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1 Introduction and Main Results

Let D be a domain of the open complex plane C, f(z) and g(z) be two nonconstant mero-
morphic functions defined in D, a be a finite complex value. We say that f and g share a
CM (or IM) in D provided that f —a and g — a have the same zeros counting (or ignoring)
multiplicity in D. When a = oo, the zeros of f — a means the poles of f (see [1]). It is
assumed that the reader is familiar with the standard notations and the basic results of
Nevanlinna’s value-distribution theory (see [2]-[4]).

It is also interesting to find normality criteria from the point of view of shared values. In
this area, Schwick®! first proved an interesting result that a family of meromorphic functions
in a domain is normal if in which every function shares three distinct finite complex numbers
with its first derivative. And later, more results about shared values’ normality criteria
related a Hayma conjecture of higher derivative have emerged (see [6]-[13]).

Lately, Chen"¥ proved the following theorems.

Theorem 1.1  Let D be a domain in C and let F be a family of meromorphic functions
k+1

n —

in D. Let k,n,d € Ny, n > 3,d > and a, b be two finite complex numbers with
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a # 0. Suppose that every f € F has all its zeros of multiplicity at least k and all its poles
of multiplicity at least d. If f%) —af™ and g'*) — ag™ share the value b IM for every pair of
functions (f, g) of F, then F is a normal family in D.

Theorem 1.2  Let D be a domain in C and let F be a family of meromorphic functions
in D. Let k € N} and a, b be two finite complex numbers with a # 0. Suppose that every
f € F has all its zeros of multiplicity at least k + 1 and all its poles of multiplicity at least
E4+2.If f*) —af? and g'®) — ag? share the value b IM for every pair of functions (f, g) of
F, then F is a normal family in D.

A natural problem arises: what can we say if f*) — af™ in Theorem 1.1 is replaced by
the (f())™ — qf™? In this paper, we prove the following results.

Theorem 1.3  Let D be a domain in C and let F be a family of meromorphic functions
mk +1
n—m-—1
with a # 0. Suppose that every f € F has all its zeros of multiplicity at least k + 1 and all
its poles of multiplicity at least d. If (f*)™ — af™ and (g%))™ — ag™ share the value b IM

for every pair of functions (f, g) of F, then F is a normal family in D.

i D. Let k,n,m,d € Ny, n>m+2,d > and a, b be two finite complex numbers

Theorem 1.4  Let D be a domain in C and let F be a family of meromorphic functions
in D. Let k,m € Ny and a, b be two finite complex numbers with a # 0. Suppose that every
f € F has all its zeros of multiplicity at least k + 1 and all its poles of multiplicity at least
mk + 2. If (f*F)™ — af™t and (g%))™ — ag™*t share the value b IM for every pair of
functions (f, g) of F, then F is a normal family in D.

2 Some Lemmas

Lemma 2.1 Let F be a family of meromorphic functions on the unit disc satisfying all
zeros of functions in F have multiplicity > p and all poles of functions in F have multiplicity
> q. Let « be a real number satisfying —q < a < p. Then F is not normal at 0 if and only
if there exist

a) a number 0 <r < 1;

b) points z, with |z,| < r;

¢) functions f, € F;

d) positive numbers p, — 0
such that g, (C) = p,,® fn(zn + pnC) converges spherically uniformly on each compact subset
of C to a non-constant meromorphic function g(¢), whose all zeros have multiplicity > p
and all poles have multiplicity > q and order is at most 2.

Lemma 2.2  Let f(z) be a meromorphic function such that f*)(z) # 0 and a € C\{0},

k 1
k,m,n,de Ny withn>m+2,d> Ll If all zeros of f are of multiplicity at least
n—m—
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k+ 1 and all poles of f are of multiplicity at least d, then

1 1 — 1
T(r, f) < mN(ﬂ ?) +N<7“7 W) +5(r, f), (2.1)
where
S(rf) = oT(r f))  asr— oo,
possibly outside a set with finite linear measure.
Proof. Set
_ e
Since f*)(z) # 0, we have &(z) # 0. Thus
BN A C)
[H(z) = Teez) (2.2)
Hence
nm(r, f) = m(r, f")
(k)ym
< m(r7 (/ ¢) >+log+%
1 1
<m(r ) +mlr, (FO)) +log* A
1 &) 1
< m(r, 5) + mm(r, T) +mm(r, f)+logt o
So that "
(n—m)m(r, f) < m(r, %) —|—mm(r, fT) +1log™ |i| (2.3)
On the other hand, (2.2) gives
nN(r, f) < N(r, f")
_ (f*)m
=N (T’ 7z )
<mN(r, f®)+ N(r, é) —N(r, &= f® =0), (2.4)

where N(r, & = f*) = 0) denotes the counting function of zeros of both @ and f*). We
obtain

nN(r, f) <mN(r, f)+mkN(r, f)—|—N(T, %)—N(r, @:f(k):O),

(n—m)N(r, f) <mkN(r, f)+ N(r, é) —N(r, &= f® =0). (2.5)
By (2.2), we have
N(r, @) —|—Z\7(7‘, %) < N(r, %) +N(r, f)+N(r, &= f® =0). (2.6)

From (2.3)—(2.6), we obtain

(n—m)T(r, ) < mkN(r, ) +T(r, -

3) = NG, &= =0)+ 50, f)
<mkN(r, [)+T(r, )= N(r, &= f* =0)+5(r, f)
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< mkN(r, f)+N(r, é)JrN(ﬁ ¢)+N(T> ﬁ)
—N(r, &= f® =0)+S(r,f)

< (mk +1)N(r, f)—!—N(?“, %) —I—Z\_](r, M) + S(r, f).

Since all zeros and poles of f are multiplicities at least k and d respectively, we get

N(r, )< NG, f) < 2T f) < T(r, )

f) <
" e ;N(T, )

n—m-—1
km+1

So that

T(r, f) < kilN( })+N(r, M)+S(r, f).

This completes the proof of Lemma 2.2.

Lemma 2.3  Let f(2) be a nonconstant rational function such that f*)(z) # 0. Let a €
kE+1

C\{0}, and k,n,m,d € Ny withn >m+2 and d > u If f # 0 and all poles of f
-—m—

are of multiplicity at least d, then (f*)™ — af™ has at least two distinct zeros.

Proof. Suppose to the contrary that (f*))™ — af™ has at most one zero. Since f # 0, we
get f is a rational but not a polynomial.
Case 1. If (f(®))™ — af™ has only zero zy with multiplicity I, then we set
A

_ 2.7
f(Z) (Z*Zl)ﬁl(Z*Zg)ﬁQ"'(Z*Zt)ﬁt7 ( )

where A is a nonzero constant and 1

@'Z&, i=1,2,--,t
n—m-—1
For the sake of simplicity, we denote
Br+ P+ 4B =q.
From (2.7), we have

) = 9(2) (2.8)

(z — 21)P1Fk(z — 2
where ¢(z) is a polynomial such that deg(g(z)) < k(¢ — 1).
From (2.7) and (2.8), we get
(fE™ —af"
_ 9" (2)
(2 — 21) B (7 — 2)m(Bath) . (7 — z,)m(Beth)
aA™

(2= 21)"B1(z — 29)B2 (2 — 2B
[97(2) (2 — z1)(PmIBL=mk (5 _ g )(nm=m)Ba—mk (5 _ ) (nmm)Be—mk _ g A

(2 — 21)"P1 (2 — 20)P2 ... (2 — z4)"Br '

By the assumption that (f(k))m — af™ has exactly one zero zy with multiply [, we have
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m " C(z — 29)
(FO)" —afr = (z— 21)"P1 (2 _(Zz)nﬂz). "z = z)nBe
where C' is a nonzero constant. Thus
C(z — z)!
=g™(2)(z — 21)(”*m)ﬂ1*mk(z — 22)(”7"’”2*’”’C (2= zt)(”*m)ﬁ‘*mk —aA". (2.10)
Differentiating (2.10), we obtain

Cl(z _ Zo)l—l = (Z _ Zl)(n—m)ﬂl—mk—l . (Z _ Zt)(n—m)Bt—mk—l

- [mgmlg%z)(z a)e (2 —2)

t t
"D (- myps =) [T (-],
i=1 j=1,j#i
For the sake of simplicity, we denote

q1(z) = Cl(z — 20)171’

92(2) = (2 — zp)(PIBL—mAL

et =) )

. (Z _ Zt)(n—m)ﬁr,—mk—l

+gm(z)Z((n—m),Bi—mk) H (z—zj)].
i=1 j=1,j#i
Hence

91(2) = g2(2).
Since (n —m)B; —mk — 1 > 0, we have
gg(zi) = O

But g1(2;) #0 (i =1,2,--- ,t), a contradiction.

Case 2. If (f())™ — af™ has no zeros, then [ = 0 for (2.9). We have

C
(k)ym __ n _
()" —af (z — 20)"P1 (2 — 29)"P2 - (2 — 2,)nB0

where C' is a nonzero constant. Thus

C = gm(z)<z _ Zl)(nfm)ﬁlfmk(z _ Zz)(nfm)[ﬁfmk . (Z _ Zt)(nfm)Btfmk _ aAn7

i.e.
gm(Z)(Z N Zl)(nfm)ﬂ1fmk(z _ 22)(nfm)ﬁzfmk . (Z N Zt)(nfm)ﬂtfmk =C + aA"™.
Obviously, g™ (2)(z — z1)(P=mBi=mk (5 _ zp)(n=m)fz=—mhk (5 _ 5 )(n=m)Bi=mk j5 not a con-

stant, a contradiction.

This completes the proof of Lemma 2.3.

Lemma 2.4  Let f(z) be a nonconstant rational function and Let a € C\{0}, and k,n,m,

k+1
de Ny withn >m+2 andd > LJrl If all zeros of f are of multiplicity at least k+1
n—m—

and all poles of f are of multiplicity at least d, then (f(*))™ — af™ has at least two distinct

ZETO0S.
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Proof. Suppose to the contrary that (f*))™ — af" has at most one zero.

Case I. When f is a non-constant polynomial, noting that all zeros of f have multiplicity
at least k + 1, we know that (f(*))™ — af™ must have zeros. We claim that f has exactly
one zero. Otherwise, combing with the conditions of Lemma 2.4, we can get (f(F))™ — g f"
has at least two zeros, which contradicts with our assumption.

Set

f(z) = B(z — 20)°,

where s > k 4+ 1, B is a nonzero constant. Then

(fF )" —af™(z) = B™(2—2)CH ™M™ (s—1)™ - - (s—k+1)"—aB" " (z—zp) TSR]
(2.11)

Since (s — k)m > 1, we obtain that s™(s — 1)™--- (s — k +1)"™ — aB" ™ (z — z)(n—m)stmk

has least one zero which is not zy from (2.11). Therefore, (f*))™ — af™ has at least two

distinct zeros, a contradiction.

Case II. When f is rational but not a polynomial, we consider two cases.

Case 1. Suppose that (f(*))™ —af™ has only zero zo with multiplicity at least I. If f # 0,
by Lemma 2.3, we get a contradiction. So f has zeros, and then we can deduce that zq is
the only zero of f. Otherwise, (f(*))™ —af" has at least two distinct zeros, a contradiction.

We set

Az — z0)®
= 2.12
f(Z) (2—21)51(2;_2;2)52...(Z_Zt)ﬂt7 ( )
k+1
where A is a nonzero constant and s > k+ 1, 5; > d > L—i_l (t=1,2,---,1).
n—m—

For the sake of simplicity, we denote

Pr+Ba+-+b=q
From (2.12), we have
£ = Az — 20)**g(2)
(2= 21)P1Tk (2 — 2g)Bath .- (7 — 2,)Petk’
where g(z) is a polynomial with deg(g) < kt.
From (2.12) and (2.13), we get

(1"~ af"
A" (2 = 20)™ Mg (2)
(2 — 21)MB1HR) (3 — z9)m(Batk) ... (7 — z,)m(Betk)
aA"™(z — zg)™®
(2= 21)"B1(z — 29)"P2 - (2 — 2B
A™(z — 20)™=R) g (2) (2 — 21)(PmIBI=ME (5 Y(nmm)Bammk () (nmm)Be—mk
(2 — 21)"P1 (2 — 29)"P2 - (2 — 2,)"P:
aA"™(z — zg)™*
B (2 — 21)"P1 (2 — 29)P2 .. (2 — z4)"Be "
By the assumption that (f (k))m — af™ has exactly one zero zy with multiply [, we have
(f(k))m—afnz B(Z—zo)l

(Z — Zl)nﬁl (z — 22)”52 - (Z _ Zt)nﬁ,, ’

(2.13)
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where B is a nonzero constant. Thus
B(z — 20)t = A™(z — 20)™ R [gM(2) (2 — zp)(nTmIBLTmE (4 _ ) (nmm)femmk
(2 — 2¢)(PTIBTIE AN (5 — ) (TSR, (2.14)
Case 1.1. If I > m(s — k), from (2.14), we can deduce that zy is a zero of ¢"(z)(z —
Zl)("—m)ﬁl—mk(z — Z2)(n—m),32—mk sz = Zt)(”—m)ﬁfr_mk7 a contradiction.
Case 1.2. If I = m(s — k), from (2.14), it follows that
g™ (2)(z — Zl)(nfm)ﬁrmk(z _ ZZ)(ﬂ*ﬂt)Brmk e

(2 — 2¢) (WTMIBTIE _ g AN (5 — ) (PSR = %. (2.15)
leferentlatlng (2.15), we have
( )(Z )(n m)B1—mk—1 (Z o Zt)(nfm)ﬁtfmkfl

t t
- [mg'<z><z “a) )+ Y- migi - mk) T] G-
i=1 =150
=a((n—m)s+mk)A" "™ (z — zo)("_7”)s+mk_1.
For the sake of simplicity, we denote
g1(Z) _ gmfl(z)(z _ Zl)(nfm)ﬁlfmkfl . (Z _ Zt)(nfm)ﬁtfmkfl

-[mg’<z><z—zl>~-~<z—zt>+g<z>fj<<n— s mk) T —}

i=1 J=1.j#
g2(2) = a((n — m)s + mk) A" (z — zo)(PTIsEME—L
Thus
91(2) = g2(2).

Since (n —m)B; — mk — 1 > 0, we get

g1(2i) = 0.
But g2(2;) #0 (i = 1,2,--- ,t), a contradiction.
Case 2. If (fF))ym — af” has no zeros, then f has no zeros. It is a contradiction with

Lemma 2.3.

This completes the proof of Lemma 2.4.

Lemma 2.5  Let f(z) be a transcendental meromorphic function, and let k,m € N and
¢ € C\{0}. If all zeros of f are of multiplicity at least k + 1 and all poles of f are of
multiplicity at least mk + 2, then (f¥))™ — cf™*1 has infinitely many zeros.

Proof. Suppose that (f*))™ — c¢f™*1 has only finitely many zeros. Then
= 1
N (r (f@)m = cfm+1) =5 1)

Clearly, an arbitrary zero of f is a zero of (f(k))m —cf™*tl. Since all zeros of f are of

multiplicity at least k + 1, we can deduce that f has only finitely zeros, and so

N(r, %) = O(logr) = S(r, f).
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Set )
o) o UPCD™
cH(z)
Similarly with the proof of Lemma 2.2, we can get

_ _ 1 — 1
T(r, f) < (mk+ DN(r, f)+N(r, }) +N(r, (FOy et

Since all poles of f are multiplicities at least mk + 2, we obtain

N(r,f) < T(r, f)-

) + S(r, f).

mk + 2
So that

T(r, ) < (mk+ 2)]\7(7", %) + (mk + 2)]\7(7",

This contradicts with f is transcendental.

1
(fRym — ¢ fm+1

)+ S0.8) = S £).

This completes the proof of Lemma 2.5.
Similarly to the proofs of Lemmas 2.3 and 2.4, we can get the following Lemmas.

Lemma 2.6  Let f(z) be a nonconstant rational function such that f)(z) # 0, and
mk + 2
n—m’
f are of multiplicity at least d, then (f(k))m —af™ has at least two distinct zeros.

a € C\{0}, and k,n,m,d € Ny withn >m+1 and d >

If f # 0 and all poles of

Lemma 2.7  Let f(z) be a nonconstant rational function, and a € C\{0}, and k,n,m,
mk + 2
n—m

and all poles of f are of multiplicity at least d, then (f(*))™ — af™ has at least two distinct

ZET0S.

de Ny withn>m+1 andd > . If all zeros of f are of multiplicity at least k + 1

3 Proofs of Theorems

Proof Theorem 1.3 Suppose that F is not normal in D. Then there exists at least one
point zg such that F is not normal at the point zg. Without loss of generality we assume that
29 = 0. By Lemma 2.1, there exist points z; — 0, positive numbers p; — 0 and functions
f; € F such that

mk

_mk_
9;(§) = p; " fi(zj + pi&) — 9(&) (3.1)
locally uniformly with respect to the spherical metric, where g is a non-constant meromorphic
function in C and whose poles and zeros are of multiplicity at least d and k+ 1, respectively.
Moreover, the order of g is at most 2.
From (3.1) we know that
mnk.

(@)™ = o] (2 + 060" = (9 ()"
and

= (g™()™ — ag™ (&) (3.2)
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also locally uniformly with respect to the spherical metric.
If (g% (€))™ — ag™(€) = 0, since all poles of g have multiplicity at least d, we have
nT(r, g) =1T(r, g")
=T(r, (¢™)™) +0(1)
= mm(r, g% +mN(r, g% +0()
< mm(r, g) + mN(r, g) +mkN(r, g)+ S(r, g)
mk(n —m — 1)

<mT

T(r, g)+5S(r, g)-
mk(n —m —1)

Because n — m >
mk + 1

, we know that ¢g(§) is a constant, a contradiction. So

(g™ (&)™ — ag™(€) £ 0.

By Lemma 2.2, we have

T(r, g) < %HN(T, é) +N(T, M) +S(r, g)
< %HTG“, é) +N(r, M) +S(r, g).
Then
(1 - ﬁ)T(r, g) < N(r, M) +5(r, 9),
ie.,

70, g) < (1+2)8(r m) +5(r,9). (3.3)

If (g% (€))™ — ag™(€) # 0, then (3.3) gives that g(¢) is also a constant. Hence, (¢(®) (£))™ —
ag™(€) is a non-constant meromorphic function and has at least one zero.

Next we prove that (g% (€))™ — ag™(€) has just a unique zero. Suppose to the contrary,
let & and & be two distinct zeros of (g(®)(£))™ — ag™(€), and choose §(> 0) small enough
such that

D(&, 0)ND(&5, 6) =10,
where
D(o, 0) ={¢: € - &l <d},  D(&, 0) ={: € — &l <d}

From (3.2) and by Hurwitz’s theorem, there exist points &; € D(&o, 9), & € D(&5, 0) such
that for sufficiently large j,

(77 i ps))™ = af} (2 + piéy) = b =0,
(£ (2 + €)™ = aff (25 + pi&)) —b = 0.

By the hypothesis that for each pair of functions f and g in F, (f*) (&)™ — af™(£) and
(g™ (€))™ — ag™ (&) share b in D, we know that for any positive integer t,

(P8 (25 + pi€))™ — afl (2 + pi&;) — b =0,
(P8 5+ P €)™ — afi (21 + ps€5) — b =0.
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Fix t, take j — oo, and note z; + p;§; — 0, z; + p;§; — 0, then
k
(F )™ —afr(©0) —b=o0.

Since the zeros of ( ft(k))m — af{ — b has no accumulation point, one has
zj + pjfj =0, zj + /ij;-k =0.
Hence

Pj
This contradicts with & € D(&, 0), £ € D(&5, 0) and D(&, 0)(D(&5, 9) = 0. So
(g™ (€)™ — ag™(€) has just a unique zero, which can be denoted by &.

Noting that g has poles and zeros of multiplicities at least d and k+ 1, respectively, (3.3)
deduces that ¢g(£) is a rational function with degree at most 2. By Lemmas 2.3 and 2.4, this
is a contradiction.

This completes the proof of Theorem 1.3.

Proof Theorem 1.4 Suppose that F is not normal in D. Then there exists at least one
point zg such that F is not normal at the point z5. Without loss of generality we assume that
29 = 0. By Lemma 2.1, there exist points z; — 0, positive numbers p; — 0 and functions
f; € F such that

95(8) = p§™ £ (z; + pi &) —= 9(&) (3.4)
locally uniformly with respect to the spherical metric, where g is a non-constant meromorphic
function in C and whose poles and zeros are of multiplicity at least mk + 2 and k + 1,

respectively. Moreover, the order of g is at most 2.
From (3.4) we know that

g (&) = PV B (2 4 pg) = g (€)
and

(65 ()" — agi &) — o™
= 05U G+ 0 )™ = af e+ 0s6) D)
— (™€) —ag™ (€
also locally uniformly with respect to the spherical metric.
If (g™ (€)™ — ag™t1(€) = 0, since all poles of g have multiplicity at least mk + 2, we
can deduce that g(§) is an entire function easily. Thus
(m+1)T(r, g) = T(r, g"*)
= T(r, (9™)™) +0(1)
= mm(r, g% +mN(@r, ¢®)+00)
< mm(r, g) + mN(r, g) + mkN(r, g) + S(r, g)
<mT(r, g)+S(r, g).
Therefore, g(§) is a constant, a contradiction. So

(g™ —ag™ (&) £ 0.
By Lemmas 2.5, 2.6 and 2.7, (¢(®)(€))™ —ag™**(€) has at least two distinct zeros. Proceeding
as in the later proof of Theorem 1.3, we will get a contradiction. The proof is completed.
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