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Abstract: Let G be a simple connected graph with vertex set V (G) and edge set
E(G). The augmented Zagreb index of a graph G is defined as

AZI(G) =
∑

uv∈E(G)

(
dudv

du + dv − 2

)3

,

and the atom-bond connectivity index (ABC index for short) of a graph G is defined
as

ABC(G) =
∑

uv∈E(G)

√
du + dv − 2

dudv
,

where du and dv denote the degree of vertices u and v in G, respectively. In this paper,

trees with given diameter minimizing the augmented Zagreb index and maximizing

the ABC index are determined, respectively.
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1 Introduction

Let G be a simple connected graph with vertex set V (G) and edge set E(G). Let Nu denote

the set of all neighbors of a vertex u ∈ V (G), and du = |Nu| denote the degree of u in G.

A connected graph G is called a tree if |E(G)| = |V (G)| − 1. The length of a shortest path

connecting the vertices u and v in G is called the distance between u and v, and denoted by

d(u, v). The diameter d of G is the maximum distance d(u, v) over all pairs of vertices u

and v in G.
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Molecular descriptors have found wide applications in QSPR/QSAR studies (see [1]).

Among them, topological indices have a prominent place. Augmented Zagreb index, which

was introduced by Furtula et al.[2], is a valuable predictive index in the study of the heat

of formation in octanes and heptanes. Another topological index, Atom-bond connectivity

index (for short, ABC index), proposed by Estrada et al.[3], displays an excellent correlation

with the heat of formation of alkanes (see [3]) and strain energy of cycloalkanes (see [4]).

The augmented Zagreb index of a graph G is defined as:

AZI(G) =
∑

uv∈E(G)

(
dudv

du + dv − 2

)3

,

and the ABC index of a graph G is defined as:

ABC(G) =
∑

uv∈E(G)

√
du + dv − 2

dudv
.

Some interesting problems such as mathematical-chemical properties, bounds and extremal

graphs on the augmented Zagreb index and the ABC index for various classes of connected

graphs have been investigated in [2], [5] and [6]–[10], respectively. Besides, in the literature,

there are many papers concerning the problems related to the diameter (see, e.g., [11]–

[13]). In this paper, trees with given diameter minimizing the augmented Zagreb index and

maximizing the ABC index are determined, respectively.

2 Trees with Given Diameter Minimizing the Aug-
mented Zagreb Index

A vertex u is called a pendent vertex if du = 1. Let Sn and Pn denote the star and path

of order n, respectively. Let Sn1, n2

l be the tree of order n(≥ 3) obtained from the path Pl

by attaching n1 and n2 pendent vertices to the end-vertices of Pl respectively, where l, n1,

n2 are positive integers, n1 ≤ n2 and l + n1 + n2 = n. Especially, Sn3,n−n3−1
1

∼= Sn and

S1,1
n−2

∼= Pn, where 1 ≤ n3 ≤
⌊n− 1

2

⌋
.

Let T (d)
n denote the set of trees with n vertices and diameter d, where 2 ≤ d ≤ n − 1.

Obviously, T (2)
n = {Sn} and T (n−1)

n = {Pn}. By simply calculating, we have

AZI(Sn) =
(n− 1)4

(n− 2)3
, AZI(Pn) = 8(n− 1).

2.1 The Augmented Zagreb Index of a Tree with Diameter 3

It can be seen that T (3)
n =

{
Sp−1,n−p−1
2

∣∣∣ 2 ≤ p ≤
⌊n
2

⌋}
. In the following, we give an order

of the augmented Zagreb index of a tree with diameter 3.

Lemma 2.1 Let

g(x) =
x2

(x− 1)2
, k(x) =

−2x2

(x− 1)3
, m(x) =

−3

x(x− 1)
+

−2x+ 1

x2(x− 1)2
.

Then g(x) is decreasing for x ≥ 2, and k(x), m(x) are both increasing for x ≥ 2.
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Proof. By directly computing, we have

g′(x) =
−2x

(x− 1)3
< 0,

k′(x) =
2x2 + 4x

(x− 1)4
> 0,

m′(x) =
3(2x− 1)

x2(x− 1)2
+

2(3x2 − 3x+ 1)

x3(x− 1)3
> 0

for x ≥ 2. The proof is finished.

Lemma 2.2 Let n ≥ 5 and

f(p) =
p3(n− p)3

(n− 2)3
+

p3

(p− 1)2
+

(n− p)3

(n− p− 1)2
.

Then f(p) is increasing for 2 ≤ p ≤
⌊n
2

⌋
.

Proof. Let J(p) =
p3(n− p)3

(n− 2)3
. Then

f(p) = J(p) +
p3

(p− 1)2
+

(n− p)3

(n− p− 1)2
.

Now we consider the following two cases.

Case 1. 2 ≤ p ≤ 2

5 +
√
5
n.

In this time, we have

n ≥ 5 +
√
5

2
p ≥ 8.

Hence

J ′(p) =
3p2(n− p)2(n− 2p)

(n− 2)3
> 0, (2.1)

and

f ′(p) = J ′(p) +
p2(p− 3)

(p− 1)3
+

(n− p)2(−n+ p+ 3)

(n− p− 1)3

= J ′(p) +
p2

(p− 1)2
+

−2p2

(p− 1)3
+

−(n− p)2

(n− p− 1)2
+

2(n− p)2

(n− p− 1)3

= J ′(p) + g(p)− g(n− p) + k(p) +
2(n− p)2

(n− p− 1)3
,

where the functions g(x) and k(x) are defined in Lemma 2.1. Since n−p ≥ p ≥ 2, by Lemma

2.1, we have

g(p)− g(n− p) ≥ 0, k(p) ≥ k(2) = −8.

Note that
2(n− p)2

(n− p− 1)3
> 0, we have

f ′(p) ≥ J ′(p)− 8 +
2(n− p)2

(n− p− 1)3
> J ′(p)− 8.
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Now we just need to show that J ′(p) ≥ 8. By directly computing, we have

J ′′(p) =
6p(n− p)(5p2 − 5pn+ n2)

(n− 2)3

=
30p(n− p)

(n− 2)3

(
p− 2

5 +
√
5
n

)(
p− 2

5−
√
5
n

)
. (2.2)

Since p ≤
⌊n
2

⌋
<

2

5−
√
5
n ≈ 0.724n and p ≤ 2

5 +
√
5
n, then J ′′(p) > 0. Therefore,

J ′(p) ≥ J ′(2) =
12(n− 4)

n− 2
= 12− 24

n− 2
≥ 8

since n ≥ 8. Thus, f ′(p) > 0 for 2 ≤ p ≤ 2

5 +
√
5
n.

Case 2.
2

5 +
√
5
n < p ≤

⌊n
2

⌋
.

Note that

f(p) = J(p) +
p3

(p− 1)2
+

(n− p)3

(n− p− 1)2

= J(p) + p+ 2 +
3

p− 1
+

1

(p− 1)2
+ (n− p) + 2 +

3

n− p− 1
+

1

(n− p− 1)2

= J(p) + n+ 4 +
3

p− 1
+

1

(p− 1)2
+

3

n− p− 1
+

1

(n− p− 1)2
.

It is easy to get that for
2

5 +
√
5
n < p < p+ 1 ≤

⌊n
2

⌋
,

f(p+ 1) = J(p+ 1) + n+ 4 +
3

p
+

1

p2
+

3

n− p− 2
+

1

(n− p− 2)2
.

Then from the fact that(
3

n− p− 2
− 3

n− p− 1

)
+

[
1

(n− p− 2)2
− 1

(n− p− 1)2

]
> 0,

we obtain

f(p+ 1)− f(p) =J(p+ 1)− J(p) +

(
3

p
− 3

p− 1

)
+

[
1

p2
− 1

(p− 1)2

]
+

(
3

n− p− 2
− 3

n− p− 1

)
+

[
1

(n− p− 2)2
− 1

(n− p− 1)2

]
>J(p+ 1)− J(p) +

−3

p(p− 1)
+

−2p+ 1

p2(p− 1)2

=J(p+ 1)− J(p) +m(p),

where the function m(x) is defined in Lemma 2.1. By Lemma 2.1, we get

m(p) ≥ m(2) = −9

4
.

To prove f(p + 1) > f(p), it suffice to prove J(p + 1) − J(p) ≥ 9
4 for

2

5 +
√
5
n < p <

p+ 1 ≤
⌊n
2

⌋
. From (2.2), when p >

2

5 +
√
5
n, we have

J ′′(p) < 0.

Combining this with inequality (2.1), namely, J(p) is increasing for p. It implies that

J(p+ 1)− J(p) is decreasing for p. Therefore,
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J(p+ 1)− J(p) ≥ J
(⌊n

2

⌋)
− J

(⌊n
2

⌋
− 1

)
.

If n is even, then n ≥ 6 and

J
(⌊n

2

⌋)
− J

(⌊n
2

⌋
− 1

)
= J

(n
2

)
− J

(n
2
− 1

)
=

(n
2

)3(n
2

)3

(n− 2)3
−

(n
2
− 1

)3(n
2
+ 1

)3

(n− 2)3

=
3

16
n+

9

8
+

15

4(n− 2)
+

3

(n− 2)2
+

1

(n− 2)3

>
3

16
n+

9

8

≥ 9

4
.

If n is odd, then n ≥ 5 and

J
(⌊n

2

⌋)
− J

(⌊n
2

⌋
− 1

)
= J

(n− 1

2

)
− J

(n− 1

2
− 1

)
=

(n− 1

2

)3(n+ 1

2

)3

(n− 2)3
−

(n− 3

2

)3(n+ 3

2

)3

(n− 2)3

=
3n4 − 30n2 + 91

8(n− 2)3

=
9

4
+

3

8
n+

21

4(n− 2)
− 3

(n− 2)2
+

19

8(n− 2)3

>
9

4
.

It leads to f(p+ 1) > f(p). Hence f(p) is increasing for
2

5 +
√
5
n < p ≤

⌊n
2

⌋
.

Theorem 2.1 Let T (3)
n =

{
Sp−1,n−p−1
2

∣∣∣ 2 ≤ p ≤
⌊n
2

⌋}
. Then for n ≥ 4,

AZI(S
⌊n−2

2 ⌋,⌈n−2
2 ⌉

2 ) > · · · > AZI(S2,n−4
2 ) > AZI(S1,n−3

2 ) = 16 +
(n− 2)3

(n− 3)2
.

Proof. Note that T (3)
4 = {S1,1

2 }, and for n ≥ 5,

AZI(Sp−1, n−p−1
2 ) =

p3(n− p)3

(n− 2)3
+

p3

(p− 1)2
+

(n− p)3

(n− p− 1)2
.

Then by Lemma 2.2, we obtain the desired results.

2.2 Trees with Diameter 4 ≤ d ≤ n− 1 Minimizing the Augmented
Zagreb Index

Let G be a simple connected graph. Let xij be the number of edges in G connecting vertices

of degrees i and j, and Zij =
( ij

i+ j − 2

)3

, where i, j are positive integers with i + j ̸= 2.

Clearly, Zij = Zji. Denote by ∆ the maximum degree of G. The augmented Zagreb index



NO. 1 HUANG Y. F. AUGMENTED ZAGREB INDEX AND MAXIMIZING ABC INDEX 13

of G can be rewritten as

AZI(G) =
∑

1≤i≤j≤∆
i+j ̸=2

xijZij .

Lemma 2.3 [5] (1) Z1j is decreasing for j ≥ 2;

(2) Z2j = 8 for j ≥ 1;

(3) If i ≥ 3 is fixed, then Zij is increasing for j ≥ 1.

Let T ∈ T (d)
n be a tree with a diameter-preserve path Pd+1 = v1v2 · · · vd+1, where

4 ≤ d ≤ n− 1. Clearly,

dv1 = dvd+1
= 1.

Let V1 = V (Pd+1). For i ∈ {2, 3, · · · , d}, let
Vi = {v ∈ V (T ) | d(v, vi) < d(v, vj), 2 ≤ j ≤ d, j ̸= i} \ {v1, vi, vd+1}.

Then V (T ) =
d∪

i=1

Vi and Vi ∩ Vj = ∅ for any 1 ≤ i < j ≤ d. Moreover, since Pd+1 is

a diameter-preserve path, all vertices in V2 and Vd are pendent vertices in T . Denote by

T [V ∗] the subgraph of T induced by V ∗, where V ∗ ⊆ V (T ). We construct a sequence of trees

with diameter d recursively as follows: Let T1
∼= T . For i = 2, 3, · · · , d− 2 (4 ≤ d ≤ n− 1),

let Ti be the tree obtained from Ti−1 by deleting the vertices in Vi+1 and the edges incident

with them, and attaching |Vi+1| pendent vertices to the vertex v2 (see Figs. 2.1–2.4).

Fig. 2.1 T ∼= T1 Fig. 2.2 T2

Fig. 2.3 T3 Fig. 2.4 Td−2

Lemma 2.4 AZI(Ti) ≤ AZI(Ti−1) with equality if and only if Vi+1 = ∅, where i =

2, 3, · · · , d− 2 and 4 ≤ d ≤ n− 1.
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Proof. Clearly, AZI(Ti) = AZI(Ti−1) if Vi+1 = ∅. It suffice to show that AZI(Ti) <

AZI(Ti−1) if Vi+1 ̸= ∅.
Case 1. i = 2.

Notice that |E(T [V3∪{v3}])| = |V3|. By Lemma 2.3, for any uv ∈ E(T [V3∪{v3}]) (since
du + dv > 2, without loss of generality, assume that dv > 1), we obtain

Zdu,dv ≥ Z1,dv ≥ Z1,|V3|+2 ≥ Z1,|V2|+|V3|+2.

Since V3 ̸= ∅, one has dv3 > 2. It follows from dv2 , dv4 ≥ 2 and Lemma 2.3 that

Zdv2 ,dv3
≥ Z2,dv3

= Z2,|V2|+|V3|+2 = 8, Zdv3 ,dv4
≥ Z2,dv4

.

Therefore, bearing in mind that V3 ̸= ∅,
AZI(T2)−AZI(T1)

= [(|V2|+ 1 + |V3|)Z1,|V2|+|V3|+2 + Z2,|V2|+|V3|+2 + Z2,dv4
]

−
[
(|V2|+ 1)Z1,|V2|+2 +

∑
uv∈E(T [V3∪{v3}])

Zdu,dv
+ Zdv2 ,dv3

+ Zdv3 ,dv4

]
≤ (|V2|+ 1)(Z1,|V2|+|V3|+2 − Z1,|V2|+2)

< 0.

Case 2. 3 ≤ i ≤ d− 2.

Clearly,

|E(T [Vi+1 ∪ {vi+1}])| = |Vi+1|.

For any uv ∈ E(T [Vi+1 ∪ {vi+1}]) (since du + dv > 2, without loss of generality, suppose

dv > 1), by Lemma 2.3, we have

Zdu,dv
≥ Z1,dv

≥ Z1,|Vi+1|+2 ≥ Z
1,

i+1∑
t=2

|Vt|+2
.

Besides, since dvi+1 ≥ 2 and dvi+2 ≥ 2, by Lemma 2.3, one has

Zdvi+1
,dvi+2

≥ Z2,dvi+2
.

Then

AZI(Ti)−AZI(Ti−1)

=

[( i∑
t=2

|Vt|+ 1 + |Vi+1|
)
Z
1,

i+1∑
t=2

|Vt|+2
+ Z2,dvi+2

]

−
[( i∑

t=2

|Vt|+ 1

)
Z
1,

i∑
t=2

|Vt|+2
+

∑
uv∈E(T [Vi+1∪{vi+1}])

Zdu,dv + Zdvi+1
,dvi+2

]

≤
( i∑

t=2

|Vt|+ 1

)(
Z
1,

i+1∑
t=2

|Vt|+2
− Z

1,
i∑

t=2
|Vt|+2

)
< 0,

and the last inequality holds since Vi+1 ̸= ∅.

Theorem 2.2 Let T ∈ T (d)
n , where 4 ≤ d ≤ n− 1. Then



NO. 1 HUANG Y. F. AUGMENTED ZAGREB INDEX AND MAXIMIZING ABC INDEX 15

AZI(T ) ≥

(⌊n− d+ 1

2

⌋
+ 1

)3

⌊n− d+ 1

2

⌋2 +

(⌈n− d+ 1

2

⌉
+ 1

)3

⌈n− d+ 1

2

⌉2 + 8(d− 2),

and the equality holds if and only if T ∼= S
⌊n−d+1

2 ⌋,⌈n−d+1
2 ⌉

d−1 .

Proof. For T ∈ T (d)
n (4 ≤ d ≤ n− 1), by Lemma 2.4, we obtain

AZI(T ) = AZI(T1) ≥ · · · ≥ AZI(Td−2)

with equality if and only if T ∼= Td−2. Actually,

Td−2
∼= S

|Vd|+1,n−|Vd|−d
d−1 ,

where 0 ≤ |Vd| ≤
⌊n− d− 1

2

⌋
. Note that

AZI(S
|Vd|+1, n−|Vd|−d
d−1 ) =

(|Vd|+ 2)3

(|Vd|+ 1)2
+

(n− |Vd| − d+ 1)3

(n− |Vd| − d)2
+ 8(d− 2).

Let t(x) =
(x+ 1)3

x2
. Thus

AZI(S
|Vd|+1, n−|Vd|−d
d−1 ) = t(|Vd|+ 1) + t(n− |Vd| − d) + 8(d− 2).

Since for x ≥ 2,

t′(x) =
(x+ 1)2(x− 2)

x3
≥ 0, t′′(x) =

6(x+ 1)

x4
> 0,

the function t(x) is convex increasing for x ≥ 2.

Besides, t(1) = 8 > t(2) =
27

4
, and it follows that

t(1) + t(n− d) > t(2) + t(n− d− 1) ≥ · · · ≥ t
(⌊n− d+ 1

2

⌋)
+ t

(⌈n− d+ 1

2

⌉)
.

It leads to

(|Vd|+ 2)3

(|Vd|+ 1)2
+

(n− |Vd| − d+ 1)3

(n− |Vd| − d)2
≥

(⌊n− d+ 1

2

⌋
+ 1

)3

⌊n− d+ 1

2

⌋2 +

(⌈n− d+ 1

2

⌉
+ 1

)3

⌈n− d+ 1

2

⌉2 ,

and the equality holds if and only if |Vd| =
⌊n− d− 1

2

⌋
. Consequently,

AZI(T ) ≥

(⌊n− d+ 1

2

⌋
+ 1

)3

⌊n− d+ 1

2

⌋2 +

(⌈n− d+ 1

2

⌉
+ 1

)3

⌈n− d+ 1

2

⌉2 + 8(d− 2),

and the equality holds if and only if T ∼= S
⌊n−d+1

2 ⌋,⌈n−d+1
2 ⌉

d−1 .

3 Trees with Given Diameter Maximizing the ABC In-
dex

In this section, we continue to use the marks in Section 2.

Lemma 3.1 [10] Let T be a tree with n vertices and p pendent vertices, where 2 ≤ p ≤ n−2.

Then ABC(T ) ≤
√
2

2
(n− p) + (p− 1)

√
p−1
p with equality if and only if T ∼= S1,p−1

n−p .
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It is known from Section 2 that

T (2)
n = {Sn},

T (3)
n =

{
Sp−1,n−p−1
2 | 2 ≤ p ≤

⌊n
2

⌋}
,

T (n−1)
n = {Pn}.

By simply computing, we have

ABC(Sn) =
√

(n− 1)(n− 2), ABC(Pn) =

√
2

2
(n− 1).

Note that Sp−1, n−p−1
2

(
2 ≤ p ≤

⌊n
2

⌋)
have exactly n− 2 pendent vertices, it follows from

Lemma 3.1 that

Corollary 3.1 Let T ∈ T (3)
n (n ≥ 4). Then ABC(T ) ≤

√
2+(n−3)

√
n− 3

n− 2
with equality

if and only if T ∼= S1,n−3
2 .

Let Aij =

√
i+ j − 2

ij
, where i, j are positive integers. It is obvious that Aij = Aji, and

the ABC index of a simple connected graph G can be restated as

ABC(G) =
∑

1≤i≤j≤∆

xijAij ,

where xij denotes the number of edges in G connecting vertices of degrees i and j, and ∆

denotes the maximum degree of G.

Lemma 3.2 [8],[9] (1) A1j is increasing for j ≥ 1;

(2) A2j =

√
2

2
for j ≥ 1;

(3) If i ≥ 3 is fixed, then Aij is decreasing for j ≥ 1.

Let T ∈ T (d)
n be a tree with a diameter-preserve path Pd+1 = v1v2 · · · vd+1, where

4 ≤ d ≤ n − 2. Let Vi (i = 1, · · · , d) be the vertices sets and Tj (j = 1, · · · , d − 2) be the

sequences of trees with diameter d defined in Subsection 2.2.

Lemma 3.3 ABC(Ti) ≥ ABC(Ti−1) with equality if and only if Vi+1 = ∅, where i =

2, 3, · · · , d− 2 and 4 ≤ d ≤ n− 2.

Proof. It is obvious that ABC(Ti) = ABC(Ti−1) if Vi+1 = ∅. We need to show that

ABC(Ti) > ABC(Ti−1) if Vi+1 ̸= ∅.
Case 1. i = 2.

Clearly,

|E(T [V3 ∪ {v3}])| = |V3|.

By Lemma 3.2, for any uv ∈ E(T [V3 ∪ {v3}]) (since du + dv > 2, without loss of generality,

assume that dv > 1), we have

Adu,dv ≤ A1,dv ≤ A1,|V3|+2 ≤ A1,|V2|+|V3|+2.
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Since V3 ̸= ∅, we know dv3 > 2, and combining this with dv2 , dv4 ≥ 2 and Lemma 3.2, we

get

Adv2 ,dv3
≤ A2,dv3

= A2,|V2|+|V3|+2, Adv3 ,dv4
≤ A2,dv4

.

Consequently,

ABC(T2)−ABC(T1)

= [(|V2|+ 1 + |V3|)A1,|V2|+|V3|+2 +A2,|V2|+|V3|+2 +A2,dv4
]

−
[
(|V2|+ 1)A1, |V2|+2 +

∑
uv∈E(T [V3∪{v3}])

Adu, dv +Adv2 , dv3
+Adv3 , dv4

]
≥ (|V2|+ 1)(A1,|V2|+|V3|+2 −A1,|V2|+2)

> 0,

and the last inequality holds since V3 ̸= ∅.
Case 2. 3 ≤ i ≤ d− 2.

It can be seen that

|E(T [Vi+1 ∪ {vi+1}])| = |Vi+1|.

For any uv ∈ E(T [Vi+1 ∪ {vi+1}]) (since du + dv > 2, without loss of generality, suppose

dv > 1), it follows from Lemma 3.2 that

Adu,dv ≤ A1,dv ≤ A1,|Vi+1|+2 ≤ A
1,

i+1∑
t=2

|Vt|+2
.

Moreover, since dvi+1
≥ 2 and dvi+2

≥ 2, by Lemma 3.2 we have

Advi+1
,dvi+2

≤ A2,dvi+2
.

Then bearing in mind that Vi+1 ̸= ∅, we have

ABC(Ti)−ABC(Ti−1)

=

[( i∑
t=2

|Vt|+ 1 + |Vi+1|
)
A

1,
i+1∑
t=2

|Vt|+2
+A2,dvi+2

]

−
[( i∑

t=2

|Vt|+ 1

)
A

1,
i∑

t=2
|Vt|+2

+
∑

uv∈E(T [Vi+1∪{vi+1}])

Adu,dv +Advi+1
,dvi+2

]

≥
( i∑

t=2

|Vt|+ 1

)
(A

1,
i+1∑
t=2

|Vt|+2
−A

1,
i∑

t=2
|Vt|+2

)
> 0.

This completes the proof of Lemma 3.3.

Theorem 3.1 Let T ∈ T (d)
n , where 4 ≤ d ≤ n− 2. Then

ABC(T ) ≤
√
2

2
(d− 1) + (n− d)

√
n− d

n− d+ 1

with equality holding if and only if T ∼= S1,n−d
d−1 .

Proof. For T ∈ T (d)
n (4 ≤ d ≤ n− 2), it follows from Lemma 3.3 that

ABC(T ) = ABC(T1) ≤ · · · ≤ ABC(Td−2)
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with equality if and only if T ∼= Td−2. Note that Td−2
∼= S

|Vd|+1,n−|Vd|−d
d−1 , and they have

exactly n− d+ 1 pendent vertices, where 0 ≤ |Vd| ≤
⌊n− d− 1

2

⌋
. Then by Lemma 3.1, we

have

ABC(T ) ≤ ABC(S
|Vd|+1,n−|Vd|−d
d−1 )

≤ ABC(S1,n−d
d−1 )

=

√
2

2
(d− 1) + (n− d)

√
n− d

n− d+ 1
,

with equality holding if and only if |Vd| = 0, that is, T ∼= S1,n−d
d−1 .

Remark 3.1 From the main results of this paper (e.g. Theorems 2.1, 2.2, 3.1 and Corol-

lary 3.1), the tree with diameter d (resp. d = 2, 3, n−2, n−1) minimizing the augmented Za-

greb index and maximizing the ABC index are the same (resp. Sn, S
1,n−3
2 , S1,2

n−3, Pn). How-

ever, for general cases (excluding special n value), the tree with diameter d (4 ≤ d ≤ n− 3)

minimizing the augmented Zagreb index (that is, S
⌊n−d+1

2 ⌋,⌈n−d+1
2 ⌉

d−1 ) is different from that

maximizing the ABC index (that is, S1, n−d
d−1 ).
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