definition of minimal J-stable hypersurfaces, we have that

0 AlPR242 < VYV (ho)|?
/M| 212 _/M| (ho)

1
< (1 + ) / RV + (14 62)/ V|2 2.7)
€2 M M
for each positive constant e3. Combining (2.6) with (2.7), we have
Al/ VA2 < AQ/ V6P, (2.8)
M M
where
1 (n—1)
A1—1+n_1—61— e (14—62)7
1 (n—-1) 1
Ay = — + 1+— ).
€1 no €9
. . . . (n—1)2 .
Obviously, As is positive. Since ¢ > W we can choose sufficient small constants €;

and €3 such that A; > 0. Choose ¢ € C§°(M) such that

0<¢o<1,
6=1 on B(f),
2 (2.9)
$p=0 on M\ B(r),
2
Vol < —.
Thus, (2.8) implies that
4A
Al/ IVh]> < =2 | W2 (2.10)
B(%) M
Note that
[ <. (2.11)
M

Letting » — 400, we obtain that h is a constant on M. Since M is a complete noncompact
minimal hypersurface in R"*!, it implies that M has infinite volume (see [9]). Thus by
(2.11), we have h = 0. That is,

H'(L*(M)) = {0}

Since M™ is a minimal hypersurface of R"*! (n > 3), each end of M is non-parabolic (see
[2]) and the number of non-parabolic end of M is bounded from above by dim H*(L?(M))+1
(see [10]). Therefore, M has only one end.

3 Vanishing Theorems on Quaternionic Manifolds

In this section, we give the proofs of Theorems 1.2 and 1.3, respectively.
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If M is a quaternionic manifold and w € H'(L?(M)), then h = |w| satisfies a Bochner
type formula (see [11]):

1
hAh > Ricyy (w,w) + g|Vh|2. (3.1)
Proof of Theorem 1.2  Note that Ricps(x) > —ap(x). Combining with (3.1), we have
1
hAh > —aph® + g|Vh|2.

For each ¢ € C§°(M), integration by parts implies that

1
— | V(h¢?)-Vh> —a/ ph2¢2+/ —|Vh|?¢?. (3.2)
M M M 3
That is,
4
7/ |Vh|?¢* < a/ ph2¢272/ ®hV e - Vh. (3.3)
3 M M M
Note that )
—2/ dhV¢ - Vh < 7/ hz\V¢|2+61/ $*|Vh|? (3.4)
M €1 Jm M

holds for each positive constant €;. Since p is weight function, we have

1
[ o< [ wmol < (14 2) [ RIVeP s v [ VHP® @35)
M M €2/ Jm M
for each positive constant ez. By (3.3), (3.4) and (3.5), we get

B [ |Vh?6* < B, / B2V oL, (3.6)
M M

where A 1 )
Blzf—el—a(l—l—ez)’ Bng+0é(1+f)>0
3 €1 €2

Choose sufficient small constants €; and e such that By > 0. Choose ¢ € C§°(M) satisfying
(2.9). Thus, (3.6) implies that
4B,

By / VR < —= [ R*
B(3) M
Note that (2.11) holds. Letting r — +o00, we have h is a constant on M. If h is not identically
zero, then, by (2.11), the volume of the M is finite. The weighted Poincaré inequality implies

that
4 4Vol(M)
p< o= a2
B(3) MT r

Letting r — 400, we have / p < 0 which contradicts the fact that p is non-negative
M

continuous weight function and not identically zero. Therefore,
HY(L2(M)) = {0},
Proof of Theorem 1.3 Combining the fact Ricys(z) > —ap(z) — 8 with (3.1), we have
1
hAh > (—ap — B)h? + §|Vh|2.

For each ¢ € C§°(M), integration by parts implies that

_ /M V(h¢?) - Vh > —a /M ph?¢? — B/M h2p? + /M %|Vh|2¢2.
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That is,
4
7/ |Vh|?¢? < a/ ph2¢2+5/ h2¢? —2/ ®hV ¢ - Vh. (3.7)
3Jm M M M
Note that
1
—2/ ¢hV - Vh < —/ hQ\V¢|2+el/ ¢*|Vh|? (3.8)
M €1 JM M
for each positive constant €;. Since p is a weight function, we obtain
1
/ ph?? < / V(ho)? < (1+ 7)/ W Vel* + (1+ 62)/ IVh2¢2  (3.9)
M M €2/ JmMm M
for each positive constant €;. By (3.7), (3.8) and (3.9), we have
Bl/ [Vh|*¢” ng/ h2|V¢>|2+B/ h*¢?, (3.10)
M M M
where A 1 1
3125—61—04(14-62), BQZg+(1(1+g)>O.

4
Since 0 < a < 3 we can choose sufficient small constants €; and e; such that B; > 0.

Choose ¢ € C5°(M) satisfying (2.9). Thus, (3.10) implies that

B-C?
Bl/ |Vh|? < 2—20/ h*+ B h?. (3.11)
B(3) r M B(r)
Note that (2.11) holds. Letting » — 400, we obtain that
Bl/ |Vh|? g,B/ . (3.12)
M M

Choosing €1, e — 0, we get

4
(5 - a) /M IVh[? < 5/Mh2. (3.13)
It is well known that
AMO@ﬁﬁg&mez

1
<(1+ 63)/ |Vh|2¢? + (1 + —) / h2 V%, (3.14)
M €/ Jm
for each positive constant e3. Substituting (2.9) into (3.14), we get

1\ 1
Al(M)/ h? < (1+63)/ |Vh|? + (1+—)7/ . (3.15)
B(%) B(r) €3/ 1" Jm
Letting r — 400, we have
/\1(M)/ h2 < (1+63)/ V2. (3.16)
M M

Let e3 — 0. Then we obtain that

Al(M)/ h2§/ |Vh|?. (3.17)
M M

Suppose that there exists w € H*(L?(M)) such that h is not identically constant. Combining
(3.13) and (3.17), we have

M) (5 - a) <5, (3.18)
which is contradiction with the restriction of A;(M). Thus, h is constant. By (3.17), we

obtain that h is identically zero. Therefore,
H'(L*(M)) = {0}
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