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1 Introduction and Main Results

Let D be a domain of the open complex plane C, f(z) and g(z) be two nonconstant mero-

morphic functions defined in D, a be a finite complex value. We say that f and g share a

CM (or IM) in D provided that f − a and g − a have the same zeros counting (or ignoring)

multiplicity in D. When a = ∞, the zeros of f − a means the poles of f (see [1]). It is

assumed that the reader is familiar with the standard notations and the basic results of

Nevanlinna’s value-distribution theory (see [2]–[4]).

It is also interesting to find normality criteria from the point of view of shared values. In

this area, Schwick[5] first proved an interesting result that a family of meromorphic functions

in a domain is normal if in which every function shares three distinct finite complex numbers

with its first derivative. And later, more results about shared values’ normality criteria

related a Hayma conjecture of higher derivative have emerged (see [6]–[13]).

Lately, Chen[14] proved the following theorems.

Theorem 1.1 Let D be a domain in C and let F be a family of meromorphic functions

in D. Let k, n, d ∈ N+, n ≥ 3, d ≥ k + 1

n− 2
and a, b be two finite complex numbers with
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a ̸= 0. Suppose that every f ∈ F has all its zeros of multiplicity at least k and all its poles

of multiplicity at least d. If f (k) − afn and g(k) − agn share the value b IM for every pair of

functions (f, g) of F , then F is a normal family in D.

Theorem 1.2 Let D be a domain in C and let F be a family of meromorphic functions

in D. Let k ∈ N+ and a, b be two finite complex numbers with a ̸= 0. Suppose that every

f ∈ F has all its zeros of multiplicity at least k + 1 and all its poles of multiplicity at least

k + 2. If f (k) − af2 and g(k) − ag2 share the value b IM for every pair of functions (f, g) of

F , then F is a normal family in D.

A natural problem arises: what can we say if f (k) − afn in Theorem 1.1 is replaced by

the (f (k))m − afn? In this paper, we prove the following results.

Theorem 1.3 Let D be a domain in C and let F be a family of meromorphic functions

in D. Let k, n,m, d ∈ N+, n ≥ m+2, d ≥ mk + 1

n−m− 1
and a, b be two finite complex numbers

with a ̸= 0. Suppose that every f ∈ F has all its zeros of multiplicity at least k + 1 and all

its poles of multiplicity at least d. If (f (k))m − afn and (g(k))m − agn share the value b IM

for every pair of functions (f, g) of F , then F is a normal family in D.

Theorem 1.4 Let D be a domain in C and let F be a family of meromorphic functions

in D. Let k,m ∈ N+ and a, b be two finite complex numbers with a ̸= 0. Suppose that every

f ∈ F has all its zeros of multiplicity at least k + 1 and all its poles of multiplicity at least

mk + 2. If (f (k))m − afm+1 and (g(k))m − agm+1 share the value b IM for every pair of

functions (f, g) of F , then F is a normal family in D.

2 Some Lemmas

Lemma 2.1 [15] Let F be a family of meromorphic functions on the unit disc satisfying all

zeros of functions in F have multiplicity ≥ p and all poles of functions in F have multiplicity

≥ q. Let α be a real number satisfying −q < α < p. Then F is not normal at 0 if and only

if there exist

a) a number 0 < r < 1;

b) points zn with |zn| < r;

c) functions fn ∈ F ;

d) positive numbers ρn → 0

such that gn(ζ) := ρ−α
n fn(zn + ρnζ) converges spherically uniformly on each compact subset

of C to a non-constant meromorphic function g(ζ), whose all zeros have multiplicity ≥ p

and all poles have multiplicity ≥ q and order is at most 2.

Lemma 2.2 Let f(z) be a meromorphic function such that f (k)(z) ̸≡ 0 and a ∈ C\{0},

k,m, n, d ∈ N+ with n ≥ m+ 2, d ≥ km+ 1

n−m− 1
. If all zeros of f are of multiplicity at least
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k + 1 and all poles of f are of multiplicity at least d, then

T (r, f) ≤ 1

k + 1
N
(
r,

1

f

)
+ N̄

(
r,

1

(f (k))m − cfn

)
+ S(r, f), (2.1)

where

S(r, f) = o(T (r, f)) as r → ∞,

possibly outside a set with finite linear measure.

Proof. Set

Φ(z) :=
(f (k)(z))m

cfn(z)
.

Since f (k)(z) ̸≡ 0, we have Φ(z) ̸≡ 0. Thus

fn(z) =
(f (k)(z))m

cΦ(z)
. (2.2)

Hence

nm(r, f) = m(r, fn)

≤ m
(
r,

(f (k))m

Φ

)
+ log+

1

|c|

≤ m
(
r,

1

Φ

)
+m(r, (f (k))m) + log+

1

|c|

≤ m
(
r,

1

Φ

)
+mm

(
r,

f (k)

f

)
+mm(r, f) + log+

1

|c|
.

So that

(n−m)m(r, f) ≤ m
(
r,

1

Φ

)
+mm

(
r,

f (k)

f

)
+ log+

1

|c|
. (2.3)

On the other hand, (2.2) gives

nN(r, f) ≤ N(r, fn)

= N
(
r,

(f (k))m

Φ

)
≤ mN(r, f (k)) +N

(
r,

1

Φ

)
− N̄(r, Φ = f (k) = 0), (2.4)

where N̄(r, Φ = f (k) = 0) denotes the counting function of zeros of both Φ and f (k). We

obtain

nN(r, f) ≤ mN(r, f) +mkN̄(r, f) +N
(
r,

1

Φ

)
− N̄(r, Φ = f (k) = 0),

(n−m)N(r, f) ≤ mkN̄(r, f) +N
(
r,

1

Φ

)
− N̄(r, Φ = f (k) = 0). (2.5)

By (2.2), we have

N̄(r, Φ) + N̄
(
r,

1

Φ

)
≤ N̄

(
r,

1

f

)
+ N̄(r, f) + N̄(r, Φ = f (k) = 0). (2.6)

From (2.3)–(2.6), we obtain

(n−m)T (r, f) ≤ mkN̄(r, f) + T
(
r,

1

Φ

)
− N̄(r, Φ = f (k) = 0) + S(r, f)

≤ mkN̄(r, f) + T (r, Φ)− N̄(r, Φ = f (k) = 0) + S(r, f)
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≤ mkN̄(r, f) + N̄
(
r,

1

Φ

)
+ N̄(r, Φ) + N̄

(
r,

1

Φ − 1

)
− N̄(r, Φ = f (k) = 0) + S(r, f)

≤ (mk + 1)N̄(r, f) + N̄
(
r,

1

f

)
+ N̄

(
r,

1

(f (k))m − cfn

)
+ S(r, f).

Since all zeros and poles of f are multiplicities at least k and d respectively, we get

N̄(r, f) ≤ 1

d
N(r, f) ≤ 1

d
T (r, f) ≤ n−m− 1

km+ 1
T (r, f),

N̄
(
r,

1

f
) ≤ 1

k + 1
N
(
r,

1

f

)
.

So that

T (r, f) ≤ 1

k + 1
N
(
r,

1

f

)
+ N̄

(
r,

1

(f (k))m − cfn

)
+ S(r, f).

This completes the proof of Lemma 2.2.

Lemma 2.3 Let f(z) be a nonconstant rational function such that f (k)(z) ̸≡ 0. Let a ∈

C\{0}, and k, n,m, d ∈ N+ with n ≥ m+ 2 and d ≥ mk + 1

n−m− 1
. If f ̸= 0 and all poles of f

are of multiplicity at least d, then (f (k))m − afn has at least two distinct zeros.

Proof. Suppose to the contrary that (f (k))m − afn has at most one zero. Since f ̸= 0, we

get f is a rational but not a polynomial.

Case 1. If (f (k))m − afn has only zero z0 with multiplicity l, then we set

f(z) =
A

(z − z1)β1(z − z2)β2 · · · (z − zt)βt
, (2.7)

where A is a nonzero constant and

βi ≥
mk + 1

n−m− 1
, i = 1, 2, · · · , t.

For the sake of simplicity, we denote

β1 + β2 + · · ·+ βt = q.

From (2.7), we have

f (k) =
g(z)

(z − z1)β1+k(z − z2)β2+k · · · (z − zt)βt+k
, (2.8)

where g(z) is a polynomial such that deg(g(z)) ≤ k(t− 1).

From (2.7) and (2.8), we get

(f (k))m − afn

=
gm(z)

(z − z1)m(β1+k)(z − z2)m(β2+k) · · · (z − zt)m(βt+k)

− aAn

(z − z1)nβ1(z − z2)nβ2 · · · (z − zt)nβt

=
[gm(z)(z − z1)

(n−m)β1−mk(z − z2)
(n−m)β2−mk · · · (z − zt)

(n−m)βt−mk − aAn]

(z − z1)nβ1(z − z2)nβ2 · · · (z − zt)nβt
.

By the assumption that (f (k))m − afn has exactly one zero z0 with multiply l, we have
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(f (k))m − afn =
C(z − z0)

l

(z − z1)nβ1(z − z2)nβ2 · · · (z − zt)nβt
, (2.9)

where C is a nonzero constant. Thus

C(z − z0)
l

≡ gm(z)(z − z1)
(n−m)β1−mk(z − z2)

(n−m)β2−mk · · · (z − zt)
(n−m)βt−mk − aAn. (2.10)

Differentiating (2.10), we obtain

Cl(z − z0)
l−1 ≡ (z − z1)

(n−m)β1−mk−1 · · · (z − zt)
(n−m)βt−mk−1

·
[
mgm−1g′(z)(z − z1) · · · (z − zt)

+ gm(z)
t∑

i=1

((n−m)βi −mk)
t∏

j=1,j ̸=i

(z − zj)

]
.

For the sake of simplicity, we denote

g1(z) = Cl(z − z0)
l−1,

g2(z) = (z − z1)
(n−m)β1−mk−1 · · · (z − zt)

(n−m)βt−mk−1

·
[
mgm−1g′(z)(z − z1) · · · (z − zt)

+ gm(z)

t∑
i=1

((n−m)βi −mk)

t∏
j=1,j ̸=i

(z − zj)

]
.

Hence

g1(z) ≡ g2(z).

Since (n−m)βi −mk − 1 > 0, we have

g2(zi) = 0.

But g1(zi) ̸= 0 (i = 1, 2, · · · , t), a contradiction.

Case 2. If (f (k))m − afn has no zeros, then l = 0 for (2.9). We have

(f (k))m − afn =
C

(z − z1)nβ1(z − z2)nβ2 · · · (z − zt)nβt
,

where C is a nonzero constant. Thus

C ≡ gm(z)(z − z1)
(n−m)β1−mk(z − z2)

(n−m)β2−mk · · · (z − zt)
(n−m)βt−mk − aAn,

i.e.,

gm(z)(z − z1)
(n−m)β1−mk(z − z2)

(n−m)β2−mk · · · (z − zt)
(n−m)βt−mk ≡ C + aAn.

Obviously, gm(z)(z− z1)
(n−m)β1−mk(z− z2)

(n−m)β2−mk · · · (z− zt)
(n−m)βt−mk is not a con-

stant, a contradiction.

This completes the proof of Lemma 2.3.

Lemma 2.4 Let f(z) be a nonconstant rational function and Let a ∈ C\{0}, and k, n,m,

d ∈ N+ with n ≥ m+2 and d ≥ mk + 1

n−m− 1
. If all zeros of f are of multiplicity at least k+1

and all poles of f are of multiplicity at least d, then (f (k))m − afn has at least two distinct

zeros.



58 COMM. MATH. RES. VOL. 33

Proof. Suppose to the contrary that (f (k))m − afn has at most one zero.

Case I. When f is a non-constant polynomial, noting that all zeros of f have multiplicity

at least k + 1, we know that (f (k))m − afn must have zeros. We claim that f has exactly

one zero. Otherwise, combing with the conditions of Lemma 2.4, we can get (f (k))m − afn

has at least two zeros, which contradicts with our assumption.

Set

f(z) = B(z − z0)
s,

where s ≥ k + 1, B is a nonzero constant. Then

(f (k)(z))m−afn(z) = Bm(z−z0)
(s−k)m[sm(s−1)m · · · (s−k+1)m−aBn−m(z−z0)

(n−m)s+mk].

(2.11)

Since (s− k)m ≥ 1, we obtain that sm(s− 1)m · · · (s− k+ 1)m − aBn−m(z − z0)
(n−m)s+mk

has least one zero which is not z0 from (2.11). Therefore, (f (k))m − afn has at least two

distinct zeros, a contradiction.

Case II. When f is rational but not a polynomial, we consider two cases.

Case 1. Suppose that (f (k))m−afn has only zero z0 with multiplicity at least l. If f ̸= 0,

by Lemma 2.3, we get a contradiction. So f has zeros, and then we can deduce that z0 is

the only zero of f . Otherwise, (f (k))m−afn has at least two distinct zeros, a contradiction.

We set

f(z) =
A(z − z0)

s

(z − z1)β1(z − z2)β2 · · · (z − zt)βt
, (2.12)

where A is a nonzero constant and s ≥ k + 1, βi ≥ d ≥ mk + 1

n−m− 1
(i = 1, 2, · · · , t).

For the sake of simplicity, we denote

β1 + β2 + · · ·+ βt = q.

From (2.12), we have

f (k) =
A(z − z0)

s−kg(z)

(z − z1)β1+k(z − z2)β2+k · · · (z − zt)βt+k
, (2.13)

where g(z) is a polynomial with deg(g) ≤ kt.

From (2.12) and (2.13), we get

(f (k))m − afn

=
Am(z − z0)

m(s−k)gm(z)

(z − z1)m(β1+k)(z − z2)m(β2+k) · · · (z − zt)m(βt+k)

− aAn(z − z0)
ns

(z − z1)nβ1(z − z2)nβ2 · · · (z − zt)nβt

=
Am(z − z0)

m(s−k)gm(z)(z − z1)
(n−m)β1−mk(z − z2)

(n−m)β2−mk · · · (z − zt)
(n−m)βt−mk

(z − z1)nβ1(z − z2)nβ2 · · · (z − zt)nβt

− aAn(z − z0)
ns

(z − z1)nβ1(z − z2)nβ2 · · · (z − zt)nβt
.

By the assumption that (f (k))m − afn has exactly one zero z0 with multiply l, we have

(f (k))m − afn =
B(z − z0)

l

(z − z1)nβ1(z − z2)nβ2 · · · (z − zt)nβt
,
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where B is a nonzero constant. Thus

B(z − z0)
l ≡ Am(z − z0)

m(s−k)[gm(z)(z − z1)
(n−m)β1−mk(z − z2)

(n−m)β2−mk · · ·

(z − zt)
(n−m)βt−mk − aAn−m(z − z0)

(n−m)s+mk]. (2.14)

Case 1.1. If l > m(s − k), from (2.14), we can deduce that z0 is a zero of gm(z)(z −
z1)

(n−m)β1−mk(z − z2)
(n−m)β2−mk · · · (z − zt)

(n−m)βt−mk, a contradiction.

Case 1.2. If l = m(s− k), from (2.14), it follows that

gm(z)(z − z1)
(n−m)β1−mk(z − z2)

(n−m)β2−mk · · ·

(z − zt)
(n−m)βt−mk − aAn−m(z − z0)

(n−m)s+mk ≡ B

Am
. (2.15)

Differentiating (2.15), we have

gm−1(z)(z − z1)
(n−m)β1−mk−1 · · · (z − zt)

(n−m)βt−mk−1

·
[
mg′(z)(z − z1) · · · (z − zt) + g(z)

t∑
i=1

((n−m)βi −mk)
t∏

j=1,j ̸=i

(z − zj)

]
≡ a((n−m)s+mk)An−m(z − z0)

(n−m)s+mk−1.

For the sake of simplicity, we denote

g1(z) = gm−1(z)(z − z1)
(n−m)β1−mk−1 · · · (z − zt)

(n−m)βt−mk−1

·
[
mg′(z)(z − z1) · · · (z − zt) + g(z)

t∑
i=1

((n−m)βi −mk)
t∏

j=1,j ̸=i

(z − zj)

]
,

g2(z) = a((n−m)s+mk)An−m(z − z0)
(n−m)s+mk−1.

Thus

g1(z) ≡ g2(z).

Since (n−m)βi −mk − 1 > 0, we get

g1(zi) = 0.

But g2(zi) ̸= 0 (i = 1, 2, · · · , t), a contradiction.

Case 2. If (f (k))m − afn has no zeros, then f has no zeros. It is a contradiction with

Lemma 2.3.

This completes the proof of Lemma 2.4.

Lemma 2.5 Let f(z) be a transcendental meromorphic function, and let k,m ∈ N+ and

c ∈ C\{0}. If all zeros of f are of multiplicity at least k + 1 and all poles of f are of

multiplicity at least mk + 2, then (f (k))m − cfm+1 has infinitely many zeros.

Proof. Suppose that (f (k))m − cfm+1 has only finitely many zeros. Then

N̄
(
r,

1

(f (k))m − cfm+1

)
= S(r, f).

Clearly, an arbitrary zero of f is a zero of (f (k))m − cfm+1. Since all zeros of f are of

multiplicity at least k + 1, we can deduce that f has only finitely zeros, and so

N̄
(
r,

1

f

)
= O(log r) = S(r, f).
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Set

Φ(z) :=
(f (k)(z))m

cfm+1(z)
.

Similarly with the proof of Lemma 2.2, we can get

T (r, f) ≤ (mk + 1)N̄(r, f) + N̄
(
r,

1

f

)
+ N̄

(
r,

1

(f (k))m − cfm+1

)
+ S(r, f).

Since all poles of f are multiplicities at least mk + 2, we obtain

N̄(r, f) ≤ 1

mk + 2
N(r, f) ≤ 1

mk + 2
T (r, f).

So that

T (r, f) ≤ (mk + 2)N̄
(
r,

1

f

)
+ (mk + 2)N̄

(
r,

1

(f (k))m − cfm+1

)
+ S(r, f) = S(r, f).

This contradicts with f is transcendental.

This completes the proof of Lemma 2.5.

Similarly to the proofs of Lemmas 2.3 and 2.4, we can get the following Lemmas.

Lemma 2.6 Let f(z) be a nonconstant rational function such that f (k)(z) ̸≡ 0, and

a ∈ C\{0}, and k, n,m, d ∈ N+ with n ≥ m+ 1 and d ≥ mk + 2

n−m
. If f ̸= 0 and all poles of

f are of multiplicity at least d, then (f (k))m − afn has at least two distinct zeros.

Lemma 2.7 Let f(z) be a nonconstant rational function, and a ∈ C\{0}, and k, n,m,

d ∈ N+ with n ≥ m+ 1 and d ≥ mk + 2

n−m
. If all zeros of f are of multiplicity at least k + 1

and all poles of f are of multiplicity at least d, then (f (k))m − afn has at least two distinct

zeros.

3 Proofs of Theorems

Proof Theorem 1.3 Suppose that F is not normal in D. Then there exists at least one

point z0 such that F is not normal at the point z0. Without loss of generality we assume that

z0 = 0. By Lemma 2.1, there exist points zj → 0, positive numbers ρj → 0 and functions

fj ∈ F such that

gj(ξ) = ρ
mk

n−m

j fj(zj + ρjξ) → g(ξ) (3.1)

locally uniformly with respect to the spherical metric, where g is a non-constant meromorphic

function in C and whose poles and zeros are of multiplicity at least d and k+1, respectively.

Moreover, the order of g is at most 2.

From (3.1) we know that

(g
(k)
j (ξ))m = ρ

mnk
n−m

j (f
(k)
j (zj + ρjξ))

m → (g(k)(ξ))m

and

(g
(k)
j (ξ))m − agnj (ξ)− ρ

mnk
n−m

j b = ρ
mnk
n−m

j [(f
(k)
j (zj + ρjξ))

m − afn
j (zj + ρjξ)− b]

→ (g(k)(ξ))m − agn(ξ) (3.2)
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also locally uniformly with respect to the spherical metric.

If (g(k)(ξ))m − agn(ξ) ≡ 0, since all poles of g have multiplicity at least d, we have

nT (r, g) = T (r, gn)

= T (r, (g(k))m) +O(1)

= mm(r, g(k)) +mN(r, g(k)) +O(1)

≤ mm(r, g) +mN(r, g) +mkN̄(r, g) + S(r, g)

≤ mT (r, g) +
mk(n−m− 1)

mk + 1
T (r, g) + S(r, g).

Because n−m >
mk(n−m− 1)

mk + 1
, we know that g(ξ) is a constant, a contradiction. So

(g(k)(ξ))m − agn(ξ) ̸≡ 0.

By Lemma 2.2, we have

T (r, g) ≤ 1

k + 1
N
(
r,

1

g

)
+ N̄

(
r,

1

(g(k))m − agn

)
+ S(r, g)

≤ 1

k + 1
T
(
r,

1

g

)
+ N̄

(
r,

1

(g(k))m − agn

)
+ S(r, g).

Then (
1− 1

k + 1

)
T (r, g) ≤ N̄

(
r,

1

(g(k))m − agn

)
+ S(r, g),

i.e.,

T (r, g) ≤
(
1 +

1

k

)
N̄
(
r,

1

(g(k))m − agn

)
+ S(r, g). (3.3)

If (g(k)(ξ))m − agn(ξ) ̸= 0, then (3.3) gives that g(ξ) is also a constant. Hence, (g(k)(ξ))m −
agn(ξ) is a non-constant meromorphic function and has at least one zero.

Next we prove that (g(k)(ξ))m − agn(ξ) has just a unique zero. Suppose to the contrary,

let ξ0 and ξ∗0 be two distinct zeros of (g(k)(ξ))m − agn(ξ), and choose δ(> 0) small enough

such that

D(ξ0, δ)
∩

D(ξ∗0 , δ) = ∅,

where

D(ξ0, δ) = {ξ : |ξ − ξ0| < δ}, D(ξ∗0 , δ) = {ξ : |ξ − ξ∗0 | < δ}.

From (3.2) and by Hurwitz’s theorem, there exist points ξj ∈ D(ξ0, δ), ξ∗j ∈ D(ξ∗0 , δ) such

that for sufficiently large j,

(f
(k)
j (zj + ρjξj))

m − afn
j (zj + ρjξj)− b = 0,

(f
(k)
j (zj + ρjξ

∗
j ))

m − afn
j (zj + ρjξ

∗
j )− b = 0.

By the hypothesis that for each pair of functions f and g in F , (f (k)(ξ))m − afn(ξ) and

(g(k)(ξ))m − agn(ξ) share b in D, we know that for any positive integer t,

(f
(k)
t (zj + ρjξj))

m − afn
t (zj + ρjξj)− b = 0,

(f
(k)
t (zj + ρjξ

∗
j ))

m − afn
t (zj + ρjξ

∗
j )− b = 0.
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Fix t, take j → ∞, and note zj + ρjξj → 0, zj + ρjξ
∗
j → 0, then

(f
(k)
t (0))m − afn

t (0)− b = 0.

Since the zeros of (f
(k)
t )m − afn

t − b has no accumulation point, one has

zj + ρjξj = 0, zj + ρjξ
∗
j = 0.

Hence

ξj = − zj
ρj

, ξ∗j = − zj
ρj

.

This contradicts with ξj ∈ D(ξ0, δ), ξ∗j ∈ D(ξ∗0 , δ) and D(ξ0, δ)
∩
D(ξ∗0 , δ) = ∅. So

(g(k)(ξ))m − agn(ξ) has just a unique zero, which can be denoted by ξ0.

Noting that g has poles and zeros of multiplicities at least d and k+1, respectively, (3.3)

deduces that g(ξ) is a rational function with degree at most 2. By Lemmas 2.3 and 2.4, this

is a contradiction.

This completes the proof of Theorem 1.3.

Proof Theorem 1.4 Suppose that F is not normal in D. Then there exists at least one

point z0 such that F is not normal at the point z0. Without loss of generality we assume that

z0 = 0. By Lemma 2.1, there exist points zj → 0, positive numbers ρj → 0 and functions

fj ∈ F such that

gj(ξ) = ρkmj fj(zj + ρjξ) → g(ξ) (3.4)

locally uniformly with respect to the spherical metric, where g is a non-constant meromorphic

function in C and whose poles and zeros are of multiplicity at least mk + 2 and k + 1,

respectively. Moreover, the order of g is at most 2.

From (3.4) we know that

g
(k)
j (ξ) = ρ

k(m+1)
j f

(k)
j (zj + ρjξ) → g(k)(ξ)

and

(g
(k)
j (ξ))m − agm+1

j (ξ)− ρ
km(m+1)
j b

= ρ
km(m+1)
j ((f

(k)
j (zj + ρjξ))

m − afm+1
j (zj + ρjξ)− b)

→ (g(k)(ξ))m − agm+1(ξ)

also locally uniformly with respect to the spherical metric.

If (g(k)(ξ))m − agm+1(ξ) ≡ 0, since all poles of g have multiplicity at least mk + 2, we

can deduce that g(ξ) is an entire function easily. Thus

(m+ 1)T (r, g) = T (r, gm+1)

= T (r, (g(k))m) +O(1)

= mm(r, g(k)) +mN(r, g(k)) +O(1)

≤ mm(r, g) +mN(r, g) +mkN̄(r, g) + S(r, g)

≤ mT (r, g) + S(r, g).

Therefore, g(ξ) is a constant, a contradiction. So

(g(k)(ξ))m − agm+1(ξ) ̸≡ 0.

By Lemmas 2.5, 2.6 and 2.7, (g(k)(ξ))m−agm+1(ξ) has at least two distinct zeros. Proceeding

as in the later proof of Theorem 1.3, we will get a contradiction. The proof is completed.
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