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Abstract: In this paper, by using the coincidence degree theory, the existence of
solutions for a coupled system of fractional p-Laplacian differential equations at reso-
nance is studied. The result obtained in this paper extends some known results. An
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1 Introduction

In this paper, by using the coincidence degree theory, we discuss the existence of solutions

to a coupled system of fractional p-Laplacian differential equations at resonance:
0+¢p1 (Dgru(t) = fi(t, u(t), v(t), D§iu(t), Dgiv(t), 0<t<1,
D 6a(Dg. (1) = falt, u(t), v(t), Dgu(t), Dgo(t)),  0<t<l,

u(O) = Dou(0) =0,  u(l) = :leAiu(ei)7
Dy bpy (DG u(t))|e=1 = _:Zlaz‘Dg+¢p1 (Dgu(t)) = (L.1)
0(0) = D2 v(0) =0, v(1) =3 Byw(oy),

i=1

D} 0 (D0 (E)let = 3 5D 60 (D (1)) iy,
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where 1 <oz,ﬁ§2, and 3 < a+B<4,0<7,0<B-1; ¢p, () = |z[Pi 2z, p; > 1,

1
b _¢p71, +q—_1 i=1,2,0<e << <e, <1,0<0;<0y< <oy <1,
Z 3

0< &G < << <L 0<m<m<- - <ny <1l A, a;, B, b € R,
r=1,2,---,n,j=12--,n k=12 ,my,1=12---,m. D DP DY and D’ are
the standard Riemann-Liouville fractional derivatives.

In this paper, we always suppose that the following conditions hold.

ni a1 mi a1 n ﬁ*’yfl m ﬁ S—1 ni
(Hy) 2, A =1, 2, Bioy =1, ) ai§; =1, > bin, =1, 2 A # 1,
: i=1 i=1

ZBU #1, Zazfﬁ T#L szm

(H2) f, [O 1] xR*—= R satlsﬁed Carathéodory conditions, ¢ = 1,2, that is,

i) f(-; :cl,:cg,xg,:r4) [0,1] — R is measurable for all (z1, xo, 73, 74) € R?;

(i) f(; -, -, -, -): R* = R is continuous for a.e. t € [0, 1];

(iii) for each compact set L C R* there is a function ¢x € L>[0, 1] such that

|f(t, 21, 22, 23, 24)| < c(2)
for a.e. t € [0,1] and all (z1, z2,x3,24) € K.

The existence of solutions for boundary value problem of integer order differential equa-
tions at resonance has been studied by many authors (see [1]-[10] and references cited
therein). Since the extensive applicability of fractional differential equations (see [11] and
[12]), recently, more and more authors pay their close attention to the boundary value prob-
lems of fractional differential equations (see [13]-[20]). In papers [13] and [14], the existence
of solutions to coupled system of fractional differential equations at nonresonance has been
given. In papers [15] and [16], the solvability of fractional differential equations at resonance
has been investigated.

Paper [16] investigates the following coupled system of fractional differential equations

at resonance:
D8+u(t) = fl(ta U(t), ’U(t)), 0<t<1,
D0+v(t) = fa(t, u(t), v(t)), 0<t<l,

i=1

U(O):O’ 0+U )|t 1= ZbD0+v( )|t:m7

where 1 < a,0<2,0<7<a—-1,0<f8-10<&E << <& <,0<m<np<
< M < 15 Y aiﬁiﬁ*'kl =1, > bmf %=1 — 1. By using the coincidence degree theory
i=1 i=1
due to Mawhin and constructing suitable operators, the existence of solutions for (1.2) is
obtained.
In the past few decades, in order to meet the demands of research, the p-Laplacian
equation is introduced in some BVP, such as [17] and [18].
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The turbulent flow in a porous medium is a fundamental mechanics problem. For study-
ing this type of problems, Leibenson!'”) introduced the p-Laplacian equation as follows
(¢p(2'(1))" = f(t, =(t), =(t)),

where ¢,(s) = |s|P72s, p > 1. Obviously, ¢, is invertible and its inverse operator is ¢,

1
where ¢ > 1 is a constant such that — + — = 1.

Paper [18] investigated the existelzlce of solutions for the BVP of fractional p-Laplacian
equation with the following form
{ Dy (p(Dgya(t) = f(t, x(t), Dgya(t)),  te€(0,1],
Dg,x(0) = Dy, x(1) = 0,
where 0 < o, 8 < 1with1 < a+8 < 2,and p > 1, ¢,(s) = |s|P~2s is a p-Laplacian operator,
D% is a Caputo fractional derivative. By using the coincidence degree theory, a new result
on the existence of solutions for the above fractional boundary value problem is obtained.

Inspired by above works, our work presented in this paper has the following new features.
On the one hand, the method used in this paper is the coincidence degree theory and
the system has p-Laplacian, which bring about many argument difficulties. On the other
hand, our study is on fractional p-Laplacian differential system with multipoint boundary
conditions. To the best of our knowledge, there are relatively few results on boundary value
problems for fractional p-Laplacian equations at resonance. We fill this gap in the literature.
Hence we improve and generalize the results of previous papers to some degree, and so it is
interesting and important to study the existence of solutions for system (1.1).

This paper is organized as follows. In Section 2, we present the transformation of the
system (1.1), some results of fractional calculus theory and some lemmas, which are used in
the next two sections. In Section 3, basing on the coincidence degree theory of Mawhin!!?],
we get the existence of solutions for system (1.1). In Section 4, one example is given to
illustrate our result. Our result is different from those of bibliographies listed above.

2 Preliminaries

For abbreviation, we write D], u(§) = Dy, u(t)]i=e.

In order to use the coincidence degree theory to study the existence of solutions for BVP
(1.1), let wi(t) = ¢p, (Dru(t)), wa(t) = ¢p,(DGv(t)). Then we can rewrite (1.1) in the
following form:

Dg,u(t) = ¢g, (wi(t)), 0<t<l,

DO+U( ):¢QQ(w2(t))7 0<t<l,

DPwi(t) = filt, u(t), v(t), g (wi(t), ¢g(wa(t), 0<t<L1,

D wa(t) = fa(t, ult), v(t), dg(wi(t)), dg,(wa(t))), 0<t<1, (2.1)
u(0) = w1(0) =0, wu(l) = iAiu(ﬁi)v Dyswi(t)|i=1 = éaiDngwl(t)h:&,

v(0) =w2(0) =0, v(1)= ZZLIIBW(@'), Dfwa(t)]i=1 = Z bi DYy wo ()] 1=, -
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Clearly, if ®(t) = (u(t), v(t), wi(t), wa(t))T is a solution of (2.1), then (u(t), v(t))" must
be a solution of (1.1). So the problem of finding a solution for (1.1) is converted to find a
solution for (2.1).

Next we present here the necessary definitions and Lemmas from fractional calculus
theory. These definitions and Lemmas can be found in the recent literatures [11] and [12].

Definition 2.1 The fractional integral of order a > 0 of a function f : (0,00) — R is
defined by

Rﬁﬂw=fayéﬁ—8P*ﬂ$®

provided that the right-hand side exists.

Definition 2.2 The Riemann-Liouville fractional order derivative of order o € (n—
1, n] of a function f : (0,00) — R is defined by

1 dr !
DY ft)= ———— | (t—35)""*"1f(s)d
) = Ty ¢ (o) ds
provided that the right-hand side exists.

Lemma 2.1'21  Assume that f € L[0, 1], ¢ > p > 0. Then
D§+Ig+f(t) = Ig;p (t).

Lemma 2.20'2  Assume that a > 0, A > —1. Then
rA+1)  d»

-~ thr)\fa
F(n+)\—a+1)dt"( )

Dg.;. t)\ -

b

where n = [a] + 1.

Lemma 2.31"21  Letac (n—1, n], u € C(0, 1)N L0, 1). Then
& DS u(t) = u(t) + et cat® 2 et
wherec; e R, i=1,2,--- n.

Now, we briefly recall some notations and an abstract existence result, which can be
found in [19].

Let X, Y be real Banach spaces, L : domL C X — Y be a Fredholm operator with index
zero, and P: X — X, @ :Y — Y be projectors such that ImP = ker L, ImL = ker . then
X =ker L @ ker P, Y =ImL & ImQ,

and

L|domLﬂkerP :domL Nker P — ImL

is invertible. We denote the inverse by Kp.
If 2 is an open bounded subset of X such that domL N {2 # 0, then the map N : X — Y
will be called L-compact on 2 if QN (£2) is bounded and Kp(I — Q)N : {2 — X is compact.
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Lemma 2.419  Let L : domL C X — Y be a Fredholm operator with index zero and
N : X =Y be L-compact on 2. Assume that the following conditions are satisfied:

(1) Lz # ANz for every (xz, A) € [(domL\ker L) N 9£2] x (0, 1);

(2) Nz ¢ ImL for every x € ker L N 942,

(3) deg(JQN|xerr, 2 NkerL, 0) # 0, where J : ImQ — ker L is a isomorphism,
Q:Y =Y is a projection such that ImL = ker Q.
Then the equation Lz = Nz has at least one solution in domL N £2.

Let
co'0, 1] ={z |z, D'z e Co, 1]}
with norm |lz]le = mas{[#lloe, D5 2]},
CP7Yo, 1] = {z | =, DIz e Clo, 1]}
with norm [[]|s = max{||/|cc, |57 2lloc}, Where ||zlo = Jnax, ()]
Set
X ={z=(u(-), v(-), wi (), wo(-)T | w,v € C*7L[0, 1], wy,wy € CP~10, 1]}

with norm

2] x = maz{[lulla; [vla: [lwills, [[walls},

and
Y = {y: (yl(')v y2(')a y3(')7 y4('))T € L([07 1]7 R4)}
with norm

lylly = max{[lyalls, [ly2ll, llyslla, [lyall},
1
where |ly;|l1 = / ly;(z)|dx, i = 1,2,3,4. By means of the linear functional analysis theory,
0

we can prove that X, Y are Banach spaces.
Define the operator L : domL C X — Y by
Dfiu
Dfiv
Lz = 3
DO+ w1
D§+ w2

where

dom = {:c= (@(), v(), wi(), wa()" € X | (DG, Do, Dywr, Dysws))™ €Y,
u(0) = v(0) = w1 (0) = w2(0) =0, u(l) = ZAiu(ei), v(l) = ZBﬂ)(O’i),

DY wi(t)li=1 =Y a;DJwy (t)|i=e,, Dorwa(t)|e=1 = > :biD8+w2(t)|t_m}.
i=1 i=1
Let N : X — Y be the operator
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Nyat) g, (w1 (1))
Nox(t t
oy — | e | IRUAG) 0
Nax(t) Si(t, u(t), v(t), dg,(wi(t)), dg,(wa(t)))
Naa(t) fa(t, u(t), v(t), dg (wi(t)), Pg(wa(t)))
Then BVP (2.1) is equivalent to the operator equation
Lx= Nz
3 Main Results
Define operators Ty, Ts, T3, Ty : L]0, 1] = R as follows:
1 ni €;
Ty = [ (1= tys)ds = 3o A [ e (sl
0 Py 0
1 mi o
Toy = / (1—s)* Ly(s)ds — ZBl/ (0 — 8)* Ly(s)ds,
0 ,
1 n
Ty = [ (1= tyls)ds = Y a / (6 — 5)" 1 y(s)ds,
0 ':
1 m
T4y = / (1 — S)ﬁ76 1 dS — Z / 5 o 1y(8)d8
0 -
In order to obtain our main results, we ﬁrst present the following lemmas.
Lemma 3.1  Suppose that (Hy) holds, and let L be defined by (2.2). Then
kerL = {(u,v,wl,wg)T = (ennt™ !, et ent? T eant? T,
ci1, ci2, c21, c2 € R, t €0, 1]}7 (3.1)
ImL = {(y1, y2, ys, va)" €Y | Tayr = Toyz = Tays = Tays = O}. (3:2)

Proof. Since (u,v,w;,ws)T € ker L, we get
(Do u(t), Dg.o(t), Diwr(6), D ws(®)” = (0,0,0,0)".
By Lemma 2.3, D§, u(t) = 0 has solution
u(t) = e t® '+ e11t972, ci1,e11 € R.
Combining with the boundary value condition u(0) = 0, we get e;; = 0. So
u(t) = ¢yt L
Likewisely,
v(t) = cat™ L.
Similarly, by Lemma 2.3, Dg+ w1 (t) = 0 has solution
wy(t) = co1t? 7 4 e tP 72, ca1,€91 € R.
Together with the boundary value condition w;(0) = 0, we get ez; = 0. So
wy (t) = e tP !
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Likewisely,
Wo (t) = ngtﬁil.

One has that (3.1) holds.
If y= (y1, y2, y3, ya)T € ImL, then there exists an = (u, v, wi, ws)T € domL such
that Lz = y. That is,

y1(t) = Dgru(t),  y2(t) = Dgro(t),  ws(t) = Dgrwi(t),  ya(t) = Dgrwa(t).
Basing on Lemma 2.3, we have
( ) I+y1( )+Clta71+€2ta72, c1,e1 € R.

From condition u(0) = 0, we get e; = 0. It follows from (H;) and the boundary conditions

of u(l) = E A;u(e;) that y; satisfies

/0 (1= )"y (s)ds = ;Ai /oei(ei — )"y (s)ds.

Likewisely, yo satisfies

/0 (1=9)"ya(s)ds = ; Bi/0 (o; — )" “ya(s)ds.

Similarly, by Lemma 2.3, we have
wl(t) = §+y3(t) —+ Cgtﬁil + 62tﬁ72, co,e9 € R.

From condition wy (0) = 0, we get e = 0. It follows from (H;) and the boundary conditions

of DJ,wi(1) = > a;DJ.wy(§) that ys satisfies
i=1

1 P n & P
[a=sr w(s)ds =3 o, JAGED O

Likewisely, y4 satisfies

/01(1_5)55 ! ds_Zb/ (n; — )P0 Lyu(s)ds.

So,
Tiyr = Toys = T3y = Tyys = 0.
That is,
ImL C {(z, y) € {(y1, y2, y3, va)" €Y | Tiyy = Toys = Tsys = Tuys = 0},

On the other hand, let y = (y1, y2, y3, ya)T € Y satisfy Tyy; = Toye = Tayz = Tyys = 0,
and = = (u,v,w;,w;)’. Take

u(t) = Igyr, v(t) = I§ye,  wi(t) = Igiys(t),  walt) = If.ya(t).
It follows from Lemma 2.1 that
Lx=y.
Obviously, (u, v, wy, ws)T € X, (D§u, D§ v, Dgw, D8‘+w2)T €Y, and
1(0) = v(0) = w1 (0) = w2(0) = 0.
By Tyy; = Toys = Tzys = Tyys = 0, we get that u, v, wy, wy satisfy
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- ZAiu(ei), v(1) =Y By(oy),
3 i=1
0+w1 Zaz 0+w1 51 D3+w2(1) = ZbiDg-%—d)pQwQ(ni)a
=1

respectively. So, (u, v, wi, wo)T € domL, we get (y1, v2, ¥3, ya)* € ImL. That is,
{(z, v) € {(y1, v2, y3, ya)" €Y | Tyy1 = Toyo = Tsys = Tyya = 0} C ImL.
The proof of Lemma 3.1 is completed.

Lemma 3.2  Let L be defined by (2.2). If (Hy) holds, then L is a Fredholm operator of
index zero, and the linear continuous projector operators P : X — X and Q : Y — Y can
be defined as

Dg‘;lu(o) tafl
I(c)
u(t) D6 v(0) 0
P G I(a)
wi (t) DI hwi (0) -1
wa(t) L(8)
Dg;lwg(O) 1
I'(B)
e
o Ty (t)
1—35 Ajed
i=1
a
— Toyo(t)
yi(t) Quy1(t) 1- 3 Biot
0 yva(t) | | Qev2(®) | i=1
ys(t) Q3ys(t) 6_7 Tsys(t)
ya(t) Qaya(?) - > ai€
i=1
-4
?niﬂyzx(t)
1- Z bzm
fort €0, 1], and the operator Kp : InL — domL NkerP can be written as
IOL
hn Kp,y 0+ 1
i Y2 Kp,yo 15+ y2
P = = ;
Y3 Kp,ys3 Ig+y3
K
Ya P, Y4 I([)'}+y4

where Kp is the inverse of L|domLnker P-

Proof. We divide the proof into two steps.
Step 1. We prove that L is a Fredholm operator of index zero.
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(I) Since Lemma 3.1, we know
kerL = {(u, v, wy, wy)T = (e11t°7Y, €1t eot? T, cpot?HT,
€11, €12, Co1, C22 €E R, t €0, 1]}
By u(t) = ¢11t*~! and Lemma 2.2, we get
Dg‘flu(O) = (w).

So
. D u(0)
11 7“&) .
Likewisely,
D2 (0 D (0 DP T ws (0
1o — 0% ’U( ) o — 0% wl( ) Copy — —0F wQ( )
12 7F(a) ) 21 7“5) ) 22 7“@
So ImP = kerL.
We show that P?(u, v, wy, wa)T = P(u, v, wy, wy)" in the follows. In fact, by Lemma
2.2, we get
u(t) u(t) ettt
t t te-t
p? v(t) —prl|l p v(t) _p| .
w1 (t) w1 (t) Cglt
wg(t) ’U}Q(t) ngtﬁ_l
a—1 o—
D0+ (Cllt 1)|t:0ta71 CllF(a>t(x—1
() () 1
Dg;l(clgtailﬂtzo ta_l 612].—‘(0&) tozfl Cllta7
_ () _ I'(a) _ c1at® !
D§:1(621t’371)|t:0 B—1 CQIF(ﬁ) 81 C21tﬁ_1
F(ﬂ) F(ﬂ) ngtﬁ_l
DI (eat? 1) im0 451 c22l'(8) -1
T(3) I'(B)
u(t)
v(t
=P ®) , telo, 1
wl(t)
wa(t)

Then P is the linear continuous projector operator. So, we have X = ker L & ker P.

(II) For Yy = (y17 Y2, Ys, y4)T S Y7 we prove Q2y = Qy7 that iS, Q?y’t = Qiy’ia 1=

1,2,3,4. In fact,
Qyi(t) = Qu(Quya (1))

[0

= ———T1(Quun(?))
1— Z A16?
i=1

- ([ (a9 - iz‘h [ @ otamown)

ni
1— Z AiG?
i=1
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- ([a-a 1ds—ZA/ (6= 9 ) Qun )

1— Z A16?
i=1
% Aie
- E o
— 3 Ae
= Q1y1(t).
Q3ys(t) = Q3(Qsys(t))
- Ty (Qus(t)
1— Z 55 s
i=1
_ 1 n &i
= # (/ (1- 5)677*1Q3y3(t)d5 — Zal/ (& — 5)5V1Q3y3(t)ds)
1= a;gf 7 N0 i=1 0
i=1
- & _ ﬁ Y14 — _ [3 y-1 )
o zn: aifffv (/ (1-13s) ds Zaz/ s) ds | Q3ys(t)
i=1
. >0l
= 6,1 1 Bi - = — Qsys(t)
1= aef™ v B
i=1
= Q3ys3(t).
Likewisely,
Qay2(t) = Qaya(t),  QFya(t) = Qaya(t).
So
Q’y=Qy.
From the definition of @ and (3.2), we can easily get that
ker@ = ImL.

So, we have
Y =ImL & ImQ.

Thus
dimkerL = dimIm@ = codimImZL = 4.

This means that L is a Fredholm operator of index zero.
Step 2. We prove that the inverse of L|qomLnkerp 18 Kp.
For y = (y1, y2, ¥3, va)* € ImL, z= (21, 22, 23, 24)7, let z= Kpy, that is, z satisfy
= Kpyi,i=1,2,3,4, and z € domL NkerP. Since LKpy =y, we get Lz=y. By (2.2),
we know

(D8 21(t), Dgsza(t), Dgzs(t), Dza®)” = (mn(t), malt), ws(t), ya(t))™.
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By Lemma 2.3, we have

{ 2(t) = Igvy; () + oyt et ? eyre €R, =12, (3.3)
zi(t) = o+yk(t) + et +et? 2, e e €R, k=34, '
By z € domL, we know z;(0) =0, i =1,2,3,4. So,

elj =ei =0, i=1,2; k=34 (3.4)

By z € kerP, we know
Dgflzj(o) D0+ Zk(o) B—1

I'(a) '(8)
It follows from (3.3)—(3.4) and Lemma 2.2 that

DS ISy (0) + cD(@) =0, DITMIS y(0) + ek D(B) =0,  j=1,2 k=3,4.
We get

o=l =, =0, j=1,2 k=34, tel0, 1].

1

1
1y = _mlé+yj(0) =0, cu=-
It follows from (3.3)—(3.5) that
«@ « T
(21(t), 22(t), 23(t), 2a(t)" = (I§ i (), Igeya(t), 10 ys(t), 1D ya(t)) .
That is,
Kpy= Iy, 1§y, 1D ys, 15 ya)".

The proof of Lemma 3.2 is completed.

Lemma 3.3  Suppose that (Hy) and (Hy) hold. If 2 C X is an open bounded subset and
domL N 2 # 0, then N is L-compact on £2.

Proof. By the condition (Hs), the continuity of ¢,,, ¢4, and the definition of @), we can
know that QN ({2) is bounded. Now we show that Kp(I — Q)N : 2 — X is compact.
For this, we prove firstly: (i) Kp(I — Q)N ({2) is uniformly bounded; (ii) Kp(I — Q)N (),
DS‘;IKP(IO — Q;j)N;(£2) and Dg;le(Io — Qk)Ni(£) are equicontinuous on [0, 1], where
Iy : L]0, 1] — L[0, 1] is a identity mapping, j = 1,2, k = 3,4.

(i) The condition (Hz) and the continuity of ¢, ¢, mean that there exist constant
M; > 0 such that

|(Io — Qi) N;z| < M;, telo, 1], z€ 2, i=1,2,34.

For z € 2, t € [0, 1], we have

Kp(I - Q)Na(t)

= (I3 (Io — Qu)N1&(t), I (Ip — Q2)Noa(t), IJ, (Io — Q3)Nsa(t), IV, (Ip — Qa)Naz(t)).
And we can know

\f&(fo—Qj)Njw(m:ﬁ / (t — )71 (Io — Q) Nya(s)ds
Mj ' — s a—1 s
<t ) -9
M;
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t
|Dg IS (To — Qi) Nja(t)| < /0 |(lo — Q;)Njx(s)|ds < M;,  j=1,2, (3.7)
18, (TIo — Q) Nya(t)] < %, IDETVIE (I — Qu)Nya(t)] < My, k=34 (3.8)

From (3.6)—(3.8), we get
IKp(I - Q)Nal|x < M,
M, M, M; My

here M = My, My, Ms, M.
e maﬁ"{ b T Moy ) et )’ TE+ D) DB+ D)
Kp(I — Q)N(42) is uniformly bounded.

(ii) For 0 <t <ty <1, z€ 2, we have
Kp(I —Q)Nx(t2) — Kp(I — Q)Nx(t1))

}. That is,

= (I§+ (Io — Q1) N1a(ts) — Iy (Io — Q1) N1(ty),
o+ (Io — Q2)Naz(t2) — 154+ (Io — Q2) Naz(t1),
o+ (Io — Q3)Naz(t2) — 154+ (Io — Q3) N3x(t1),
or (o — Q4)N4$(t ) =I5 (Io — Qa) Nyz(th)),

|I ( QJ)N 13(752

~—
»\.
+
—
<’_~T‘
@
<.
S~—"
L)Z
8
~
—_
=

1 " a—1 t o

= Fag| ) (2= 9 o = @)Na(a)ds = [t = )7 0o — @) Nt
M; .. . -

S Faoplf - HAe-wL =12

By Lemma 2.1, we get
|Dg IS (To — Qi) Nya(ts) — Dy I (Io — Q) Nja(t )|
12 t1
/ (IO — Qj)ij(S)dS — / (IO — QJ)N].'B(S)dS
0 0

S MJ(tQ*tl)a ]:172

Similarly, we get

|10, (To — Qu)Nia(ta) — Iy, (Io — Qi) Nya(ty) |

< P(ﬂL\tﬂ tf +2(ty — t1)P
|DEIS (Io — Qi) Nia(ts) — Dgz I8, (Io — Qr)Nya(th)|
< My(tz —t1)

for k = 3,4.

Since <, t# are uniformly continuous on [0, 1], we can obtain that Kp(I — Q)N (£2),
DS Kp(I, — Q)N;(2) (j = 1,2) and DSy "Kp(I, — Qr)N(2) (k = 3,4) are equicontin-
uous on [0, 1].

Applying the Arzela-Ascoli theorem, we get Kp(I — Q)N : £2 — X is compact. So, N is
L-compact on 2. The proof of Lemma 3.3 is completed.

To obtain our main results, we need the following conditions.
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(H3) There exist functions (;, ¥;, @i, hi, g; € L[0, 1], i = 1,2, such that
|fi(t, w1, x2, x3,24)
<G + (O] [P+ @) 2P 4 h(8) s 4 gi(8) w2
for t € [0, 1], (z1, 22,73, 14) € R, where ¥y, @4, hi, gi, i = 1,2, satisfying
1+&"

2 p1—1
e S () Wl DB+ Dl <D+ 1),

gt 2
! (F(a+ 1
L+ + 08 Dlleallallvall ( 2 >P1+P2—2 .
T(B+1)=D)I(B+1)—k)eh Tyt \I(a+1) v
0 < L2(B8)(1+ BN (1 + Bnl Yler il ( 2 >P1+p2—2 -
T @B+ -D)I@E+1) -k gt \Fla+1) :

N

p2—1
)) loalls +T(8 + Dllgalls < T8+ 1),

0<

(3.9a)

(3.9b)

(Hy) For x € domL, there exist constants R; > 0, ¢ = 1,2, 3,4, such that if at least one

of the inequations

(1) [w®)] > Ra, t € [en,, 1];
(2) [wi(®)] > Rs, t € [6n, 1];
(3) v(t)] > Ra, t € [y, 1];
4) [wa2(t)] > Ra, € [0, 1]

holds, then at least one of the following inequations holds:
T1N1:13(t) 7é O, T3N3.'13(t) 7& 0, TgNgm(t) 7é O, T4N4113(t) 7& 0.

(Hs) For x = (c1t® !, cot® L, est?™1, ¢utP~1)T € kerL, there exist constants e; > 0,

i=1,2,3,4, such that either

(1) TiN;z>0if |¢;] > e;,1=1,2,3,4,
or

(2) ¢TiN;xe<0,if |¢;] >e;,1=1,2,3,4
holds.

Lemma 3.4  Suppose that (Hy)—(Hy) hold. Then the set
2 ={x € domlL\kerL | Lz = ANz, X € (0, 1)}
1s bounded in X.

Proof. Take

z=(u, v, w, wg)T € (.

By Lz = ANz, Lemma 2.3 and (u(0), v(0), wy(0), w2(0))T = (0, 0, 0, 0)T, we have

u(t) M g, (w1 (t)) + et

v(t) B MGy g, (wa(t)) + c1t® !
wi(t) || MG fitul), v(t), ¢, (wi(H)), bg, (wa(t)) + eat? ™t |
wa(t) AL, fo(t,u(t), v(8), g, (wi (1)), by, (wa(1))) + cont? !

c11,¢12,¢21,¢22 € R, t € [0, 1].

(3.10)
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By Nz € ImL, we get
T;N;xz =0, 1=1,2,3,4.

These, together with (Hy), mean that there exist constants t11 € [en,, 1], t1 € [&n, 1],
tos € [Omy, 1], t2 € [hm, 1] such that

lu(tin)] < Ry, |wi(t1)| < R,  |v(te2)| < R, |wa(ta)| < Ry.
By (3.10), we have

1
jear [ty < Ry + 1“(15)/0 (1= )77 fils, uls), v(s), dq, (w1 (8)), Po (w2(s)))|ds,  (3.11)

Coo|tP 1 L ' —g)f-1 s, u(s),v(s wi(s wa(s s
|caalts §R4+F(ﬂ)/o (1= 8)"""|fa(s,u(s),v(s), @, (w1(5)), Bg, (w2(s)))|ds.  (3.12)
By Lemma 2.3, we have

[u(®)] = fu(tin) + I3 Dgru(t)]

1 t
<t + gy | (= 9 1DGu()lds
| D' ]| o
<R a—or 7%
>~ 1 + P(Oé+1) )
that is,
| DG ]l oo
o SR+ ——~ 3.13
Jull < R+ 2 (313)
Similarly, we have
[ D+ lloo
w0 < Ry + -0+ 1 3.14
[olle < By + 0 (3.14)

By (3.10)—(3.12), we know

Jwn (8)] < IS, fr(t () v(), dg, (wr (1), g, (wa ()] + fean |77
1

e 1 1 (s uls). v(s wr (s wols )
15 | (1 9% 0,005 04, (0 (5). s ()

AN
+ (> lean |ty
tq

R3 1 1 S s s)|u(s)[Pr 1
< i (1 ) [ 00 G+ ot

+ o @I+ ha (5 0r (D) + g1 (3] (wa ()72

Rg 1+€ A1 1 1
— + Gl + el llullBe™ + el lvl52™
nt T+ e =

+ [Pl [willoo + llgnll1llwz]l o),
which together with
bpa+y)l <2271 @y, 2y >0
(see [20]) and (3.13)—(3.14), we get

Rs 1+&8-1
[willoe < == T el + Nl | R+

[ pg (w1)lo \*
Ia+1) )
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[$g, (w2) 0

p2—1
+|¢1||1(R2+ ) T Wl oo + g s evelloe

IMNa+1)
NES . (g )l )"
< o IS+ 2 By (1l
A VR VI ' (a+1)
3 3 L (w p2—1
ool (A (Y l2l= ) ) ol + o e |
So 5
L(B+1) {Rg 1+67" [ 1 1
o < L 4 9Pt RP!
||'U)1H = I\(/B+1)_l 571 F(ﬁ—’—l) 571 ||<1||1 ‘W’l”l 1
1 1 2 p2—1
op2— P2 — .
s By + ok + () Dol sl
Likewisely,
F(ﬂ + ].) Ry 1+ nﬁfl 1 1
< m 9P1 RP!
Il € Ry o T g 16+ 2l

B L ) p1—1
#2 o (lhalh+ () Mol )l -

In view of (3.9a), we can see that there exist constants M;, My > 0 such that

[willoe < My, [Jwg]loe < Mo. (3.15)
So
1D+ lloo = ll¢q (w1)lloe <@g (M1), D51 vlloe = l|6g, (w2)lloo < ¢g, (Ma).
Combing (3.13) with (3.14), we get
¢Q1 (Ml) (qu (MQ)
0o < ST 0o < T 1
[ulloo < Ry + Fat D) [v]loe < R+ TG ) (3.16)

On the other hand, by (3.10), we have

1 1
len 6 < Ry 4 — / (1= )2y (w1 (s)]ds.

()
So .
D5 (0] = 3 [ 60, (wr(s))ds + enl(e)
0
1 1 a—1
< [Nontoreis+ () lenki o)
0 11
! NG 1 ! _
< [ oo+ B8R+ [0 o ()
0 ni ni 0
1 '«
< (14 oy o)l + T R
1 _ I
< <1+ a6a1>¢q1(M1)+ a(i)Rl.
Likewisely, ' 1
_ 1 _ INa
D500 < (14 ey ) dua) + i
That is,

1D ulloe < Mz, [IDGT 0]l < Ma, (3.17)
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where Mg = <1 + i1>¢ql (Ml) + %Rl, M4 = <1 + ai1>¢q2(M2) + 1;7(?1) Rs.
Since " ) " i i
DR 0a(®) = A [ (50061, 9. 04, 101 (5), s () + el (D).

likewisely (3.15) and (3.17) obtained, and the condition (3.9b), we can know there exist
constants My, Mg > 0 such that

1D willoe < Ms,  [|1Dg; wal|oe < M. (3.18)
By (3.15)—(3.18), we have

(u, v, w1, ws) Vlx = max{||ulla; [vllas wills, [lwalls} < 71,

¢Q2 (MQ) }
Ila+1) )"

where B
¢Q1 (Ml )

INa+1)’
Therefore, (2, is bounded. The proof of Lemma 3.4 is completed.

T1 :maX{Mh My, Mz, My, Ms, Mg, R+ Ry +

Lemma 3.5  Suppose that (Hy), (Hz) and (Hs) hold. Then the set
2 ={xeckerL | NeecImL}
s bounded in X.

Proof. For &= (u, v, wy, wy)T € 25, we have
= (et cpt* 7t egt? L, C4t6_1)T, c€eR,tel0, 1], i=1,2,3,4.
By Nz € ImL, we know
TiNjz=0, i=1,23,4.
By (Hs), we know there exist constants e; > 0 such that
lei] < ey, 1=1,2,3,4.

So
u(t)] = leit* | < Jer| <en,
that is,
ulloo < e1.
Likewisely,
[vlleo < €2, flwillo < €3, [Jw2lloo < e

By Lemma 2.2, we can get
DS u(®)] = Jei(@)] < exl(a),

that is,
105wl < exD(a).
Likewisely,
1D oo < eaT(@), 1D wifloe < €sT(B), | Dg; 'wa|oe < eal'(B).
Thus
1w, v, wi, w2) || x = max{||ulla, [0lla; [lwillg, lwalls} < 72,
where

ro = max{e;, es, e3, e4, e1l'(a), eal'(), es'(B), esI'(B)}.
Therefore, (25 is bounded. The proof of Lemma 3.5 is completed.
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Lemma 3.6  Suppose that (Hy), (Hs) and (Hs) hold. Then the set
23 ={x€kerL | Adx+ (1 —-N)0JQNz=10, A € [0, 1]}

is bounded in X, where J : Im@Q — kerL is a isomorphism given by

Q@
— €l
1-— Z Aieia
i=1
e
my €2 a—1
1- 3 Bio® et
J o eat®™ tef0, 1, e €R, i=1,2,34
= 3 € [y, , € € , 1= 1,4,9,4.
éb_fy €3 egtﬁ_l L
11— a?™ eqtP~!
i=1
B—96
— €
1= > b ™°
i=1
0 1, if (H)(1) holds;
1 -1, if (Hy)(2) holds.
Proof. For x = (u, v, wy, wy)T € kerL, (u, v, wy, wo)T = (c1t®71, cot®™L, cstP™L,

et DT ;e R, t €0, 1], =1,2,3,4. There exists A € [0, 1] such that
Ax=—(1-XN0JQNz,

that is,
Cltail TlNlmfail
et ! Ty Noxt~!
AT [ =—a=ne | 2T
63t5 TgNgilItﬁ
C4t’8_1 T4N411t6_1
We get

Ae; = —(1 — )\)HTlNl.'B, 1=1,2,3,4.

If A=0, by (Hs), we get

|Ci| §ei, i:1,2,3,4.
If A\=1, we get

=0, i=1,23/4.
For A € (0,1), one has

1| > ex, o] > €2, |cs| > es, |ea| > eq. (3.19)

If at least one of the inequalities in (3.19) holds, we have that at least one of the following
inequations holds:

et = —(1 =N, Ty Nz < 0,
A2 = —(1 = N)fcaTyNoz < 0,
ez = —(1 = \)fesT3 N3z < 0,
et = —(1 = N)fcyTyNyz < 0,
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this is a contradiction. So, for A € [0, 1], we get

lei] < ey, 1=1,2,3,4.
Similar to the proof of Lemma 3.5, we can get

I(u, v, wy, w)T| < ro.

Therefore, we obtain (25 is bounded. The proof of Lemma 3.6 is completed.

Theorem 3.1  Suppose that (Hy)—(Hs) hold. Then the problem (1.1) has at least one
solution in X.

Proof. Set
R={ze X ||z|x <ri+r+1}

Obviously, {2 is a bounded open subset of X and {4 U2, U 25 C {2. Tt follows from Lemmas
3.2 and 3.3 that L (defined by (2.2)) is a Fredholm operator of index zero and N (defined by
(2.3)) is L-compact on {2. By Lemmas 3.4 and 3.5, we get that the following two conditions
are satisfied:
(1) Lx+# ANz for every (x, A) € [(domL\kerL) N 92| x (0, 1);
(2) Nz ¢ ImL for every x € kerL N 012.
Next, we need only to prove
(3) deg(JQN|kerr, 2 NkerL, 0) # 0.
Take
H(z, \) =Xz+0(1—)\)JQNz, z € (domL\kerL) N 92, X € (0, 1).
According to Lemma 3.6, we know
H(zx, \)#0, x € 02 NkerL.
By the homotopy of degree, we have
deg(JQN |xerr, 2 NkerL, 0)
= deg(0H( -, 0), 2NkerL, 0)
=deg(0H(-, 1), 2NkerL, 0)
= deg(0I, 2 NkerL, 0)
# 0.

By Lemma 2.4, we can get that Lz = Nz has at least one solution on domZL N §2. That is,
(2.1) has at least one solution in X. Then we know (1.1) has at least one solution in X.

The proof of Theorem 3.1 is completed.

4 Example

Let us consider the following coupled system of fractional p-Laplacian differential equations
at resonance
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NO. 1
3 5 1 1
DL 65Dl u(®) = £i(t, u(t), v(t), DEu(t), DEo(t),  0<t<1,
3 5 1 1
D02+¢2(D04+’U(t)) = f2(t7 U(t), U(t)a D02+U(t), D()2+U(t))7 0<t< la
2 1 1
u(0) = D§u(0) =0, u(l)= §u<1—6) + 2u(8—1),
1 5 1 5 1 4.1
D 63D (1)) = Dy s (D7) ). (1)
N V2 /1y V3 1y VBl
o(0) = D§o(0) =0, v(1) = Fo(g) +3o(5) + Fo(55)
1 5 1 5 1
Dy 62(Dg,v(1)) = V3D, 6o (D u(5) )
where
3 I —a-p.2, bt . t o 1
fi(t, x1, z2, 3, x4) =t cos(z122) + 3—26 x] + o1 sinzo + 6;133 + §x4,

1 1 t
fa(t, x1, To, T3,24) = VEsin(zize) + — costsin(x?) + 3726—(1—:&)@ + Za:g + gL

16
. 5 3
Corresponding to BVP (1.1), we have that m =n =1, m; =3, n; =2, a = 7 8= 2
1 1 1 1 1 1 2 V2
v 27 47 €1 167 €2 817 1 4a 01 97 01 257 1 37 2 ) 1 3
V3 V5 1 1
By=—,B3=— == == =1 — /3. Tak
2 3 3 3,51 4,771 g,al , b \/§ ake
1 t t t
=1¢3 = (-1 = hy = — ——
Cl ) 1[11 326 , L1 64’ 1 63 g1 37
1 1 t t
— — f— _(l_t) = — = —
G =t o 16 cost, P2 = o€ , he v 2=
Then
14 €871 2 p1—1
[= = 5n ( ) INCESI
T \Tla+1) [1llr +T(B + DA
2 2 1 1
= 41 z
<3x (1.133) X gy T1330 x5
~ 0.434 < 1.329%F<Z)
=T'(B+1),
1+nl-t 2 pa—1
k= m ( ) INCES!
= (ra ) el £ TG+ Dlgel
1 1
4 (7) ~ 41 2~ 0.409 < 1.32
< 4 x 1133 ><32+ 330><6 0.409 < 1.329
5
and

1+&0-H( st 2 p1+p2—2
(L+ 7D+ D leallal 2 ()™ ~oasa <1,

CB+1) - DTB+1)—k)én nm ' \a+1)
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O A0+ pri Dl 2ty
. o12< 1.

(TB+1) = DB+ 1) — k)l nm a+1)

By simple calculation, we can get that (H;)-(H4) and (Hs)(1) hold. By Theorem 3.1, we
obtain that the problem (4.1) has at least one solution.
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