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1 Introduction

In this paper, by using the coincidence degree theory, we discuss the existence of solutions

to a coupled system of fractional p-Laplacian differential equations at resonance:

Dβ
0+ϕp1(D

α
0+u(t)) = f1(t, u(t), v(t), D

α
0+u(t), D

α
0+v(t)), 0 < t < 1,

Dβ
0+ϕp2(D

α
0+v(t)) = f2(t, u(t), v(t), D

α
0+u(t), D

α
0+v(t)), 0 < t < 1,

u(0) = Dα
0+u(0) = 0, u(1) =

n1∑
i=1

Aiu(ϵi),

Dγ
0+ϕp1(D

α
0+u(t))|t=1 =

n∑
i=1

aiD
γ
0+ϕp1(D

α
0+u(t))|t=ξi ,

v(0) = Dα
0+v(0) = 0, v(1) =

m1∑
i=1

Biv(σi),

Dδ
0+ϕp2(D

α
0+v(t))|t=1 =

m∑
i=1

biD
δ
0+ϕp2(D

α
0+v(t))|t=ηi ,

(1.1)
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where 1 < α, β ≤ 2, and 3 < α + β ≤ 4; 0 < γ, δ ≤ β − 1; ϕpi(x) = |x|pi−2x, pi > 1,

ϕqi = ϕ−1
pi

,
1

pi
+

1

qi
= 1, i = 1, 2; 0 < ϵ1 < ϵ2 < · · · < ϵn1

< 1, 0 < σ1 < σ2 < · · · < σm1
< 1,

0 < ξ1 < ξ2 < · · · < ξn < 1, 0 < η1 < η2 < · · · < ηm < 1; Ar, aj , Bk, bl ∈ R,

r = 1, 2, · · · , n1, j = 1, 2, · · · , n, k = 1, 2, · · · ,m1, l = 1, 2, · · · ,m. Dα, Dβ , Dγ and Dδ are

the standard Riemann-Liouville fractional derivatives.

In this paper, we always suppose that the following conditions hold.

(H1)
n1∑
i=1

Aiϵ
α−1
i = 1,

m1∑
i=1

Biσ
α−1
i = 1,

n∑
i=1

aiξ
β−γ−1
i = 1,

m∑
i=1

biη
β−δ−1
i = 1,

n1∑
i=1

Aiϵ
α
i ̸= 1,

m1∑
i=1

Biσ
α
i ̸= 1,

n∑
i=1

aiξ
β−γ
i ̸= 1,

m∑
i=1

biη
β−δ
i ̸= 1.

(H2) fi: [0, 1]×R4 → R satisfied Carathéodory conditions, i = 1, 2, that is,

(i) f( · ; x1, x2, x3, x4): [0, 1] → R is measurable for all (x1, x2, x3, x4) ∈ R4;

(ii) f(t; · , · , · , · ): R4 → R is continuous for a.e. t ∈ [0, 1];

(iii) for each compact set K ⊂ R4 there is a function φK ∈ L∞[0, 1] such that

|f(t, x1, x2, x3, x4)| ≤ φK(t)

for a.e. t ∈ [0, 1] and all (x1, x2, x3, x4) ∈ K.

The existence of solutions for boundary value problem of integer order differential equa-

tions at resonance has been studied by many authors (see [1]–[10] and references cited

therein). Since the extensive applicability of fractional differential equations (see [11] and

[12]), recently, more and more authors pay their close attention to the boundary value prob-

lems of fractional differential equations (see [13]–[20]). In papers [13] and [14], the existence

of solutions to coupled system of fractional differential equations at nonresonance has been

given. In papers [15] and [16], the solvability of fractional differential equations at resonance

has been investigated.

Paper [16] investigates the following coupled system of fractional differential equations

at resonance: 

Dα
0+u(t) = f1(t, u(t), v(t)), 0 < t < 1,

Dβ
0+v(t) = f2(t, u(t), v(t)), 0 < t < 1,

u(0) = 0, Dγ
0+u(t)|t=1 =

n∑
i=1

aiD
γ
0+u(t)|t=ξi ,

v(0) = 0, Dδ
0+v(t)|t=1 =

m∑
i=1

biD
δ
0+v(t)|t=ηi ,

(1.2)

where 1 < α, β ≤ 2, 0 < γ ≤ α − 1, δ ≤ β − 1; 0 < ξ1 < ξ2 < · · · < ξn < 1, 0 < η1 < η2 <

· · · < ηm < 1;
n∑

i=1

aiξ
β−γ−1
i = 1,

m∑
i=1

biη
β−δ−1
i = 1. By using the coincidence degree theory

due to Mawhin and constructing suitable operators, the existence of solutions for (1.2) is

obtained.

In the past few decades, in order to meet the demands of research, the p-Laplacian

equation is introduced in some BVP, such as [17] and [18].
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The turbulent flow in a porous medium is a fundamental mechanics problem. For study-

ing this type of problems, Leibenson[17] introduced the p-Laplacian equation as follows

(ϕp(x
′(t)))′ = f(t, x(t), x(t)),

where ϕp(s) = |s|p−2s, p > 1. Obviously, ϕp is invertible and its inverse operator is ϕq,

where q > 1 is a constant such that
1

p
+

1

q
= 1.

Paper [18] investigated the existence of solutions for the BVP of fractional p-Laplacian

equation with the following form{
Dβ

0+(ϕp(D
α
0+x(t))) = f(t, x(t), Dα

0+x(t)), t ∈ [0, 1],

Dα
0+x(0) = Dα

0+x(1) = 0,

where 0 < α, β ≤ 1 with 1 < α+β ≤ 2, and p > 1, ϕp(s) = |s|p−2s is a p-Laplacian operator,

Dα is a Caputo fractional derivative. By using the coincidence degree theory, a new result

on the existence of solutions for the above fractional boundary value problem is obtained.

Inspired by above works, our work presented in this paper has the following new features.

On the one hand, the method used in this paper is the coincidence degree theory and

the system has p-Laplacian, which bring about many argument difficulties. On the other

hand, our study is on fractional p-Laplacian differential system with multipoint boundary

conditions. To the best of our knowledge, there are relatively few results on boundary value

problems for fractional p-Laplacian equations at resonance. We fill this gap in the literature.

Hence we improve and generalize the results of previous papers to some degree, and so it is

interesting and important to study the existence of solutions for system (1.1).

This paper is organized as follows. In Section 2, we present the transformation of the

system (1.1), some results of fractional calculus theory and some lemmas, which are used in

the next two sections. In Section 3, basing on the coincidence degree theory of Mawhin[19],

we get the existence of solutions for system (1.1). In Section 4, one example is given to

illustrate our result. Our result is different from those of bibliographies listed above.

2 Preliminaries

For abbreviation, we write Dγ
0+u(ξ) = Dγ

0+u(t)|t=ξ.

In order to use the coincidence degree theory to study the existence of solutions for BVP

(1.1), let w1(t) = ϕp1(D
α
0+u(t)), w2(t) = ϕp2(D

α
0+v(t)). Then we can rewrite (1.1) in the

following form:

Dα
0+u(t) = ϕq1(w1(t)), 0 < t < 1,

Dα
0+v(t) = ϕq2(w2(t)), 0 < t < 1,

Dβ
0+w1(t) = f1(t, u(t), v(t), ϕq1(w1(t)), ϕq2(w2(t))), 0 < t < 1,

Dβ
0+w2(t) = f2(t, u(t), v(t), ϕq1(w1(t)), ϕq2(w2(t))), 0 < t < 1,

u(0) = w1(0) = 0, u(1) =
n1∑
i=1

Aiu(ϵi), Dγ
0+w1(t)|t=1 =

n∑
i=1

aiD
γ
0+w1(t)|t=ξi ,

v(0) = w2(0) = 0, v(1) =
m1∑
i=1

Biv(σi), Dδ
0+w2(t)|t=1 =

m∑
i=1

biD
δ
0+w2(t)|t=ηi .

(2.1)
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Clearly, if x(t) = (u(t), v(t), w1(t), w2(t))
T is a solution of (2.1), then (u(t), v(t))T must

be a solution of (1.1). So the problem of finding a solution for (1.1) is converted to find a

solution for (2.1).

Next we present here the necessary definitions and Lemmas from fractional calculus

theory. These definitions and Lemmas can be found in the recent literatures [11] and [12].

Definition 2.1 [11] The fractional integral of order α > 0 of a function f : (0,∞) → R is

defined by

Iα0+f(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s)ds

provided that the right-hand side exists.

Definition 2.2 [11] The Riemann-Liouville fractional order derivative of order α ∈ (n −
1, n] of a function f : (0,∞) → R is defined by

Dα
0+f(t) =

1

Γ(n− α)

dn

dtn

∫ t

0

(t− s)n−α−1f(s)ds

provided that the right-hand side exists.

Lemma 2.1 [12] Assume that f ∈ L[0, 1], q > p ≥ 0. Then

Dp
0+I

q
0+f(t) = Iq−p

0+ f(t).

Lemma 2.2 [12] Assume that α > 0, λ > −1. Then

Dα
0+t

λ =
Γ(λ+ 1)

Γ(n+ λ− α+ 1)

dn

dtn
(tn+λ−α),

where n = [α] + 1.

Lemma 2.3 [12] Let α ∈ (n− 1, n], u ∈ C(0, 1) ∩ L1(0, 1). Then

Iα0+D
α
0+u(t) = u(t) + c1t

α−1 + c2t
α−2 + · · ·+ cnt

α−n,

where ci ∈ R, i = 1, 2, · · · , n.

Now, we briefly recall some notations and an abstract existence result, which can be

found in [19].

Let X, Y be real Banach spaces, L : domL ⊂ X → Y be a Fredholm operator with index

zero, and P : X → X, Q : Y → Y be projectors such that ImP = kerL, ImL = kerQ. then

X = kerL⊕ kerP, Y = ImL⊕ ImQ,

and

L|domL∩kerP : domL ∩ kerP → ImL

is invertible. We denote the inverse by KP .

If Ω is an open bounded subset of X such that domL∩ Ω̄ ̸= ∅, then the map N : X → Y

will be called L-compact on Ω̄ if QN(Ω̄) is bounded and KP (I −Q)N : Ω̄ → X is compact.
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Lemma 2.4 [19] Let L : domL ⊂ X → Y be a Fredholm operator with index zero and

N : X → Y be L-compact on Ω̄ . Assume that the following conditions are satisfied:

(1) Lx ̸= λNx for every (x, λ) ∈ [(domL\ kerL) ∩ ∂Ω ]× (0, 1);

(2) Nx /∈ ImL for every x ∈ kerL ∩ ∂Ω ;

(3) deg(JQN |kerL, Ω ∩ kerL, 0) ̸= 0, where J : ImQ → kerL is a isomorphism,

Q : Y → Y is a projection such that ImL = kerQ.

Then the equation Lx = Nx has at least one solution in domL ∩ Ω̄ .

Let

Cα−1[0, 1] = {x | x, Dα−1
0+ x ∈ C[0, 1]}

with norm ∥x∥α = max{∥x∥∞, ∥Dα−1
0+ x∥∞},

Cβ−1[0, 1] = {x | x, Dβ−1
0+ x ∈ C[0, 1]}

with norm ∥x∥β = max{∥x∥∞, ∥Dβ−1
0+ x∥∞}, where ∥x∥∞ = max

t∈[0,1]
|x(t)|.

Set

X = {x = (u(·), v(·), w1(·), w2(·))T | u, v ∈ Cα−1[0, 1], w1, w2 ∈ Cβ−1[0, 1]}
with norm

∥x∥X = max{∥u∥α, ∥v∥α, ∥w1∥β , ∥w2∥β},

and

Y = {y = (y1(·), y2(·), y3(·), y4(·))T ∈ L([0, 1], R4)}

with norm

∥y∥Y = max{∥y1∥1, ∥y2∥1, ∥y3∥1, ∥y4∥1},

where ∥yi∥1 =

∫ 1

0

|yi(x)|dx, i = 1, 2, 3, 4. By means of the linear functional analysis theory,

we can prove that X, Y are Banach spaces.

Define the operator L : domL ⊂ X → Y by

Lx =


Dα

0+u

Dα
0+v

Dβ
0+w1

Dβ
0+w2

 , (2.2)

where

domL =

{
x = (u(·), v(·), w1(·), w2(·))T ∈ X | (Dα

0+u, D
α
0+v, D

β
0+w1, D

β
0+w2))

T ∈ Y,

u(0) = v(0) = w1(0) = w2(0) = 0, u(1) =

n1∑
i=1

Aiu(ϵi), v(1) =

m1∑
i=1

Biv(σi),

Dγ
0+w1(t)|t=1 =

n∑
i=1

aiD
γ
0+w1(t)|t=ξi , D

δ
0+w2(t)|t=1 =

m∑
i=1

biD
δ
0+w2(t)|t=ηi

}
.

Let N : X → Y be the operator
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Nx(t) =


N1x(t)

N2x(t)

N3x(t)

N4x(t)

 =


ϕq1(w1(t))

ϕq2(w2(t))

f1(t, u(t), v(t), ϕq1(w1(t)), ϕq2(w2(t)))

f2(t, u(t), v(t), ϕq1(w1(t)), ϕq2(w2(t)))

 . (2.3)

Then BVP (2.1) is equivalent to the operator equation

Lx = Nx.

3 Main Results

Define operators T1, T2, T3, T4 : L[0, 1] → R as follows:

T1y =

∫ 1

0

(1− s)α−1y(s)ds−
n1∑
i=1

Ai

∫ ϵi

0

(ϵi − s)α−1y(s)ds,

T2y =

∫ 1

0

(1− s)α−1y(s)ds−
m1∑
i=1

Bi

∫ σi

0

(σi − s)α−1y(s)ds,

T3y =

∫ 1

0

(1− s)β−γ−1y(s)ds−
n∑

i=1

ai

∫ ξi

0

(ξi − s)β−γ−1y(s)ds,

T4y =

∫ 1

0

(1− s)β−δ−1y(s)ds−
m∑
i=1

bi

∫ ηi

0

(ηi − s)β−δ−1y(s)ds.

In order to obtain our main results, we first present the following lemmas.

Lemma 3.1 Suppose that (H1) holds, and let L be defined by (2.2). Then

kerL =
{
(u, v, w1, w2)

T = (c11t
α−1, c12t

α−1, c21t
β−1, c22t

β−1)T,

c11, c12, c21, c22 ∈ R, t ∈ [0, 1]
}
, (3.1)

ImL = {(y1, y2, y3, y4)T ∈ Y | T1y1 = T2y2 = T3y3 = T4y4 = 0}. (3.2)

Proof. Since (u, v, w1, w2)
T ∈ kerL, we get

(Dα
0+u(t), D

α
0+v(t), D

β
0+w1(t), D

β
0+w2(t))

T = (0, 0, 0, 0)T.

By Lemma 2.3, Dα
0+u(t) = 0 has solution

u(t) = c11t
α−1 + e11t

α−2, c11, e11 ∈ R.

Combining with the boundary value condition u(0) = 0, we get e11 = 0. So

u(t) = c11t
α−1.

Likewisely,

v(t) = c12t
α−1.

Similarly, by Lemma 2.3, Dβ
0+w1(t) = 0 has solution

w1(t) = c21t
β−1 + e21t

β−2, c21, e21 ∈ R.

Together with the boundary value condition w1(0) = 0, we get e21 = 0. So

w1(t) = c21t
β−1.
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Likewisely,

w2(t) = c22t
β−1.

One has that (3.1) holds.

If y = (y1, y2, y3, y4)
T ∈ ImL, then there exists an x = (u, v, w1, w2)

T ∈ domL such

that Lx = y. That is,

y1(t) = Dα
0+u(t), y2(t) = Dα

0+v(t), y3(t) = Dα
0+w1(t), y4(t) = Dα

0+w2(t).

Basing on Lemma 2.3, we have

u(t) = Iα0+y1(t) + c1t
α−1 + e2t

α−2, c1, e1 ∈ R.

From condition u(0) = 0, we get e1 = 0. It follows from (H1) and the boundary conditions

of u(1) =
n1∑
i=1

Aiu(ϵi) that y1 satisfies∫ 1

0

(1− s)α−1y1(s)ds =

n1∑
i=1

Ai

∫ ϵi

0

(ϵi − s)α−1y1(s)ds.

Likewisely, y2 satisfies∫ 1

0

(1− s)α−1y2(s)ds =

m1∑
i=1

Bi

∫ σi

0

(σi − s)α−1y2(s)ds.

Similarly, by Lemma 2.3, we have

w1(t) = Iβ0+y3(t) + c2t
β−1 + e2t

β−2, c2, e2 ∈ R.

From condition w1(0) = 0, we get e2 = 0. It follows from (H1) and the boundary conditions

of Dγ
0+w1(1) =

n∑
i=1

aiD
γ
0+w1(ξ) that y3 satisfies∫ 1

0

(1− s)β−γ−1y3(s)ds =
n∑

i=1

ai

∫ ξi

0

(ξi − s)β−γ−1y3(s)ds.

Likewisely, y4 satisfies∫ 1

0

(1− s)β−δ−1y4(s)ds =
m∑
i=1

bi

∫ ηi

0

(ηi − s)β−δ−1y4(s)ds.

So,

T1y1 = T2y2 = T3y3 = T4y4 = 0.

That is,

ImL ⊆ {(x, y) ∈ {(y1, y2, y3, y4)T ∈ Y | T1y1 = T2y2 = T3y3 = T4y4 = 0}.
On the other hand, let y = (y1, y2, y3, y4)

T ∈ Y satisfy T1y1 = T2y2 = T3y3 = T4y4 = 0,

and x = (u, v, w1, w1)
T. Take

u(t) = Iα0+y1, v(t) = Iα0+y2, w1(t) = Iβ0+y3(t), w2(t) = Iβ0+y4(t).

It follows from Lemma 2.1 that

Lx = y.

Obviously, (u, v, w1, w2)
T ∈ X, (Dα

0+u, D
α
0+v, D

α
0+w1, D

α
0+w2)

T ∈ Y , and

u(0) = v(0) = w1(0) = w2(0) = 0.

By T1y1 = T2y2 = T3y3 = T4y4 = 0, we get that u, v, w1, w2 satisfy
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u(1) =

n1∑
i=1

Aiu(ϵi), v(1) =

m1∑
i=1

Biv(σi),

Dγ
0+w1(1) =

n∑
i=1

aiD
γ
0+w1(ξi), Dδ

0+w2(1) =
m∑
i=1

biD
δ
0+ϕp2w2(ηi),

respectively. So, (u, v, w1, w2)
T ∈ domL, we get (y1, y2, y3, y4)

T ∈ ImL. That is,{
(x, y) ∈ {(y1, y2, y3, y4)T ∈ Y | T1y1 = T2y2 = T3y3 = T4y4 = 0

}
⊆ ImL.

The proof of Lemma 3.1 is completed.

Lemma 3.2 Let L be defined by (2.2). If (H1) holds, then L is a Fredholm operator of

index zero, and the linear continuous projector operators P : X → X and Q : Y → Y can

be defined as

P


u(t)

v(t)

w1(t)

w2(t)

 =



Dα−1
0+ u(0)

Γ(α)
tα−1

Dα−1
0+ v(0)

Γ(α)
tα−1

Dβ−1
0+ w1(0)

Γ(β)
tβ−1

Dβ−1
0+ w2(0)

Γ(β)
tβ−1


,

Q


y1(t)

y2(t)

y3(t)

y4(t)

 =


Q1y1(t)

Q2y2(t)

Q3y3(t)

Q4y4(t)

 =



α

1−
n1∑
i=1

Aiϵαi

T1y1(t)

α

1−
m1∑
i=1

Biσα
i

T2y2(t)

β − γ

1−
n∑

i=1

aiξ
β−γ
i

T3y3(t)

β − δ

1−
m∑
i=1

biη
β−δ
i

T4y4(t)


for t ∈ [0, 1], and the operator KP : ImL→ domL ∩ kerP can be written as

KP


y1

y2

y3

y4

 =


KP1y1

KP2y2

KP3y3

KP4y4

 =


Iα0+y1

Iα0+y2

Iβ0+y3

Iβ0+y4

 ,

where KP is the inverse of L|domL∩kerP .

Proof. We divide the proof into two steps.

Step 1. We prove that L is a Fredholm operator of index zero.
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(I) Since Lemma 3.1, we know

kerL =
{
(u, v, w1, w2)

T = (c11t
α−1, c12t

α−1, c21t
β−1, c22t

β−1)T,

c11, c12, c21, c22 ∈ R, t ∈ [0, 1]
}
.

By u(t) = c11t
α−1 and Lemma 2.2, we get

Dα−1
0+ u(0) = c11Γ(α).

So

c11 =
Dα−1

0+ u(0)

Γ(α)
.

Likewisely,

c12 =
Dα−1

0+ v(0)

Γ(α)
, c21 =

Dβ−1
0+ w1(0)

Γ(β)
, c22 =

Dβ−1
0+ w2(0)

Γ(β)
.

So ImP = kerL.

We show that P 2(u, v, w1, w2)
T = P (u, v, w1, w2)

T in the follows. In fact, by Lemma

2.2, we get

P 2


u(t)

v(t)

w1(t)

w2(t)

 = P

 P


u(t)

v(t)

w1(t)

w2(t)


 = P


c11t

α−1

c12t
α−1

c21t
β−1

c22t
β−1



=



Dα−1
0+ (c11t

α−1)|t=0

Γ(α)
tα−1

Dα−1
0+ (c12t

α−1)|t=0

Γ(α)
tα−1

Dβ−1
0+ (c21t

β−1)|t=0

Γ(β)
tβ−1

Dβ−1
0+ (c22t

β−1)|t=0

Γ(β)
tβ−1


=



c11Γ(α)

Γ(α)
tα−1

c12Γ(α)

Γ(α)
tα−1

c21Γ(β)

Γ(β)
tβ−1

c22Γ(β)

Γ(β)
tβ−1


=


c11t

α−1

c12t
α−1

c21t
β−1

c22t
β−1



= P


u(t)

v(t)

w1(t)

w2(t)

 , t ∈ [0, 1].

Then P is the linear continuous projector operator. So, we have X = kerL⊕ kerP .

(II) For y = (y1, y2, y3, y4)
T ∈ Y , we prove Q2y = Qy, that is, Q2

i yi = Qiyi, i =

1, 2, 3, 4. In fact,

Q2
1y1(t) = Q1(Q1y1(t))

=
α

1−
n1∑
i=1

Aiϵαi

T1(Q1y1(t))

=
α

1−
n1∑
i=1

Aiϵαi

(∫ 1

0

(1− s)α−1Q1y1(t)ds−
n1∑
i=1

Ai

∫ ϵi

0

(ϵi − s)α−1Q1y1(t)ds

)
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=
α

1−
n1∑
i=1

Aiϵαi

(∫ 1

0

(1− s)α−1ds−
n1∑
i=1

Ai

∫ ϵi

0

(ϵi − s)α−1ds

)
Q1y1(t)

=
α

1−
n1∑
i=1

Aiϵαi

 1

α
−

n1∑
i=1

Aiϵ
α
i

α

Q1y1(t)

= Q1y1(t).

Q2
3y3(t) = Q3(Q3y3(t))

=
β − γ

1−
n∑

i=1

aiξ
β−γ
i

T3(Q3y3(t))

=
β − γ

1−
n∑

i=1

aiξ
β−γ
i

(∫ 1

0

(1− s)β−γ−1Q3y3(t)ds−
n∑

i=1

ai

∫ ξi

0

(ξi − s)β−γ−1Q3y3(t)ds

)

=
β − γ

1−
n∑

i=1

aiξ
β−γ
i

(∫ 1

0

(1− s)β−γ−1ds−
n∑

i=1

ai

∫ ξi

0

(ξi − s)β−γ−1ds

)
Q3y3(t)

=
β − γ

1−
n∑

i=1

aiξ
β−γ
i

 1

β − γ
−

n∑
i=1

aiξ
β−γ
i

β − γ

Q3y3(t)

= Q3y3(t).

Likewisely,

Q2
2y2(t) = Q2y2(t), Q2

4y4(t) = Q4y4(t).

So

Q2y = Qy.

From the definition of Q and (3.2), we can easily get that

kerQ = ImL.

So, we have

Y = ImL⊕ ImQ.

Thus

dimkerL = dimImQ = codimImL = 4.

This means that L is a Fredholm operator of index zero.

Step 2. We prove that the inverse of L|domL∩kerP is KP .

For y = (y1, y2, y3, y4)
T ∈ ImL, z = (z1, z2, z3, z4)

T, let z = KPy, that is, z satisfy

zi = KPiyi, i = 1, 2, 3, 4, and z ∈ domL ∩ kerP . Since LKPy = y, we get Lz = y. By (2.2),

we know(
Dα

0+z1(t), D
α
0+z2(t), D

β
0+z3(t), D

β
0+z4(t)

)T
= (y1(t), y2(t), y3(t), y4(t))

T.
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By Lemma 2.3, we have{
zj(t) = Iα0+yj(t) + c1jt

α−1 + e1jt
α−2, c1j , e1j ∈ R, j = 1, 2,

zk(t) = Iβ0+yk(t) + c1kt
β−1 + e1kt

β−2, c1k, e1k ∈ R, k = 3, 4.
(3.3)

By z ∈ domL, we know zi(0) = 0, i = 1, 2, 3, 4. So,

e1j = e1k = 0, j = 1, 2; k = 3, 4. (3.4)

By z ∈ kerP , we know

Dα−1
0+ zj(0)

Γ(α)
tα−1 = 0,

Dβ−1
0+ zk(0)

Γ(β)
tβ−1 = 0, j = 1, 2; k = 3, 4, t ∈ [0, 1].

It follows from (3.3)–(3.4) and Lemma 2.2 that

Dα−1
0+ Iα0+yj(0) + c1jΓ(α) = 0, Dβ−1

0+ Iβ0+yk(0) + c1kΓ(β) = 0, j = 1, 2; k = 3, 4.

We get

c1j = − 1

Γ(α)
I10+yj(0) = 0, c1k = − 1

Γ(β)
I10+yk(0) = 0, j = 1, 2; k = 3, 4. (3.5)

It follows from (3.3)–(3.5) that

(z1(t), z2(t), z3(t), z4(t))
T =

(
Iα0+y1(t), I

α
0+y2(t), I

β
0+y3(t), I

β
0+y4(t)

)T
.

That is,

KPy = (Iα0+y1, I
α
0+y2, I

β
0+y3, I

β
0+y4)

T.

The proof of Lemma 3.2 is completed.

Lemma 3.3 Suppose that (H1) and (H2) hold. If Ω ⊂ X is an open bounded subset and

domL ∩ Ω̄ ̸= ∅, then N is L-compact on Ω̄ .

Proof. By the condition (H2), the continuity of ϕq1 , ϕq2 and the definition of Q, we can

know that QN(Ω̄) is bounded. Now we show that KP (I − Q)N : Ω̄ → X is compact.

For this, we prove firstly: (i) KP (I −Q)N(Ω̄) is uniformly bounded; (ii) KP (I −Q)N(Ω̄),

Dα−1
0+ KP (I0 − Qj)Nj(Ω̄) and Dβ−1

0+ KP (I0 − Qk)Nk(Ω̄) are equicontinuous on [0, 1], where

I0 : L[0, 1] → L[0, 1] is a identity mapping, j = 1, 2, k = 3, 4.

(i) The condition (H2) and the continuity of ϕq1 , ϕq2 mean that there exist constant

Mi > 0 such that

|(I0 −Qi)Nix| ≤Mi, t ∈ [0, 1], x ∈ Ω̄ , i = 1, 2, 3, 4.

For x ∈ Ω̄ , t ∈ [0, 1], we have

KP (I −Q)Nx(t)

=
(
Iα0+(I0 −Q1)N1x(t), I

α
0+(I0 −Q2)N2x(t), I

β
0+(I0 −Q3)N3x(t), I

β
0+(I0 −Q4)N4x(t)

)
.

And we can know

|Iα0+(I0 −Qj)Njx(t)| =
1

Γ(α)

∣∣∣∣ ∫ t

0

(t− s)α−1(I0 −Qj)Njx(s)ds

∣∣∣∣
≤ Mj

Γ(α)

∣∣∣∣ ∫ 1

0

(1− s)α−1ds

∣∣∣∣
=

Mj

Γ(α+ 1)
, j = 1, 2, (3.6)
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|Dα−1
0+ Iα0+(I0 −Qj)Njx(t)| ≤

∫ t

0

|(I0 −Qj)Njx(s)|ds ≤Mj , j = 1, 2, (3.7)

|Iβ0+(I0 −Qj)Nkx(t)| ≤
Mk

Γ(β + 1)
, |Dβ−1

0+ Iβ0+(I0 −Qk)Nkx(t)| ≤Mk, k = 3, 4. (3.8)

From (3.6)–(3.8), we get

∥KP (I −Q)Nx∥X ≤M,

where M = max

{
M1, M2, M3, M4,

M1

Γ(α+ 1)
,

M2

Γ(α+ 1)
,

M3

Γ(β + 1)
,

M4

Γ(β + 1)

}
. That is,

KP (I −Q)N(Ω̄) is uniformly bounded.

(ii) For 0 ≤ t1 < t2 ≤ 1, x ∈ Ω̄ , we have

KP (I −Q)Nx(t2)−KP (I −Q)Nx(t1))

=
(
Iα0+(I0 −Q1)N1x(t2)− Iα0+(I0 −Q1)N1x(t1),

Iα0+(I0 −Q2)N2x(t2)− Iα0+(I0 −Q2)N2x(t1),

Iα0+(I0 −Q3)N3x(t2)− Iα0+(I0 −Q3)N3x(t1),

Iα0+(I0 −Q4)N4x(t2)− Iα0+(I0 −Q4)N4x(t1)
)
,

|Iα0+(I0 −Qj)Njx(t2)− Iα0+(I0 −Qj)Njx(t1)|

=
1

Γ(α)

∣∣∣∣ ∫ t2

0

(t2 − s)α−1(I0 −Qj)Njx(s)ds−
∫ t1

0

(t1 − s)α−1(I0 −Qj)Njx(s)ds

∣∣∣∣
≤ Mj

Γ(α+ 1)
|tα2 − tα1 + 2(t2 − t1)

α|, j = 1, 2.

By Lemma 2.1, we get

|Dα−1
0+ Iα0+(I0 −Qj)Njx(t2)−Dα−1

0+ Iα0+(I0 −Qj)Njx(t1)|

=

∣∣∣∣ ∫ t2

0

(I0 −Qj)Njx(s)ds−
∫ t1

0

(I0 −Qj)Njx(s)ds

∣∣∣∣
≤ Mj(t2 − t1), j = 1, 2.

Similarly, we get ∣∣Iβ0+(I0 −Qk)Nkx(t2)− Iβ0+(I0 −Qk)Nkx(t1)
∣∣

≤ Mk

Γ(β + 1)

∣∣tβ2 − tβ1 + 2(t2 − t1)
β
∣∣,∣∣Dβ−1

0+ Iβ0+(I0 −Qk)Nkx(t2)−Dβ−1
0+ Iβ0+(I0 −Qk)Nkx(t1)

∣∣
≤Mk(t2 − t1)

for k = 3, 4.

Since tα, tβ are uniformly continuous on [0, 1], we can obtain that KP (I − Q)N(Ω̄),

Dα−1
0+ KP (I0 −Qj)Nj(Ω̄) (j = 1, 2) and Dβ−1

0+ KP (I0 −Qk)Nk(Ω̄) (k = 3, 4) are equicontin-

uous on [0, 1].

Applying the Arzelà-Ascoli theorem, we get KP (I −Q)N : Ω̄ → X is compact. So, N is

L-compact on Ω̄ . The proof of Lemma 3.3 is completed.

To obtain our main results, we need the following conditions.
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(H3) There exist functions ζi, ψi, φi, hi, gi ∈ L[0, 1], i = 1, 2, such that

|fi(t, x1, x2, x3, x4)|

≤ ζi(t) + ψi(t)|x1|p1−1 + φi(t)|x2|p2−1 + hi(t)|x3|p1−1 + gi(t)|x4|p2−1

for t ∈ [0, 1], (x1, x2, x3, x4) ∈ R4, where ψi, φi, hi, gi, i = 1, 2, satisfying

l :=
1 + ξβ−1

n

ξβ−1
n

(
2

Γ(α+ 1)

)p1−1

∥ψ1∥1 + Γ(β + 1)∥h1∥1 < Γ(β + 1),

k :=
1 + ηβ−1

m

ηβ−1
m

(
2

Γ(α+ 1)

)p2−1

∥φ2∥1 + Γ(β + 1)∥g2∥1 < Γ(β + 1),

0 ≤ (1 + ξβ−1
n )(1 + ηβ−1

m )∥φ1∥1∥ψ2∥1
(Γ(β + 1)− l)(Γ(β + 1)− k)ξβ−1

n ηβ−1
m

(
2

Γ(α+ 1)

)p1+p2−2

< 1, (3.9a)

0 ≤ Γ2(β)(1 + βξβ−1
n )(1 + βηβ−1

m )∥φ1∥1∥ψ2∥1
(Γ(β + 1)− l)(Γ(β + 1)− k)ξβ−1

n ηβ−1
m

(
2

Γ(α+ 1)

)p1+p2−2

< 1. (3.9b)

(H4) For x ∈ domL, there exist constants Ri > 0, i = 1, 2, 3, 4, such that if at least one

of the inequations

(1) |u(t)| > R1, t ∈ [ϵn1 , 1];

(2) |w1(t)| > R3, t ∈ [ξn, 1];

(3) |v(t)| > R2, t ∈ [σm1 , 1];

(4) |w2(t)| > R4, t ∈ [ηm, 1]

holds, then at least one of the following inequations holds:

T1N1x(t) ̸= 0, T3N3x(t) ̸= 0, T2N2x(t) ̸= 0, T4N4x(t) ̸= 0.

(H5) For x = (c1t
α−1, c2t

α−1, c3t
β−1, c4t

β−1)T ∈ kerL, there exist constants ei > 0,

i = 1, 2, 3, 4, such that either

(1) ciTiNix > 0 if |ci| > ei, i = 1, 2, 3, 4,

or

(2) ciTiNix < 0, if |ci| > ei, i = 1, 2, 3, 4

holds.

Lemma 3.4 Suppose that (H1)–(H4) hold. Then the set

Ω1 = {x ∈ domL\kerL | Lx = λNx, λ ∈ (0, 1)}
is bounded in X.

Proof. Take

x = (u, v, w1, w2)
T ∈ Ω1.

By Lx = λNx, Lemma 2.3 and (u(0), v(0), w1(0), w2(0))
T = (0, 0, 0, 0)T, we have

u(t)

v(t)

w1(t)

w2(t)

 =


λIα0+ϕq1(w1(t)) + c11t

α−1

λIα0+ϕq2(w2(t)) + c12t
α−1

λIβ0+f1(t, u(t), v(t), ϕq1(w1(t)), ϕq2(w2(t))) + c21t
β−1

λIβ0+f2(t, u(t), v(t), ϕq1(w1(t)), ϕq2(w2(t))) + c22t
β−1

 , (3.10)

c11, c12, c21, c22 ∈ R, t ∈ [0, 1].
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By Nx ∈ ImL, we get

TiNix = 0, i = 1, 2, 3, 4.

These, together with (H4), mean that there exist constants t11 ∈ [ϵn1 , 1], t1 ∈ [ξn, 1],

t22 ∈ [σm1 , 1], t2 ∈ [ηm, 1] such that

|u(t11)| ≤ R1, |w1(t1)| ≤ R3, |v(t22)| ≤ R2, |w2(t2)| ≤ R4.

By (3.10), we have

|c21|tβ−1
1 ≤ R3 +

1

Γ(β)

∫ 1

0

(1− s)β−1|f1(s, u(s), v(s), ϕq1(w1(s)), ϕq2(w2(s)))|ds, (3.11)

|c22|tβ−1
2 ≤ R4 +

1

Γ(β)

∫ 1

0

(1− s)β−1|f2(s, u(s), v(s), ϕq1(w1(s)), ϕq2(w2(s)))|ds. (3.12)

By Lemma 2.3, we have

|u(t)| = |u(t11) + Iα
t+11
Dα

0+u(t)|

≤ |u(t11)|+
1

Γ(α)

∫ t

t11

(t− s)α−1|Dα
0+u(s)|ds

≤ R1 +
∥Dα

0+u∥∞
Γ(α+ 1)

,

that is,

∥u∥∞ ≤ R1 +
∥Dα

0+u∥∞
Γ(α+ 1)

. (3.13)

Similarly, we have

∥v∥∞ ≤ R2 +
∥Dα

0+v∥∞
Γ(α+ 1)

. (3.14)

By (3.10)–(3.12), we know

|w1(t)| ≤ |λIβ0+f1(t, u(t), v(t), ϕq1(w1(t)), ϕq2(w2(t)))|+ |c21|tβ−1

≤ 1

Γ(β)

∫ 1

0

(1− s)β−1|f1(s, u(s), v(s), ϕq1(w1(s)), ϕq2(w2(s)))|ds

+

(
t

t1

)β−1

|c21|tβ−1
1

≤ R3

ξβ−1
n

+
1

Γ(β)

(
1 +

1

ξβ−1
n

)∫ 1

0

(1− s)β−1
[
ζ1(s) + ψ1(s)|u(s)|p1−1

+ φ1(s)|v(s)|p2−1 + h1(s)|ϕq1(w1(s))|p1−1 + g1(s)|ϕq2(w2(s))|p2−1
]
ds

≤ R3

ξβ−1
n

+
1 + ξβ−1

n

Γ(β + 1)ξβ−1
n

(
∥ζ1∥1 + ∥ψ1∥1∥u∥p1−1

∞ + ∥φ1∥1∥v∥p2−1
∞

+ ∥h1∥1∥w1∥∞ + ∥g1∥1∥w2∥∞
)
,

which together with

|ϕp(x+ y)| ≤ 2p−1(xp−1 + yp−1), x, y > 0

(see [20]) and (3.13)–(3.14), we get

∥w1∥∞ ≤ R3

ξβ−1
n

+
1 + ξβ−1

n

Γ(β + 1)ξβ−1
n

[
∥ζ1∥1 + ∥ψ1∥1

(
R1 +

∥ϕq1(w1)∥∞
Γ(α+ 1)

)p1−1
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+ ∥φ1∥1
(
R2 +

∥ϕq2(w2)∥∞
Γ(α+ 1)

)p2−1

+ ∥h1∥1∥w1∥∞ + ∥g1∥1∥w2∥∞
]

≤ R3

ξβ−1
n

+
1 + ξβ−1

n

Γ(β + 1)ξβ−1
n

[
∥ζ1∥1 + 2p1−1∥ψ1∥1

(
Rp1−1

1 +

(
∥ϕq1(w1)∥∞
Γ(α+ 1)

)p1−1)
+ 2p2−1∥φ1∥1

(
Rp2−1

2 +

(
∥ϕq2(w2)∥∞
Γ(α+ 1)

)p2−1)
+ ∥h1∥1∥w1∥∞ + ∥g1∥1∥w2∥∞

]
.

So

∥w1∥∞ ≤ Γ(β + 1)

Γ(β + 1)− l

{
R3

ξβ−1
n

+
1 + ξβ−1

n

Γ(β + 1)ξβ−1
n

[
∥ζ1∥1 + 2p1−1∥ψ1∥1Rp1−1

1

+ 2p2−1∥φ1∥1Rp2−1
2 +

(
∥g1∥1 +

(
2

Γ(α+ 1)

)p2−1

∥φ1∥1
)
∥w2∥∞

]}
.

Likewisely,

∥w2∥∞ ≤ Γ(β + 1)

Γ(β + 1)− k

{
R4

ηβ−1
m

+
1 + ηβ−1

m

Γ(β + 1)ηβ−1
m

[
∥ζ2∥1 + 2p1−1∥ψ2∥1Rp1−1

1

+ 2p2−1∥φ2∥1Rp2−1
2 +

(
∥h2∥1 +

(
2

Γ(α+ 1)

)p1−1

∥ψ2∥1
)
∥w1∥∞

]}
.

In view of (3.9a), we can see that there exist constants M̄1, M̄2 > 0 such that

∥w1∥∞ ≤ M̄1, ∥w2∥∞ ≤ M̄2. (3.15)

So

∥Dα
0+u∥∞ = ∥ϕq1(w1)∥∞ ≤ ϕq1(M̄1), ∥Dα

0+v∥∞ = ∥ϕq2(w2)∥∞ ≤ ϕq2(M̄2).

Combing (3.13) with (3.14), we get

∥u∥∞ ≤ R1 +
ϕq1(M̄1)

Γ(α+ 1)
, ∥v∥∞ ≤ R2 +

ϕq2(M̄2)

Γ(α+ 1)
. (3.16)

On the other hand, by (3.10), we have

|c11|tα−1
11 ≤ R1 +

1

Γ(α)

∫ 1

0

(1− s)α−1|ϕq1(w1(s))|ds.

So

|Dα−1
0+ u(t)| = |λ

∫ 1

0

ϕq1(w1(s))ds+ c11Γ(α)|

≤
∫ 1

0

|ϕq1(w1(s))|ds+
(

1

t11

)α−1

|c11|tα−1
11 Γ(α)

≤
∫ 1

0

|ϕq1(w1(s))|ds+
Γ(α)

ϵα−1
n1

R1 +
1

ϵα−1
n1

∫ 1

0

(1− s)α−1|ϕq1(w1(s))|ds

≤
(
1 +

1

αϵα−1
n1

)
∥ϕq1(w1)∥∞ +

Γ(α)

ϵα−1
n1

R1

≤
(
1 +

1

αϵα−1
n1

)
ϕq1(M̄1) +

Γ(α)

ϵα−1
n1

R1.

Likewisely,

|Dα−1
0+ v(t)| ≤

(
1 +

1

ασα−1
m1

)
ϕq2(M̄2) +

Γ(α)

ϵσ−1
m1

R2.

That is,

∥Dα−1
0+ u∥∞ ≤ M̄3, ∥Dα−1

0+ v∥∞ ≤ M̄4, (3.17)
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where M̄3 =

(
1 +

1

αϵα−1
n1

)
ϕq1(M̄1) +

Γ(α)

ϵα−1
n1

R1, M̄4 =

(
1 +

1

ασα−1
m1

)
ϕq2(M̄2) +

Γ(α)

ϵσ−1
m1

R2.

Since

Dβ−1
0+ w1(t) = λ

∫ 1

0

f1(s, u(s), v(s), ϕq1(w1(s)), ϕq2(w2(s)))ds+ c21Γ(β),

likewisely (3.15) and (3.17) obtained, and the condition (3.9b), we can know there exist

constants M̄5, M̄6 > 0 such that

∥Dβ−1
0+ w1∥∞ ≤ M̄5, ∥Dβ−1

0+ w2∥∞ ≤ M̄6. (3.18)

By (3.15)–(3.18), we have

∥(u, v, w1, w2)
T∥X = max{∥u∥α, ∥v∥α, ∥w1∥β , ∥w2∥β} ≤ r1,

where

r1 = max

{
M̄1, M̄2, M̄3, M̄4, M̄5, M̄6, R1 +

ϕq1(M̄1)

Γ(α+ 1)
, R2 +

ϕq2(M̄2)

Γ(α+ 1)

}
.

Therefore, Ω1 is bounded. The proof of Lemma 3.4 is completed.

Lemma 3.5 Suppose that (H1), (H2) and (H5) hold. Then the set

Ω2 = {x ∈ kerL | Nx ∈ ImL}
is bounded in X.

Proof. For x = (u, v, w1, w2)
T ∈ Ω2, we have

x = (c1t
α−1, c2t

α−1, c3t
β−1, c4t

β−1)T, ci ∈ R, t ∈ [0, 1], i = 1, 2, 3, 4.

By Nx ∈ ImL, we know

TiNix = 0, i = 1, 2, 3, 4.

By (H5), we know there exist constants ei > 0 such that

|ci| ≤ ei, i = 1, 2, 3, 4.

So

|u(t)| = |c1tα−1| ≤ |c1| ≤ e1,

that is,

∥u∥∞ ≤ e1.

Likewisely,

∥v∥∞ ≤ e2, ∥w1∥∞ ≤ e3, ∥w2∥∞ ≤ e4.

By Lemma 2.2, we can get

|Dα−1
0+ u(t)| = |c1Γ(α)| ≤ e1Γ(α),

that is,

∥Dα−1
0+ u∥∞ ≤ e1Γ(α).

Likewisely,

∥Dα−1
0+ v∥∞ ≤ e2Γ(α), ∥Dβ−1

0+ w1∥∞ ≤ e3Γ(β), ∥Dβ−1
0+ w2∥∞ ≤ e4Γ(β).

Thus

∥(u, v, w1, w2)
T∥X = max{∥u∥α, ∥v∥α, ∥w1∥β , ∥w2∥β} ≤ r2,

where

r2 = max{e1, e2, e3, e4, e1Γ(α), e2Γ(α), e3Γ(β), e4Γ(β)}.

Therefore, Ω2 is bounded. The proof of Lemma 3.5 is completed.
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Lemma 3.6 Suppose that (H1), (H2) and (H5) hold. Then the set

Ω3 = {x ∈ kerL | λx+ (1− λ)θJQNx = 0, λ ∈ [0, 1]}
is bounded in X, where J : ImQ→ kerL is a isomorphism given by

J



α

1−
n1∑
i=1

Aiϵαi

e1

α

1−
m1∑
i=1

Biσα
i

e2

β − γ

1−
n∑

i=1

aiξ
β−γ
i

e3

β − δ

1−
m∑
i=1

biη
β−δ
i

e4



=


e1t

α−1

e2t
α−1

e3t
β−1

e4t
β−1

 , t ∈ [0, 1], ei ∈ R, i = 1, 2, 3, 4.

θ =

{
1, if (H5)(1) holds;

−1, if (H5)(2) holds.

Proof. For x = (u, v, w1, w2)
T ∈ kerL, (u, v, w1, w2)

T = (c1t
α−1, c2t

α−1, c3t
β−1,

c4t
β−1)T, ci ∈ R, t ∈ [0, 1], i = 1, 2, 3, 4. There exists λ ∈ [0, 1] such that

λx = −(1− λ)θJQNx,

that is,

λ


c1t

α−1

c2t
α−1

c3t
β−1

c4t
β−1

 = −(1− λ)θ


T1N1xt

α−1

T2N2xt
α−1

T3N3xt
β−1

T4N4xt
β−1

 .

We get

λci = −(1− λ)θTiNix, i = 1, 2, 3, 4.

If λ = 0, by (H5), we get

|ci| ≤ ei, i = 1, 2, 3, 4.

If λ = 1, we get

ci = 0, i = 1, 2, 3, 4.

For λ ∈ (0, 1), one has

|c1| > e1, |c2| > e2, |c3| > e3, |c4| > e4. (3.19)

If at least one of the inequalities in (3.19) holds, we have that at least one of the following

inequations holds:

λc21 = −(1− λ)θc1T1N1x < 0,

λc22 = −(1− λ)θc2T2N2x < 0,

λc23 = −(1− λ)θc3T3N3x < 0,

λc24 = −(1− λ)θc4T4N4x < 0,
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this is a contradiction. So, for λ ∈ [0, 1], we get

|ci| ≤ ei, i = 1, 2, 3, 4.

Similar to the proof of Lemma 3.5, we can get

∥(u, v, w1, w2)
T∥ ≤ r2.

Therefore, we obtain Ω3 is bounded. The proof of Lemma 3.6 is completed.

Theorem 3.1 Suppose that (H1)–(H5) hold. Then the problem (1.1) has at least one

solution in X.

Proof. Set

Ω = {x ∈ X | ∥x∥X < r1 + r2 + 1}.

Obviously, Ω is a bounded open subset of X and Ω1∪Ω2∪Ω3 ⊂ Ω . It follows from Lemmas

3.2 and 3.3 that L (defined by (2.2)) is a Fredholm operator of index zero and N (defined by

(2.3)) is L-compact on Ω̄ . By Lemmas 3.4 and 3.5, we get that the following two conditions

are satisfied:

(1) Lx ̸= λNx for every (x, λ) ∈ [(domL\kerL) ∩ ∂Ω ]× (0, 1);

(2) Nx /∈ ImL for every x ∈ kerL ∩ ∂Ω .

Next, we need only to prove

(3) deg(JQN |kerL, Ω ∩ kerL, 0) ̸= 0.

Take

H(x, λ) = λx+ θ(1− λ)JQNx, x ∈ (domL\kerL) ∩ ∂Ω , λ ∈ (0, 1).

According to Lemma 3.6, we know

H(x, λ) ̸= 0, x ∈ ∂Ω ∩ kerL.

By the homotopy of degree, we have

deg(JQN |kerL, Ω ∩ kerL, 0)

= deg(θH( · , 0), Ω ∩ kerL, 0)

= deg(θH( · , 1), Ω ∩ kerL, 0)

= deg(θI, Ω ∩ kerL, 0)

̸= 0.

By Lemma 2.4, we can get that Lx = Nx has at least one solution on domL ∩ Ω̄ . That is,

(2.1) has at least one solution in X. Then we know (1.1) has at least one solution in X.

The proof of Theorem 3.1 is completed.

4 Example

Let us consider the following coupled system of fractional p-Laplacian differential equations

at resonance
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D
3
2

0+ϕ3(D
5
4

0+u(t)) = f1(t, u(t), v(t), D
1
2

0+u(t), D
1
2

0+v(t)), 0 < t < 1,

D
3
2

0+ϕ2(D
5
4

0+v(t)) = f2(t, u(t), v(t), D
1
2

0+u(t), D
1
2

0+v(t)), 0 < t < 1,

u(0) = Dα
0+u(0) = 0, u(1) =

2

3
u
( 1

16

)
+ 2u

( 1

81

)
,

D
1
2

0+ϕ3(D
5
4

0+u(1)) = D
1
2

0+ϕ3

(
D

5
4

0+u
(1
4

))
,

v(0) = Dα
0+v(0) = 0, v(1) =

√
2

3
v
(1
4

)
+

√
3

3
v
(1
9

)
+

√
5

3
v
( 1

25

)
,

D
1
4

0+ϕ2(D
5
4

0+v(1)) =
√
3D

1
4

0+ϕ2

(
D

5
4

0+u
(1
9

))
,

(4.1)

where

f1(t, x1, x2, x3, x4) = t3 cos(x1x2) +
1

32
e−(1−t)x21 +

t

64
sinx2 +

t

6
x23 +

t

3
x4,

f2(t, x1, x2, x3, x4) =
√
t sin(x1x2) +

1

16
cos t sin(x21) +

1

32
e−(1−t)x2 +

t

4
x23 +

t

6
x4.

Corresponding to BVP (1.1), we have that m = n = 1, m1 = 3, n1 = 2, α =
5

4
, β =

3

2
,

γ =
1

2
, δ =

1

4
, ϵ1 =

1

16
, ϵ2 =

1

81
, σ1 =

1

4
, σ1 =

1

9
, σ1 =

1

25
, A1 =

2

3
, A2 = 2, B1 =

√
2

3
,

B2 =

√
3

3
, B3 =

√
5

3
, ξ1 =

1

4
, η1 =

1

9
, a1 = 1, b1 =

√
3. Take

ζ1 = t3, ψ1 =
1

32
e−(1−t), φ1 =

t

64
, h1 =

t

6
, g1 =

t

3
,

ζ2 =
√
t, ψ2 =

1

16
cos t, φ2 =

1

32
e−(1−t), h2 =

t

4
, g2 =

t

6
.

Then

l =
1 + ξβ−1

n

ξβ−1
n

( 2

Γ(α+ 1)

)p1−1

∥ψ1∥1 + Γ(β + 1)∥h1∥1

< 3×
( 2

1.133

)2

× 1

32
+ 1.330× 1

6

≈ 0.434 < 1.329 ≈ Γ

(
5

2

)
= Γ(β + 1),

k =
1 + ηβ−1

m

ηβ−1
m

( 2

Γ(α+ 1)

)p2−1

∥φ2∥1 + Γ(β + 1)∥g2∥1

< 4×
( 2

1.133

)
× 1

32
+ 1.330× 1

6
≈ 0.409 < 1.329

≈ Γ
(5
2

)
= Γ(β + 1),

and
(1 + ξβ−1

n )(1 + ηβ−1
m )∥φ1∥1∥ψ2∥1

(Γ(β + 1)− l)(Γ(β + 1)− k)ξβ−1
n ηβ−1

m

( 2

Γ(α+ 1)

)p1+p2−2

≈ 0.484 < 1,
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Γ2(β)(1 + βξβ−1
n )(1 + βηβ−1

m )∥φ1∥1∥ψ2∥1
(Γ(β + 1)− l)(Γ(β + 1)− k)ξβ−1

n ηβ−1
m

( 2

Γ(α+ 1)

)p1+p2−2

≈ 0.012 < 1.

By simple calculation, we can get that (H1)–(H4) and (H5)(1) hold. By Theorem 3.1, we

obtain that the problem (4.1) has at least one solution.
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