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Abstract: Let G be a simple connected graph with vertex set V(G) and edge set
E(G). The augmented Zagreb index of a graph G is defined as

dyd 3
azie)= Y ()

weE(G)

and the atom-bond connectivity index (ABC index for short) of a graph G is defined

as
dy +dy — 2
ABO(@)= 3 /T

weE(Q)
where d,, and d,, denote the degree of vertices u and v in G, respectively. In this paper,
trees with given diameter minimizing the augmented Zagreb index and maximizing
the ABC index are determined, respectively.
Key words: tree, augmented Zagreb index, ABC index, diameter
2010 MR subject classification: 05C35, 05C50
Document code: A
Article ID: 1674-5647(2017)01-0008-11
DOTI: 10.13447/j.1674-5647.2017.01.02

1 Introduction

Let G be a simple connected graph with vertex set V(G) and edge set E(G). Let N, denote
the set of all neighbors of a vertex v € V(G), and d,, = |N,| denote the degree of u in G.
A connected graph G is called a tree if |E(G)| = |[V(G)| — 1. The length of a shortest path
connecting the vertices v and v in G is called the distance between u and v, and denoted by
d(u, v). The diameter d of G is the maximum distance d(u, v) over all pairs of vertices u

and v in G.
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Molecular descriptors have found wide applications in QSPR/QSAR studies (see [1]).
Among them, topological indices have a prominent place. Augmented Zagreb index, which
was introduced by Furtula et al.?!, is a valuable predictive index in the study of the heat
of formation in octanes and heptanes. Another topological index, Atom-bond connectivity
index (for short, ABC index), proposed by Estrada et al.Bl| displays an excellent correlation
with the heat of formation of alkanes (see [3]) and strain energy of cycloalkanes (see [4]).

The augmented Zagreb index of a graph G is defined as:

AZI(G) = ”)3
©- % (it
and the ABC index of a graph G is defined as:

[d, +d, —2

weE(G
Some interesting problems such as mathemat(ic;l—chemical properties, bounds and extremal
graphs on the augmented Zagreb index and the ABC index for various classes of connected
graphs have been investigated in [2], [5] and [6]-[10], respectively. Besides, in the literature,
there are many papers concerning the problems related to the diameter (see, e.g., [11]-
[13]). In this paper, trees with given diameter minimizing the augmented Zagreb index and

maximizing the ABC index are determined, respectively.

2 Trees with Given Diameter Minimizing the Aug-
mented Zagreb Index

A vertex u is called a pendent vertex if d, = 1. Let S,, and P, denote the star and path

of order n, respectively. Let S;"'* " be the tree of order n(> 3) obtained from the path P,

by attaching n; and no pendent vertices to the end-vertices of P, respectively, where [, nq,

ng are positive integers, n1 < ng and [ + ny + ne = n. Especially, ngm*nrl ~ G, and
n—1

5711,_12 ~ P,, where 1 <ng < {TJ

Let ﬁl(d) denote the set of trees with n vertices and diameter d, where 2 < d < n — 1.
Obviously, 7, = {S.} and T = {P,}. By simply calculating, we have
(n—1)*

AZI(S,) = (n—2)

AZI(P,) = 8(n —1).

2.1 The Augmented Zagreb Index of a Tree with Diameter 3
It can be seen that 7,°) = {5571,717;771 ‘ 2<p< L%J } In the following, we give an order

of the augmented Zagreb index of a tree with diameter 3.

Lemma 2.1 Let2 )
x —2x -3 —2x+1
_ k(x) = _ — .
9(x) (x —1)%’ (z) (z —1)%’ m(z) z(z—1) + x2(x —1)2

Then g(x) is decreasing for x > 2, and k(z), m(zx) are both increasing for x > 2.
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Proof. By directly computing, we have
—2x

g'(z) = o <0
222 4 4
K(x)="——>0
(1‘) (LL' . 1)4 >0,
32r—1) 2322 -3z +1)
!/
= - 0
m'(z) x?(x —1)2 x3(x —1)3 ~
for x > 2. The proof is finished.
Lemma 2.2 Letn >5 and
3 3 3 3
pn—p p n—p
) PO (n—p)

(n—23  (p—12 (n—p—-1)2

Then f(p) is increasing for 2 < p < LgJ

_P’n—p)p°
PT'OOf, Let J(p) = W Then
3 3
o) = J(p) + = ikt )

Now we consider the following two cases.

2
Casel. 2<p< n.
=P=57 V5
In this time, we have
5
n > ha \/gp > 8.
2
Hence
3p°(n —p)*(n — 2p)
J'(p) = >0,
(p) (n _ 2)3
and

p’(p—3)  (n—p?*(—n+p+3)
(p—1)3 (n—p—1)3
p —2p? —(n —p)

f'p) =7+

2

2(n —p)?

=J'(p) +

=J'(p) +9(p) — g(n —p) + k(p) + (5(np_p)12)3’

-T2 " o108  (n-p-12  (n—p—1p

where the functions g(x) and k(x) are defined in Lemma 2.1. Since n—p > p > 2, by Lemma

2.1, we have
g(p) —g(n—p) >0, k(p) > k(2) = 8.

2(n — p)?

Note that —————
N O L)

> 0, we have

2(n — p)®

)= J'(p) -8+ m—p—1p

> J'(p) — 8.
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Now we just need to show that J'(p) > 8. By directly computing, we have
_ 6p(n —p)(5p® — 5pn +n?)

J//
(p) (n—2)
30p(n—p)< 2 >< 2 )
= — — n ——n. 2.2
w-27 " 53" )\ 5o (22)
Sincep<{EJ< 2 n =~ 0.724n and p < 2 n, then J”(p) > 0. Therefore
“ 2] "5-V5 T54+V5 ’
12(n — 4) 24
! >J(2) =" =12 >
T) 2 @) = A R
2
since n > 8. Thus, f'(p) >0for 2 <p< n.
> 2 f'(p) PSS
n
2. < .
Case +\/gn<p7bJ
Note that s 5
P (n—p)
flp)=Jp) + +
®)=J0) (p—1?  (n—p—1)
=J(p) + NP S — + ( )+2+ 5, -
S p—1 -1z TP n—p-1 (n—p-1)2
3 1 3 1

=J 4 .
)+t it a1 Topop

It is easy to get that for ———=n <p < 1< FLJ
18 easy (&) T n + ,

3.1 3 1
Jp+ ) =Jp+D+ntdt 2t 54 -

n—p—2 (n—p-—2)2
Then from the fact that

3 B 3 . 1 B 1 -0
n—-p—2 mn—-p-—1 (n—p—22 (n—p-—1)2 ’
we obtain

Fo+0 - 50 =1+ 0 - T+ (2= 2 | Lo ]

3 3 1 1
* (n—p—2 - n—p—1> * {(n—p—?)2 - (n—p—l)Q}
-3 —2p+1
>+ 1) = Jp)+ plp—1)  p*p—1)
=J(p+1) = J(p) +m(p),

where the function m(z) is defined in Lemma 2.1. By Lemma 2.1, we get

9
m(p) > m(2) = e
2
To prove f(p+ 1) > f(p), it suffice to prove J(p+ 1) — J(p) > % for " \/gn <p<

p+1< {gJ From (2.2), when p > ; n, we have

2
+v5
J"(p) < 0.
Combining this with inequality (2.1), namely, J(p) is increasing for p. It implies that
J(p+ 1) — J(p) is decreasing for p. Therefore,
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s+ =902 5([3]) - (3] -1):

" even(}(@;#;@ ~1)=9(3)-7(5-1)
GG GG

(n—2)? (n—2)°
L SR B SR
16 8 4(n—-2) (n—2)2  (n-2)3
>in—&-2
6 8
9
> —.
~ 4

(12 a2 ) =5 a5 )
SR (e

(n—2)3 (n—2)3
- 3n* — 30n2 4+ 91
8(n —2)3
_ 9 n §n n 21 _ 3 + 19
4 8 4n—2) (n—-2)2 8(n-2)3
9
> 1

2 n
It leads to +1) > . Hence is increasing for n<p< {fJ
fp+1)> f(p) f(p) glor ———En<r= |3

Theorem 2.1  Let T,°) = {Sg_l’"_p_l ‘ 2<p< L%J } Then for n > 4,

n—= n—= 2 3
AZI(S2L il 22]) S>> AZI(SS’”_‘l) > AZI(S;’”_B) — 164 H
Proof. Note that 71(3) = {S)'}, and for n > 5,
Pa-pP (n— p)?

=2 " p-12  (m—p-12

Then by Lemma 2.2, we obtain the desired results.

AzI(Sg~h Py =

2.2 Trees with Diameter 4 < d < n — 1 Minimizing the Augmented
Zagreb Index

Let G be a simple connected graph. Let x;; be the number of edges in G connecting vertices
ij
i+7—2
Clearly, Z;; = Z;;. Denote by A the maximum degree of G. The augmented Zagreb index

3
of degrees i and j, and Z;; = ( ) , where i, j are positive integers with ¢ + j # 2.
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of G can be rewritten as
1<i<i<a
iti#£2
Lemma 2.3 (1) Zy; is decreasing for j > 2;
(2) ZQj = 8 fOT’j Z ].;
(3) Ifi> 3 is fized, then Z,; is increasing for j > 1.

Let T € 7}@ be a tree with a diameter-preserve path Pji1 = wvjvs---v441, Where
4 <d<n-—1. Clearly,

dy, = dy,,, = 1.

Vd+1
Let Vi = V(Py41). Fori € {2,3,--- ,d}, let
V; = {’U € V(T> ‘ d(v7vi) < d(U,Uj), 2 S] < da ] 7é Z} \ {vh (%7) Ud—i-l}'
d
Then V(T) = U Viand V; NV, = 0 for any 1 < i < j < d. Moreover, since Pyi; is

i=1
a diameter-preserve path, all vertices in V5 and V,; are pendent vertices in 7. Denote by

T[V*] the subgraph of T induced by V*, where V* C V(T'). We construct a sequence of trees
with diameter d recursively as follows: Let T3 =2 T. Fori =2,3,--- ,d—2 (4 <d<n-1),
let T; be the tree obtained from T;_; by deleting the vertices in V;1; and the edges incident
with them, and attaching |V; 1| pendent vertices to the vertex vy (see Figs. 2.1-2.4).

Va Vy Vier Va

U1 V2 U3 V4 Ud—1 Vd Vd41

Fig. 2.1 T=T, Fig. 2.2 T}

|Va|+|Val

Fig. 2.3 T3 Fig. 2.4 Td72

Lemma 2.4 AZI(T;) < AZI(T;_1) with equality if and only if Viy1 = 0, where i =
2,3,---,d—2and4<d<n-1.
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Proof.  Clearly, AZI(T;) = AZI(T;-1) if Viy1 = 0. It suffice to show that AZI(T;) <
AZI( i— 1) lf‘/z-&-l 7& @
Case 1. ©1=2.
Notice that |E(T[V3U{vs}])| = |V3|. By Lemma 2.3, for any uv € E(T[V3U{vs}]) (since
d, + d, > 2, without loss of generality, assume that d, > 1), we obtain
Zdy,dy 2 Z1,dy 2 Z1|Vs|+2 2 21| Va|+|Vs|+2-
Since V3 # 0, one has d,, > 2. It follows from d,,, d,, > 2 and Lemma 2.3 that
Ly duy = 22,d,, = Z2,|Va|+|Vs]+2 = 8, Zdy,dy, = Z2,d,, -
Therefore, bearing in mind that V3 # 0,
AZI(Ty) — AZI(Ty)
= [(IVal + L+ [V3)) Z1 jva 1 va 42 + Zova 4 v 42 + Z2,d,,, ]
(IVal + 1) Zy vy 42 + Z Zdy,d, + Zdyy,dpy, T ZLdyy,d
wweE(T[V3U{vs}])
< (Val + D) (Zy a4 vs|+2 — 21, va|+2)
< 0.
Case2. 3<i<d-—2.
Clearly,
|E(T[Vigr U{viga }])| = [Viga|.
For any uv € E(T[Vit1 U {vi+1}]) (since dy, + d, > 2, without loss of generality, suppose

d, > 1), by Lemma 2.3, we have

Zdydy 2 L1,y 2 L1\ Vi1 |42 2 4 ita
1 Z Vil+2

Besides, since d,,,, > 2 and d,,,, > 2, by Lemma 2.3, one has

Zdvq:+1’d“z:+2 Z Z27dqu+2 .
Then
AZI(Ty) — AZI(T,_)
(Sl mal)z o 2]
=2 L2 IVil+2 v
— Vi 172 Z Z
(2 )2 ¢t Y et Za
=5 wvEE(T[Vig1U{vit1}])

IN

(5 ) g )
- LY Wil+2 LY Vil

<0,
and the last inequality holds since Vj;1 # 0.

Theorem 2.2 LetT € ’7;L(d), where 4 < d <n—1. Then
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n—d+1 3 n—d+1 3
s ) ()

= Pl

n—d+1J "w,—g+1~|
)

and the equality holds if and only if T = 55712

Proof. For T € 'ﬁl(d) (4 <d<mn-1), by Lemma 2.4, we obtain
AZI(T)=AZI(Ty) > - > AZI(Ty_»)
with equality if and only if T'= T,;_5. Actually,
~ alVal+1,n—|Vy|—d
Td—2 = Sd—l )

where 0 < |[V] < VL%HJ Note that

(Val +2)%  (n—|Va| —d+1)°
(|Val + 1) (n — |Va| — d)?

AZI(S\YAT e IVal=dy +8(d—2).

(z+1)°
$2
AZI(S)YATH = Val=dy — (vl 4 1) + t(n — |[Va| — d) + 8(d — 2).

Since for x > 2,

Let t(x) = . Thus

(x+1)*(z —2) 6(z+1)
t/(ﬂj) = T > 0, t”(x) = T > 0,
the function ¢(x) is convex increasing for = > 2.

2
Besides, t(1) =8 > #(2) = Z’?, and it follows that

i)

t(1)+t(n—d)>t(2)+t(n—d—1)z---zt({%cmj)+t<[ .

It leads to i1 . di1 .
n— n—
(Val +2)° | (n—|Val —d+1)* =1+ (1Y)

(Va[+ 12 " (n—[Val—dZ = {n—;ulr * [n—;i—s—lr ’
and the equality holds if and only if |Vy]| = L%(HJ . Consequently,
n—d+1 3 n—d+1 3
AZIT) > (H” 2 d+J1J+21) N d[” 2 di}l) s
2 2

n

—d v —d.
g ] =

and the equality holds if and only if T2 S 5 1

3 Trees with Given Diameter Maximizing the ABC In-
dex

In this section, we continue to use the marks in Section 2.
Lemma 3.110  Let T be a tree with n vertices and p pendent vertices, where 2 < p < n—2.

2
Then ABC(T) < g(n —p)+(p—1),/ pp%l with equality if and only if T = S}f;l.
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It is known from Section 2 that
7;52) = {S’ﬂ}’
(3) — p—1,n—p—1 < < E
0 = st 12 pz [3]),
7;L(n_1) = {Pn}

By simply computing, we have

ABC(S,) =+/(n—1)(n —2), ABC(P,) = g(n —1).

Note that §8~* "~P~1 (2 <p< {gJ) have exactly n — 2 pendent vertices, it follows from
Lemma 3.1 that

Corollary 3.1  LetT € T, (n >4). Then ABC(T) < v2+(n—3) Lig with equality
n—

if and only if T = Sy,

[i+7—2
Let A;; = +57j’ where 4, j are positive integers. It is obvious that A;; = A;;, and

the ABC index of a simple connected graph G can be restated as
ABC(G) = Z .Tiinj,
1<i<j<A
where z;; denotes the number of edges in G' connecting vertices of degrees ¢ and j, and A
denotes the maximum degree of G.

Lemma 3.2800 (1) Ay, is increasing for j > 1;

2
(2) Ag; = g forj>1
(3) Ifi> 3 is fized, then A;j is decreasing for j > 1.

Let T € 7;L(d) be a tree with a diameter-preserve path Pji1 = wvivg---vg41, wWhere
4<d<n-2 LetV; (i =1,---,d) be the vertices sets and T} (j = 1,--- ,d — 2) be the
sequences of trees with diameter d defined in Subsection 2.2.

Lemma 3.3 ABC(T;) > ABC(T;_1) with equality if and only if Viy1 = 0, where 1 =
2,3,---,d—2and4<d<n-—2.

Proof. Tt is obvious that ABC(T;) = ABC(T;—1) if V;y1 = 0. We need to show that
ABC(T;) > ABC(Ti—1) if Vi1 # 0.
Casel. 1=2.
Clearly,
|E(T[V3 U {vs}]) = |V3].

By Lemma 3.2, for any uv € E(T[V3 U {vs}]) (since d,, + d, > 2, without loss of generality,
assume that d, > 1), we have

Ady,d, < Ard, < Ar a2 < AL Ve 4| Vs |42
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Since V3 # ), we know d,, > 2, and combining this with d,,, d,, > 2 and Lemma 3.2, we
get
Aq

doy < A2.a,, = A2 Vo4 Va| 425 Aa < Azq

dy, < A2,d,,-

vy V3

Consequently,
ABC(Ty) — ABC(Ty)

= [(IVa| + 1+ [VB)) AL vy 4 vs 42 + Az o |+ va 42 + A2.d,,]

— Vel + DAL, o+ DS Aaya, +Aa
weE(T[VaU{vs}])

> (IVal + (A1 v +vs 42 — A1 va|+2)
>0,
and the last inequality holds since V3 # (.
Case 2. 3<i<d-2.
It can be seen that

dy, T Ad

v v3 dU4

[E(T Vi1 U{vig )] = [Vigal.

For any wv € E(T[Viy1 U {vit1}]) (since d, + d, > 2, without loss of generality, suppose
d, > 1), it follows from Lemma 3.2 that

Adyd, < Ard, SA v 42 <A i :
1,30 [Vil+2
t=2

Moreover, since d >2and d > 2, by Lemma 3.2 we have

<A .
vig1rdvipn = F2du; g

Then bearing in mind that V; 1 # 0, we have
ABCO(T,) — ABC(T; )

|:<Z|Vt|+1+vv+1|)A i+1 +A2,d1,i+2:|

t=2 17t§2 IVel+2

- [(Z |Vt‘ + l)A i + Z Adu’dv + Ad”H»l’d”H»z
t=2

1,3 |Vi|+2
PG wEE(T[Vig1U{vig1}])

<Z|Vt|+1>(A e —A )
t=2 LY [Vil+2 1L,y [Vel+2
t=2 t=2

> 0.

Vi+1 Vi+t+2

Ag, 4

Y

This completes the proof of Lemma 3.3.

Theorem 3.1 Let T € 7'n(d), where 4 < d <n —2. Then
V2 n—d
ABC(T) < =—=(d—-1 — _—
o) < L= 1)+ (n—dy /"
with equality holding if and only if T = Scllffd.
Proof. For T € 7}(‘1) (4 <d<n-—2),it follows from Lemma 3.3 that
ABC(T) = ABC(Ty) < -+- < ABC(Tq4-2)
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S(led‘-‘rl,n—lvd‘—d
-1

with equality if and only if T" = Ty;_5. Note that Ty_o = , and they have

exactly n — d + 1 pendent vertices, where 0 < |Vy| < L%HJ Then by Lemma 3.1, we
have
ABC(T) < ABC(S\)/e[Ttn=IVal=d)
< ABC(S;" )

with equality holding if and only if |V;| = 0, that is, T' = Séfl_d.

Remark 3.1  From the main results of this paper (e.g. Theorems 2.1, 2.2, 3.1 and Corol-
lary 3.1), the tree with diameter d (resp. d = 2,3,n—2, n—1) minimizing the augmented Za-
greb index and maximizing the ABC index are the same (resp. S, 521’"_3, S}LE3’ P,). How-

ever, for general cases (excluding special n value), the tree with diameter d (4 < d < n — 3)
n—d+1 n—d+1
minimizing the augmented Zagreb index (that is, S 5_12 L= ]) is different from that

maximizing the ABC index (that is, S "~ %).
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