COMMUNICATIONS IN MATHEMATICAL RESEARCH 33(1)(2017), 53-63

The Value Distribution and Normality Criteria of a Class of Meromorphic Functions

Yang Qi

(School of Mathematics Science, Xinjiang Normal University, Urumqi, 830054)

Communicated by Ji You-qing

Abstract: In this article, we use Zalcman Lemma to investigate the normal family of meromorphic functions concerning shared values, which improves some earlier related results.

Key words: meromorphic function, shared value, normal criterion

2010 MR subject classification: 30D35, 30D45

Document code: A

Article ID: 1674-5647(2017)01-0053-11 **DOI:** 10.13447/j.1674-5647.2017.01.06

1 Introduction and Main Results

Let D be a domain of the open complex plane \mathbb{C} , f(z) and g(z) be two nonconstant meromorphic functions defined in D, a be a finite complex value. We say that f and g share a CM (or IM) in D provided that f - a and g - a have the same zeros counting (or ignoring) multiplicity in D. When $a = \infty$, the zeros of f - a means the poles of f (see [1]). It is assumed that the reader is familiar with the standard notations and the basic results of Nevanlinna's value-distribution theory (see [2]–[4]).

It is also interesting to find normality criteria from the point of view of shared values. In this area, Schwick^[5] first proved an interesting result that a family of meromorphic functions in a domain is normal if in which every function shares three distinct finite complex numbers with its first derivative. And later, more results about shared values' normality criteria related a Hayma conjecture of higher derivative have emerged (see [6]–[13]).

Lately, Chen^[14] proved the following theorems.

Theorem 1.1 Let D be a domain in \mathbf{C} and let \mathcal{F} be a family of meromorphic functions in D. Let $k, n, d \in \mathbf{N}_+$, $n \geq 3$, $d \geq \frac{k+1}{n-2}$ and a, b be two finite complex numbers with

Received date: Oct. 29, 2015.

Foundation item: The NSF (2016D01A059) of Xinjiang.

E-mail address: yangqi_8138@126.com (Yang Q).

 $a \neq 0$. Suppose that every $f \in \mathcal{F}$ has all its zeros of multiplicity at least k and all its poles of multiplicity at least d. If $f^{(k)} - af^n$ and $g^{(k)} - ag^n$ share the value b IM for every pair of functions (f, g) of \mathcal{F} , then \mathcal{F} is a normal family in D.

Theorem 1.2 Let D be a domain in \mathbb{C} and let \mathcal{F} be a family of meromorphic functions in D. Let $k \in \mathbb{N}_+$ and a, b be two finite complex numbers with $a \neq 0$. Suppose that every $f \in \mathcal{F}$ has all its zeros of multiplicity at least k+1 and all its poles of multiplicity at least k+2. If $f^{(k)} - af^2$ and $g^{(k)} - ag^2$ share the value b IM for every pair of functions (f, g) of \mathcal{F} , then \mathcal{F} is a normal family in D.

A natural problem arises: what can we say if $f^{(k)} - af^n$ in Theorem 1.1 is replaced by the $(f^{(k)})^m - af^n$? In this paper, we prove the following results.

Theorem 1.3 Let D be a domain in \mathbb{C} and let \mathcal{F} be a family of meromorphic functions in D. Let $k, n, m, d \in \mathbb{N}_+$, $n \geq m+2$, $d \geq \frac{mk+1}{n-m-1}$ and a, b be two finite complex numbers with $a \neq 0$. Suppose that every $f \in \mathcal{F}$ has all its zeros of multiplicity at least k+1 and all its poles of multiplicity at least d. If $(f^{(k)})^m - af^n$ and $(g^{(k)})^m - ag^n$ share the value b IM for every pair of functions (f, g) of \mathcal{F} , then \mathcal{F} is a normal family in D.

Theorem 1.4 Let D be a domain in \mathbb{C} and let \mathcal{F} be a family of meromorphic functions in D. Let $k, m \in \mathbb{N}_+$ and a, b be two finite complex numbers with $a \neq 0$. Suppose that every $f \in \mathcal{F}$ has all its zeros of multiplicity at least k+1 and all its poles of multiplicity at least mk+2. If $(f^{(k)})^m - af^{m+1}$ and $(g^{(k)})^m - ag^{m+1}$ share the value b IM for every pair of functions (f, g) of \mathcal{F} , then \mathcal{F} is a normal family in D.

2 Some Lemmas

Lemma 2.1^[15] Let \mathcal{F} be a family of meromorphic functions on the unit disc satisfying all zeros of functions in \mathcal{F} have multiplicity $\geq p$ and all poles of functions in \mathcal{F} have multiplicity $\geq q$. Let α be a real number satisfying $-q < \alpha < p$. Then \mathcal{F} is not normal at 0 if and only if there exist

- a) $a \ number \ 0 < r < 1;$
- b) points z_n with $|z_n| < r$;
- c) functions $f_n \in \mathcal{F}$;
- d) positive numbers $\rho_n \to 0$

such that $g_n(\zeta) := \rho_n^{-\alpha} f_n(z_n + \rho_n \zeta)$ converges spherically uniformly on each compact subset of \mathbf{C} to a non-constant meromorphic function $g(\zeta)$, whose all zeros have multiplicity $\geq p$ and all poles have multiplicity $\geq q$ and order is at most 2.

Lemma 2.2 Let f(z) be a meromorphic function such that $f^{(k)}(z) \not\equiv 0$ and $a \in \mathbb{C} \setminus \{0\}$, $k, m, n, d \in \mathbb{N}_+$ with $n \geq m+2$, $d \geq \frac{km+1}{n-m-1}$. If all zeros of f are of multiplicity at least

k+1 and all poles of f are of multiplicity at least d, then

$$T(r,f) \le \frac{1}{k+1} N\left(r, \frac{1}{f}\right) + \bar{N}\left(r, \frac{1}{(f^{(k)})^m - cf^n}\right) + S(r,f),$$
 (2.1)

where

$$S(r, f) = o(T(r, f))$$
 as $r \to \infty$,

possibly outside a set with finite linear measure.

Proof. Set

$$\Phi(z) := \frac{(f^{(k)}(z))^m}{cf^n(z)}.$$

Since $f^{(k)}(z) \not\equiv 0$, we have $\Phi(z) \not\equiv 0$. Thus

$$f^{n}(z) = \frac{(f^{(k)}(z))^{m}}{c\Phi(z)}. (2.2)$$

Hence

$$nm(r, f) = m(r, f^{n})$$

$$\leq m\left(r, \frac{(f^{(k)})^{m}}{\varPhi}\right) + \log^{+} \frac{1}{|c|}$$

$$\leq m\left(r, \frac{1}{\varPhi}\right) + m(r, (f^{(k)})^{m}) + \log^{+} \frac{1}{|c|}$$

$$\leq m\left(r, \frac{1}{\varPhi}\right) + mm\left(r, \frac{f^{(k)}}{f}\right) + mm(r, f) + \log^{+} \frac{1}{|c|}$$

So that

$$(n-m)m(r, f) \le m\left(r, \frac{1}{\Phi}\right) + mm\left(r, \frac{f^{(k)}}{f}\right) + \log^{+}\frac{1}{|c|}.$$
 (2.3)

On the other hand, (2.2) gives

$$\begin{split} nN(r, \ f) &\leq N(r, \ f^n) \\ &= N\Big(r, \ \frac{(f^{(k)})^m}{\varPhi}\Big) \\ &\leq mN(r, \ f^{(k)}) + N\Big(r, \ \frac{1}{\varPhi}\Big) - \bar{N}(r, \ \varPhi = f^{(k)} = 0), \end{split} \tag{2.4}$$

where $\bar{N}(r, \Phi = f^{(k)} = 0)$ denotes the counting function of zeros of both Φ and $f^{(k)}$. We obtain

$$nN(r, f) \le mN(r, f) + mk\bar{N}(r, f) + N\left(r, \frac{1}{\Phi}\right) - \bar{N}(r, \Phi = f^{(k)} = 0),$$

$$(n - m)N(r, f) \le mk\bar{N}(r, f) + N\left(r, \frac{1}{\Phi}\right) - \bar{N}(r, \Phi = f^{(k)} = 0). \tag{2.5}$$

By (2.2), we have

$$\bar{N}(r, \Phi) + \bar{N}\left(r, \frac{1}{\Phi}\right) \le \bar{N}\left(r, \frac{1}{f}\right) + \bar{N}(r, f) + \bar{N}(r, \Phi = f^{(k)} = 0).$$
 (2.6)

From (2.3)–(2.6), we obtain

$$(n-m)T(r, f) \le mk\bar{N}(r, f) + T\left(r, \frac{1}{\Phi}\right) - \bar{N}(r, \Phi = f^{(k)} = 0) + S(r, f)$$

$$\le mk\bar{N}(r, f) + T(r, \Phi) - \bar{N}(r, \Phi = f^{(k)} = 0) + S(r, f)$$

$$\leq mk\bar{N}(r, f) + \bar{N}\left(r, \frac{1}{\varPhi}\right) + \bar{N}(r, \varPhi) + \bar{N}\left(r, \frac{1}{\varPhi-1}\right) \\ - \bar{N}(r, \varPhi = f^{(k)} = 0) + S(r, f) \\ \leq (mk+1)\bar{N}(r, f) + \bar{N}\left(r, \frac{1}{f}\right) + \bar{N}\left(r, \frac{1}{(f^{(k)})^m - cf^n}\right) + S(r, f).$$

Since all zeros and poles of f are multiplicatives at least k and d respectively, we get

$$\begin{split} \bar{N}(r,\ f) & \leq \frac{1}{d} N(r,\ f) \leq \frac{1}{d} T(r,\ f) \leq \frac{n-m-1}{km+1} T(r,\ f), \\ \bar{N}\Big(r,\ \frac{1}{f}\big) & \leq \frac{1}{k+1} N\Big(r,\ \frac{1}{f}\Big). \end{split}$$

So that

$$T(r,\ f) \leq \frac{1}{k+1} N\Big(r,\ \frac{1}{f}\Big) + \bar{N}\Big(r,\ \frac{1}{(f^{(k)})^m - cf^n}\Big) + S(r,\ f).$$

This completes the proof of Lemma 2.2.

Lemma 2.3 Let f(z) be a nonconstant rational function such that $f^{(k)}(z) \not\equiv 0$. Let $a \in \mathbb{C} \setminus \{0\}$, and $k, n, m, d \in \mathbb{N}_+$ with $n \geq m+2$ and $d \geq \frac{mk+1}{n-m-1}$. If $f \neq 0$ and all poles of f are of multiplicity at least d, then $(f^{(k)})^m - af^n$ has at least two distinct zeros.

Proof. Suppose to the contrary that $(f^{(k)})^m - af^n$ has at most one zero. Since $f \neq 0$, we get f is a rational but not a polynomial.

Case 1. If $(f^{(k)})^m - af^n$ has only zero z_0 with multiplicity l, then we set

$$f(z) = \frac{A}{(z - z_1)^{\beta_1} (z - z_2)^{\beta_2} \cdots (z - z_t)^{\beta_t}},$$
(2.7)

where A is a nonzero constant and

$$\beta_i \ge \frac{mk+1}{n-m-1}, \quad i = 1, 2, \dots, t.$$

For the sake of simplicity, we denote

$$\beta_1 + \beta_2 + \dots + \beta_t = q.$$

From (2.7), we have

$$f^{(k)} = \frac{g(z)}{(z - z_1)^{\beta_1 + k} (z - z_2)^{\beta_2 + k} \cdots (z - z_t)^{\beta_t + k}},$$
 (2.8)

where g(z) is a polynomial such that $deg(g(z)) \le k(t-1)$

From (2.7) and (2.8), we get

$$\frac{g^{m}(z)}{(z-z_{1})^{m(\beta_{1}+k)}(z-z_{2})^{m(\beta_{2}+k)}\cdots(z-z_{t})^{m(\beta_{t}+k)}}
-\frac{aA^{n}}{(z-z_{1})^{n\beta_{1}}(z-z_{2})^{n\beta_{2}}\cdots(z-z_{t})^{n\beta_{t}}}
= \frac{[g^{m}(z)(z-z_{1})^{(n-m)\beta_{1}-mk}(z-z_{2})^{(n-m)\beta_{2}-mk}\cdots(z-z_{t})^{(n-m)\beta_{t}-mk}-aA^{n}]}{(z-z_{1})^{n\beta_{1}}(z-z_{2})^{n\beta_{2}}\cdots(z-z_{t})^{n\beta_{t}}}$$

By the assumption that $(f^{(k)})^m - af^n$ has exactly one zero z_0 with multiply l, we have

$$(f^{(k)})^m - af^n = \frac{C(z - z_0)^l}{(z - z_1)^{n\beta_1} (z - z_2)^{n\beta_2} \cdots (z - z_t)^{n\beta_t}},$$
(2.9)

where C is a nonzero constant. Thus

$$C(z-z_0)^l$$

$$\equiv g^{m}(z)(z-z_{1})^{(n-m)\beta_{1}-mk}(z-z_{2})^{(n-m)\beta_{2}-mk}\cdots(z-z_{t})^{(n-m)\beta_{t}-mk}-aA^{n}.$$
 (2.10)

Differentiating (2.10), we obtain

$$Cl(z-z_0)^{l-1} \equiv (z-z_1)^{(n-m)\beta_1 - mk - 1} \cdots (z-z_t)^{(n-m)\beta_t - mk - 1}$$

$$\cdot \left[mg^{m-1}g'(z)(z-z_1) \cdots (z-z_t) + g^m(z) \sum_{i=1}^t ((n-m)\beta_i - mk) \prod_{j=1, j \neq i}^t (z-z_j) \right].$$

For the sake of simplicity, we denote

$$g_{1}(z) = Cl(z - z_{0})^{l-1},$$

$$g_{2}(z) = (z - z_{1})^{(n-m)\beta_{1} - mk - 1} \cdots (z - z_{t})^{(n-m)\beta_{t} - mk - 1}$$

$$\cdot \left[mg^{m-1}g'(z)(z - z_{1}) \cdots (z - z_{t}) + g^{m}(z) \sum_{i=1}^{t} ((n-m)\beta_{i} - mk) \prod_{j=1, j \neq i}^{t} (z - z_{j}) \right].$$

Hence

$$g_1(z) \equiv g_2(z).$$

Since $(n-m)\beta_i - mk - 1 > 0$, we have

$$q_2(z_i) = 0.$$

But $g_1(z_i) \neq 0$ $(i = 1, 2, \dots, t)$, a contradiction.

Case 2. If $(f^{(k)})^m - af^n$ has no zeros, then l = 0 for (2.9). We have

$$(f^{(k)})^m - af^n = \frac{C}{(z - z_1)^{n\beta_1}(z - z_2)^{n\beta_2} \cdots (z - z_t)^{n\beta_t}},$$

where C is a nonzero constant. Thus

$$C \equiv g^{m}(z)(z-z_{1})^{(n-m)\beta_{1}-mk}(z-z_{2})^{(n-m)\beta_{2}-mk}\cdots(z-z_{t})^{(n-m)\beta_{t}-mk}-aA^{n},$$

i.e.,

$$g^{m}(z)(z-z_{1})^{(n-m)\beta_{1}-mk}(z-z_{2})^{(n-m)\beta_{2}-mk}\cdots(z-z_{t})^{(n-m)\beta_{t}-mk}\equiv C+aA^{n}.$$

Obviously, $g^m(z)(z-z_1)^{(n-m)\beta_1-mk}(z-z_2)^{(n-m)\beta_2-mk}\cdots(z-z_t)^{(n-m)\beta_t-mk}$ is not a constant, a contradiction.

This completes the proof of Lemma 2.3.

Lemma 2.4 Let f(z) be a nonconstant rational function and Let $a \in \mathbb{C} \setminus \{0\}$, and $k, n, m, d \in \mathbb{N}_+$ with $n \geq m+2$ and $d \geq \frac{mk+1}{n-m-1}$. If all zeros of f are of multiplicity at least k+1 and all poles of f are of multiplicity at least d, then $(f^{(k)})^m - af^n$ has at least two distinct zeros.

Proof. Suppose to the contrary that $(f^{(k)})^m - af^n$ has at most one zero.

Case I. When f is a non-constant polynomial, noting that all zeros of f have multiplicity at least k+1, we know that $(f^{(k)})^m - af^n$ must have zeros. We claim that f has exactly one zero. Otherwise, combing with the conditions of Lemma 2.4, we can get $(f^{(k)})^m - af^n$ has at least two zeros, which contradicts with our assumption.

Set

$$f(z) = B(z - z_0)^s,$$

where $s \ge k + 1$, B is a nonzero constant. Then

$$(f^{(k)}(z))^m - af^n(z) = B^m(z - z_0)^{(s-k)m} [s^m(s-1)^m \cdots (s-k+1)^m - aB^{n-m}(z-z_0)^{(n-m)s+mk}].$$
(2.11)

Since $(s-k)m \ge 1$, we obtain that $s^m(s-1)^m \cdots (s-k+1)^m - aB^{n-m}(z-z_0)^{(n-m)s+mk}$ has least one zero which is not z_0 from (2.11). Therefore, $(f^{(k)})^m - af^n$ has at least two distinct zeros, a contradiction.

Case II. When f is rational but not a polynomial, we consider two cases.

Case 1. Suppose that $(f^{(k)})^m - af^n$ has only zero z_0 with multiplicity at least l. If $f \neq 0$, by Lemma 2.3, we get a contradiction. So f has zeros, and then we can deduce that z_0 is the only zero of f. Otherwise, $(f^{(k)})^m - af^n$ has at least two distinct zeros, a contradiction.

We set

$$f(z) = \frac{A(z-z_0)^s}{(z-z_1)^{\beta_1}(z-z_2)^{\beta_2}\cdots(z-z_t)^{\beta_t}},$$
(2.12)

where A is a nonzero constant and $s \ge k+1$, $\beta_i \ge d \ge \frac{mk+1}{n-m-1}$ $(i=1,2,\cdots,t)$.

For the sake of simplicity, we denote

$$\beta_1 + \beta_2 + \dots + \beta_t = q.$$

From (2.12), we have

$$f^{(k)} = \frac{A(z-z_0)^{s-k}g(z)}{(z-z_1)^{\beta_1+k}(z-z_2)^{\beta_2+k}\cdots(z-z_t)^{\beta_t+k}},$$
(2.13)

where g(z) is a polynomial with $deg(g) \leq kt$.

From (2.12) and (2.13), we get

$$(f^{(k)})^m - af^n$$

$$= \frac{A^m(z-z_0)^{m(s-k)}g^m(z)}{(z-z_1)^{m(\beta_1+k)}(z-z_2)^{m(\beta_2+k)}\cdots(z-z_t)^{m(\beta_t+k)}} \\ - \frac{aA^n(z-z_0)^{ns}}{(z-z_1)^{n\beta_1}(z-z_2)^{n\beta_2}\cdots(z-z_t)^{n\beta_t}} \\ = \frac{A^m(z-z_0)^{m(s-k)}g^m(z)(z-z_1)^{(n-m)\beta_1-mk}(z-z_2)^{(n-m)\beta_2-mk}\cdots(z-z_t)^{(n-m)\beta_t-mk}}{(z-z_1)^{n\beta_1}(z-z_2)^{n\beta_2}\cdots(z-z_t)^{n\beta_t}} \\ - \frac{aA^n(z-z_0)^{ns}}{(z-z_1)^{n\beta_1}(z-z_2)^{n\beta_2}\cdots(z-z_t)^{n\beta_t}}.$$

By the assumption that $(f^{(k)})^m - af^n$ has exactly one zero z_0 with multiply l, we have

$$(f^{(k)})^m - af^n = \frac{B(z - z_0)^l}{(z - z_1)^{n\beta_1}(z - z_2)^{n\beta_2} \cdots (z - z_t)^{n\beta_t}},$$

where B is a nonzero constant. Thus

$$B(z-z_0)^l \equiv A^m (z-z_0)^{m(s-k)} [g^m (z)(z-z_1)^{(n-m)\beta_1 - mk} (z-z_2)^{(n-m)\beta_2 - mk} \cdots (z-z_t)^{(n-m)\beta_t - mk} - aA^{n-m} (z-z_0)^{(n-m)s + mk}].$$
(2.14)

Case 1.1. If l > m(s-k), from (2.14), we can deduce that z_0 is a zero of $g^m(z)(z-z_1)^{(n-m)\beta_1-mk}(z-z_2)^{(n-m)\beta_2-mk}\cdots(z-z_t)^{(n-m)\beta_t-mk}$, a contradiction.

Case 1.2. If l = m(s - k), from (2.14), it follows that

$$g^{m}(z)(z-z_{1})^{(n-m)\beta_{1}-mk}(z-z_{2})^{(n-m)\beta_{2}-mk}\cdots$$

$$(z-z_{t})^{(n-m)\beta_{t}-mk}-aA^{n-m}(z-z_{0})^{(n-m)s+mk}\equiv \frac{B}{A^{m}}.$$
(2.15)

Differentiating (2.15), we have

$$g^{m-1}(z)(z-z_1)^{(n-m)\beta_1-mk-1}\cdots(z-z_t)^{(n-m)\beta_t-mk-1}$$

$$\cdot \left[mg'(z)(z-z_1)\cdots(z-z_t)+g(z)\sum_{i=1}^t((n-m)\beta_i-mk)\prod_{j=1,j\neq i}^t(z-z_j)\right]$$

$$\equiv a((n-m)s+mk)A^{n-m}(z-z_0)^{(n-m)s+mk-1}.$$

 $= u((n + m)s + m\kappa)H \qquad (z = z_0)$

For the sake of simplicity, we denote

$$g_1(z) = g^{m-1}(z)(z - z_1)^{(n-m)\beta_1 - mk - 1} \cdots (z - z_t)^{(n-m)\beta_t - mk - 1}$$
$$\cdot \left[mg'(z)(z - z_1) \cdots (z - z_t) + g(z) \sum_{i=1}^t ((n-m)\beta_i - mk) \prod_{j=1, j \neq i}^t (z - z_j) \right],$$

$$g_2(z) = a((n-m)s + mk)A^{n-m}(z - z_0)^{(n-m)s + mk - 1}.$$

Thus

$$g_1(z) \equiv g_2(z)$$
.

Since $(n-m)\beta_i - mk - 1 > 0$, we get

$$q_1(z_i) = 0$$

But $g_2(z_i) \neq 0$ $(i = 1, 2, \dots, t)$, a contradiction.

Case 2. If $(f^{(k)})^m - af^n$ has no zeros, then f has no zeros. It is a contradiction with Lemma 2.3.

This completes the proof of Lemma 2.4.

Lemma 2.5 Let f(z) be a transcendental meromorphic function, and let $k, m \in \mathbb{N}_+$ and $c \in \mathbb{C}\setminus\{0\}$. If all zeros of f are of multiplicity at least k+1 and all poles of f are of multiplicity at least mk+2, then $(f^{(k)})^m - cf^{m+1}$ has infinitely many zeros.

Proof. Suppose that $(f^{(k)})^m - cf^{m+1}$ has only finitely many zeros. Then

$$\bar{N}\Big(r,\ \frac{1}{(f^{(k)})^m-cf^{m+1}}\Big)=S(r,f).$$

Clearly, an arbitrary zero of f is a zero of $(f^{(k)})^m - cf^{m+1}$. Since all zeros of f are of multiplicity at least k+1, we can deduce that f has only finitely zeros, and so

$$\bar{N}\left(r, \frac{1}{f}\right) = O(\log r) = S(r, f).$$

Set

$$\Phi(z) := \frac{(f^{(k)}(z))^m}{cf^{m+1}(z)}.$$

Similarly with the proof of Lemma 2.2, we can get

$$T(r,f) \le (mk+1)\bar{N}(r, f) + \bar{N}\left(r, \frac{1}{f}\right) + \bar{N}\left(r, \frac{1}{(f^{(k)})^m - cf^{m+1}}\right) + S(r,f).$$

Since all poles of f are multiplicities at least mk + 2, we obtain

$$\bar{N}(r, f) \le \frac{1}{mk+2} N(r, f) \le \frac{1}{mk+2} T(r, f).$$

So that

$$T(r, f) \le (mk+2)\bar{N}\left(r, \frac{1}{f}\right) + (mk+2)\bar{N}\left(r, \frac{1}{(f^{(k)})^m - cf^{m+1}}\right) + S(r, f) = S(r, f).$$

This contradicts with f is transcendental.

This completes the proof of Lemma 2.5.

Similarly to the proofs of Lemmas 2.3 and 2.4, we can get the following Lemmas.

Lemma 2.6 Let f(z) be a nonconstant rational function such that $f^{(k)}(z) \not\equiv 0$, and $a \in \mathbb{C} \setminus \{0\}$, and $k, n, m, d \in \mathbb{N}_+$ with $n \geq m+1$ and $d \geq \frac{mk+2}{n-m}$. If $f \neq 0$ and all poles of f are of multiplicity at least d, then $(f^{(k)})^m - af^n$ has at least two distinct zeros.

Lemma 2.7 Let f(z) be a nonconstant rational function, and $a \in \mathbb{C} \setminus \{0\}$, and $k, n, m, d \in \mathbb{N}_+$ with $n \geq m+1$ and $d \geq \frac{mk+2}{n-m}$. If all zeros of f are of multiplicity at least k+1 and all poles of f are of multiplicity at least d, then $(f^{(k)})^m - af^n$ has at least two distinct zeros.

3 Proofs of Theorems

Proof Theorem 1.3 Suppose that \mathcal{F} is not normal in D. Then there exists at least one point z_0 such that \mathcal{F} is not normal at the point z_0 . Without loss of generality we assume that $z_0 = 0$. By Lemma 2.1, there exist points $z_j \to 0$, positive numbers $\rho_j \to 0$ and functions $f_j \in \mathcal{F}$ such that

$$g_j(\xi) = \rho_j^{\frac{mk}{n-m}} f_j(z_j + \rho_j \xi) \to g(\xi)$$
(3.1)

locally uniformly with respect to the spherical metric, where g is a non-constant meromorphic function in \mathbf{C} and whose poles and zeros are of multiplicity at least d and k+1, respectively. Moreover, the order of g is at most 2.

From (3.1) we know that

$$(g_j^{(k)}(\xi))^m = \rho_j^{\frac{mnk}{n-m}} (f_j^{(k)}(z_j + \rho_j \xi))^m \to (g^{(k)}(\xi))^m$$

and

$$(g_j^{(k)}(\xi))^m - ag_j^n(\xi) - \rho_j^{\frac{mnk}{n-m}}b = \rho_j^{\frac{mnk}{n-m}}[(f_j^{(k)}(z_j + \rho_j \xi))^m - af_j^n(z_j + \rho_j \xi) - b]$$

$$\to (g^{(k)}(\xi))^m - ag^n(\xi)$$
(3.2)

also locally uniformly with respect to the spherical metric.

If $(g^{(k)}(\xi))^m - ag^n(\xi) \equiv 0$, since all poles of g have multiplicity at least d, we have

$$\begin{split} nT(r,\ g) &= T(r,\ g^n) \\ &= T(r,\ (g^{(k)})^m) + O(1) \\ &= mm(r,\ g^{(k)}) + mN(r,\ g^{(k)}) + O(1) \\ &\leq mm(r,\ g) + mN(r,\ g) + mk\bar{N}(r,\ g) + S(r,\ g) \\ &\leq mT(r,\ g) + \frac{mk(n-m-1)}{mk+1}T(r,\ g) + S(r,\ g). \end{split}$$

Because $n-m>\frac{mk(n-m-1)}{mk+1}$, we know that $g(\xi)$ is a constant, a contradiction. So

$$(g^{(k)}(\xi))^m - ag^n(\xi) \not\equiv 0.$$

By Lemma 2.2, we have

$$T(r, g) \le \frac{1}{k+1} N\left(r, \frac{1}{g}\right) + \bar{N}\left(r, \frac{1}{(g^{(k)})^m - ag^n}\right) + S(r, g)$$

$$\le \frac{1}{k+1} T\left(r, \frac{1}{g}\right) + \bar{N}\left(r, \frac{1}{(g^{(k)})^m - ag^n}\right) + S(r, g).$$

Then

$$\left(1 - \frac{1}{k+1}\right)T(r, g) \le \bar{N}\left(r, \frac{1}{(g^{(k)})^m - ag^n}\right) + S(r, g),$$

i.e.,

$$T(r, g) \le \left(1 + \frac{1}{k}\right) \bar{N}\left(r, \frac{1}{(g^{(k)})^m - aq^n}\right) + S(r, g).$$
 (3.3)

If $(g^{(k)}(\xi))^m - ag^n(\xi) \neq 0$, then (3.3) gives that $g(\xi)$ is also a constant. Hence, $(g^{(k)}(\xi))^m - ag^n(\xi)$ is a non-constant meromorphic function and has at least one zero.

Next we prove that $(g^{(k)}(\xi))^m - ag^n(\xi)$ has just a unique zero. Suppose to the contrary, let ξ_0 and ξ_0^* be two distinct zeros of $(g^{(k)}(\xi))^m - ag^n(\xi)$, and choose $\delta(>0)$ small enough such that

$$D(\xi_0, \delta) \cap D(\xi_0^*, \delta) = \emptyset,$$

where

$$D(\xi_0, \ \delta) = \{\xi : |\xi - \xi_0| < \delta\}, \qquad D(\xi_0^*, \ \delta) = \{\xi : |\xi - \xi_0^*| < \delta\}.$$

From (3.2) and by Hurwitz's theorem, there exist points $\xi_j \in D(\xi_0, \delta)$, $\xi_j^* \in D(\xi_0^*, \delta)$ such that for sufficiently large j,

$$(f_j^{(k)}(z_j + \rho_j \xi_j))^m - a f_j^n(z_j + \rho_j \xi_j) - b = 0,$$

$$(f_j^{(k)}(z_j + \rho_j \xi_j^*))^m - a f_j^n(z_j + \rho_j \xi_j^*) - b = 0.$$

By the hypothesis that for each pair of functions f and g in \mathcal{F} , $(f^{(k)}(\xi))^m - af^n(\xi)$ and $(g^{(k)}(\xi))^m - ag^n(\xi)$ share b in D, we know that for any positive integer t,

$$(f_t^{(k)}(z_j + \rho_j \xi_j))^m - a f_t^n(z_j + \rho_j \xi_j) - b = 0,$$

$$(f_t^{(k)}(z_j + \rho_j \xi_j^*))^m - a f_t^n(z_j + \rho_j \xi_j^*) - b = 0.$$

Fix t, take $j \to \infty$, and note $z_j + \rho_j \xi_j \to 0$, $z_j + \rho_j \xi_j^* \to 0$, then $(f_t^{(k)}(0))^m - a f_t^n(0) - b = 0$.

Since the zeros of $(f_t^{(k)})^m - af_t^n - b$ has no accumulation point, one has

$$z_j + \rho_j \xi_j = 0,$$
 $z_j + \rho_j \xi_j^* = 0.$

Hence

$$\xi_j = -\frac{z_j}{\rho_j}, \qquad \xi_j^* = -\frac{z_j}{\rho_j}.$$

This contradicts with $\xi_j \in D(\xi_0, \delta)$, $\xi_j^* \in D(\xi_0^*, \delta)$ and $D(\xi_0, \delta) \cap D(\xi_0^*, \delta) = \emptyset$. So $(g^{(k)}(\xi))^m - ag^n(\xi)$ has just a unique zero, which can be denoted by ξ_0 .

Noting that g has poles and zeros of multiplicities at least d and k+1, respectively, (3.3) deduces that $g(\xi)$ is a rational function with degree at most 2. By Lemmas 2.3 and 2.4, this is a contradiction.

This completes the proof of Theorem 1.3.

Proof Theorem 1.4 Suppose that \mathcal{F} is not normal in D. Then there exists at least one point z_0 such that \mathcal{F} is not normal at the point z_0 . Without loss of generality we assume that $z_0 = 0$. By Lemma 2.1, there exist points $z_j \to 0$, positive numbers $\rho_j \to 0$ and functions $f_j \in \mathcal{F}$ such that

$$g_j(\xi) = \rho_j^{km} f_j(z_j + \rho_j \xi) \to g(\xi)$$
(3.4)

locally uniformly with respect to the spherical metric, where g is a non-constant meromorphic function in \mathbf{C} and whose poles and zeros are of multiplicity at least mk + 2 and k + 1, respectively. Moreover, the order of g is at most 2.

From (3.4) we know that

$$g_i^{(k)}(\xi) = \rho_i^{k(m+1)} f_i^{(k)}(z_j + \rho_j \xi) \to g^{(k)}(\xi)$$

and

$$(g_j^{(k)}(\xi))^m - ag_j^{m+1}(\xi) - \rho_j^{km(m+1)}b$$

$$= \rho_j^{km(m+1)}((f_j^{(k)}(z_j + \rho_j \xi))^m - af_j^{m+1}(z_j + \rho_j \xi) - b)$$

$$\to (g^{(k)}(\xi))^m - ag^{m+1}(\xi)$$

also locally uniformly with respect to the spherical metric.

If $(g^{(k)}(\xi))^m - ag^{m+1}(\xi) \equiv 0$, since all poles of g have multiplicity at least mk + 2, we can deduce that $g(\xi)$ is an entire function easily. Thus

$$\begin{split} (m+1)T(r,\ g) &= T(r,\ g^{m+1}) \\ &= T(r,\ (g^{(k)})^m) + O(1) \\ &= mm(r,\ g^{(k)}) + mN(r,\ g^{(k)}) + O(1) \\ &\leq mm(r,\ g) + mN(r,\ g) + mk\bar{N}(r,\ g) + S(r,\ g) \\ &\leq mT(r,\ g) + S(r,\ g). \end{split}$$

Therefore, $g(\xi)$ is a constant, a contradiction. So

$$(g^{(k)}(\xi))^m - ag^{m+1}(\xi) \not\equiv 0.$$

By Lemmas 2.5, 2.6 and 2.7, $(g^{(k)}(\xi))^m - ag^{m+1}(\xi)$ has at least two distinct zeros. Proceeding as in the later proof of Theorem 1.3, we will get a contradiction. The proof is completed.

References

- Yang C C, Yi H X. Uniqueness Theory of Meromorphic Functions. Beijing: Science Press, 2003.
- [2] Gu Y X, Pang X C, Fang M L. Theory of Normal Family and Its Applications (in Chinese). Beijing: Science Press, 2007.
- [3] Hayman W H. Meromorphic Functions. Oxford: Clarendon Press, 1964.
- [4] Yang L. Value Distribution Theory. Berlin: Springer-Verlag, 1993, 38: 2125–2128.
- [5] Schwick W. Normality criteria for families of meromorphic function. J. Anal. Math., 1989, 52: 241–289.
- [6] Li X J. Proof of Hayman's conjecture on normal families (in Chinese). Sci. China, 1985, 28(6): 596-603.
- [7] Pang X C. On normal criterion of meromorphic functions. Sci. China Ser. A, 1990, 33(5): 521-527.
- [8] Pang X C, Zalcman L. Normal families and shared values. Bull. London Math. Soc., 2000, 32: 325–331.
- [9] Pang X C, Zalcman L. Normality and shared values. Ark. Mat., 2000, 38: 171-182.
- [10] Qiu H L, Liu D, Fang M L. Hayman's question concerning normal families and shared values (in Chinese). Sci. China Ser. A, 2012, 42(6): 603–610.
- [11] Yuan W J, Li Z R, Lin J M. Some normality criteria of function families concerning shared values. *Math. Meth. Appl. Sci.*, 2012, **35**(17): 2095–2100.
- [12] Yuan W J, Wei J J, Lin J M. A Note on Normal Families of Meromorphic Functions Concerning Shared Values. Discrete Dyn. Nat. Soc., 2011, doi: 10.1155/2011/463287.
- [13] Zhang Q C. Normal families of meromorphic functions concerning shared values. J. Math. Anal. Appl., 2008, 338: 545–551.
- [14] Chen W, Yuan W J, Tian H G. Normal families of meromorphic functions concerning higher derivative and shared values. Abstr. Appl. Anal., 2013, 10: 1–8.
- [15] Zalcman L. Normal families: new perspectives. Bull. Amer. Math. Soc., 1998, 35(3): 215–230.