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1 Introduction and Main Results

Suppose that L is a linear operator on L?(R™) which generates an analytic semigroup e~**

with a kernel a;(z, y) satisfying an upper bound of the form

_n f(|z—y"
e I < g (200, (1)

where m is a positive fixed constant and ¢ is a positive, bounded, decreasing function
satisfying
lim r"Tg(r™) =0 (1.2)

r—00

for some € > 0.
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2
For 0 < a < —n, the fractional integrals L~%/2 of the operator L is defined by
m

7% () = F<1a> | et (19
2

Note that if L = —A is the Laplacian on R™, then L~ % is the classical fractional integrals
T, (see, for example, Chapter 5 in [1]),

O e = 2

. n_mdy7 l<a< —.
R o — g% m

Let b be a BMO function on R™. The commutator of b and L~ 2 is defined by

[b, L™2](f)(2) = b(a)L™% (f)(2) — L™% (bf ) ().
It is well known that when b € BMO(R"), the commutator [b, Z,] is bounded from

1 1
LP(R™) to LY(R"), 1 <p < ﬁ, R (see [2]), and of weak type LlogL estimate for
a’'q p n
p =1 (see [3] and [4]). For commutators of fractional integrals on homogeneous spaces, we
refer the reader to [5], also to [6] for commutators of fractional integrals on non-homogeneous
spaces.

The aim of this paper is to prove the following estimate.

2
Theorem 1.1  Let b € BMO, &(t) = t(1 +log™ t). Then for every 0 < a < —n7 and
m

1 1 ma

g p 2n’
@) N, L2 fllg < cllbllell fllpy 1<p < .
ma
(ii) Whenp=1, [b, L™ %] is of weak type Llog L, that is,

o

{z e R™ : [[b, L™E)(f)(z)| > A}|7

< C[/ ¢<“’H*|Af(f”)>d4 {1+ ?—Sbg*/n @(W)dx} (1.4)

where ||b]|.« denotes the BMO norm of b(x).

Our result extends the results of [3] and [4] from (—A) to a general operator L, while
we only assumes pointwise upper bounds on kernel a;(z, y) of e *£ and no regularity on its
space variables. Under our assumptions, the kernel of the operator L~ 2 does not have any
regularity on space variables x and y. This allows flexibility on the choice of operator L in
applications.

The paper is organized as follows. In Section 2, we recall some important estimates
on BMO functions, maximal functions and fractional integrals. In Section 3, we prove
some estimates on fractional integrals, which play a key role in the proof of the main result
Theorem 1.1, which will be shown in Section 4 by using the approach of [4] and [7], combining
with some estimates on the sharp maximal function Mf f. We conclude this paper by giving
applications to large classes of differential operators which include the Schrédinger operators

and second-order elliptic operators of divergence form.
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Throughout, the letter “C” denote (possibly different) constants that are independent
of the essential variables.

2 Definitions and Preliminary Results

Denote the Hardy-Littlewood maximal function M f and its variant M, f by
1
M) = sup o [ £y,
zEB |B| B

and

1
Mafx:supﬁ/fydy.
@)= sup e [ 1500)

For any f € LP(R™), p > 1, the sharp maximal function Mf f associated with “generalized
approximations to the identity” {e=*f, ¢ > 0}, is given by
M fa) = swp o [ 1) = e )l (21)

zeB
where tp = % and rp is the radius of the ball B (see [8]).

A function A : [0, 0o) — [0, 00) is said to be a Young function if it is continuous, convex,
and increasing satisfying A(0) = 0, A(t) — 400 as ¢ — +o0o0. We define the A-average of a
function f over a ball B by means of the following Luxemburg norm:

||f|AB_mf{A>o 5 (f )d <1}

For the mean Luxemburg norm, the following generalized Holder inequality holds (see [9]):

51 | 1 @at)idy < 1 7Lasllal (22)

where A is the complementary Young function associated to .A.
We use a Young function &(t) = t(1 4 log™ t) with the corresponding average denoted

by | flle.5 = | fllL10g .- Its complementary Young function is @(t) ~ e! with the corre-
sponding average denoted by | f|ls g = || fllexpz,5. We also introduce the maximal operator
of the fractional order associated with || - ||110g £, B, Which is defined by

Mpiogr,af(z) = sup B (| fl| £ 10g L.3-
S
A function b € L (R™) is said to be in BMO(R") if and only if

1
sup / 1b(y) — baldy < oo,
zeB |B| B

1
where bp = B|/ b(y)dy. The BMO norm of b is defined by
B

1
bllx = su —/b — bp|dy.
o0 = swp 7z | 1ota) = by

Lemma 2.1 (i) Assume that b € BMO and N > 1. Then for every ball B, we have
|bB — bNB‘ S CHbH* log N.
(ii) (John-Nirenberg Lemma) Let 1 < p < oco. Then b € BMO if and only if

1
B /Q b= bylPdz < Clb|.
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(iii) Ifb € BMO, then there exists a constant C such that for every ball B,

_bB|}
dz < 0.
IBI/ { C|]]«

(iv) For every p € [1,00], there exists a constant C' such that for every f € LP,
e f(2)] < CM f(x).

Proof.  For the proofs of (i) and (ii), see Lemma 2.1 of [7]. For (iii), see Chapter 6 of [10],
and for (iv), see Proposition 2.4 of [11].

2n
Lemma 2.2 Given o, 0 < o < —, and a non-negative f, the following statements are
m

true:

(i) There exists a constant C such that for any ball B,
[ @< i [ pads
B R"

(ii) Zof € Az; in particular, it satisfies the reverse Hélder inequality for some exponent
r> 1.
1
(i) -=1-"22
q 2n
n 1/q C
[{z € R™: [Za(f)(@)] > M7 < < - |f (z)|dz.
(iv) If Mf is locally integrable, then there exists a constant C independent of f and x
such that

, To is weak (1, q) : for all X > 0,

CMaMf(x) < MLlogL,af(x) < CilMaMf(x)
Proof. For the proofs of (i)—(iii), see Lemma 5.2 of [4]. For (iv), see Lemma 2.3 of [3].

2
Lemma 2.3  Let &(t) = t(1 +1log™ t). Then for 0 < a < —n, there exist a constant C
m

such that for any bounded function f with bounded support and for all A > 0,
{z € R" : Mpiogrof(x) > A}|¥

< CU @('f(;)>dx} [H’gjlog*/n @('f(;)')dx]. (2.3)

Proof. For the proof of this lemma, see Lemma 2.7 of [3].

In the end of this section, we state the following analogue of the Fefferman-Stein inequal-

ity on the sharp maximal function Mf f-

Lemma 2.4  Let A >0 and f € LP(R™) for some 1 < p < co. Then for every 0 < n < 1,
we can find v > 0 independent of A, f in such a way that

{o € R™: Mf(x) > AN, MF f(z) <90} <nl{e € R™: Mf(x) > A}, (24)
where A > 1 is a fized constant which depends only on n.

As a consequence, we have the following estimate:
@) fllp < 1M [fllp < cllMF fllp for every f € LP(R™), 1 < p < oo.
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(ii) Let ¢ : (0,00) — (0,00) be a doubling function. Then, for any positive constant q,

there exists a positive constant ¢ = c¢(q) such that
1 1
sup p(A)[{z - Mf(z) > AHe < esupp(N)[{z M f(a) > A}

> >

for all functions f such that the left side is finite.

Proof.  For the proof of (2.4), we refer to Proposition 4.1 of [8].

3 Some Estimates on Fractional Integrals

In this section, we prove several lemmas on fractional integrals L =% which will play a key

role in the proof of Theorem 1.1.

2
Lemma 3.1  Let ¢ be the constants in (1.2), and let 0 < a < il Then, the difference
m

operator L=% — e 'Y L=% has an associated kernel K, ((z, y) which satisfies

Koz, y)|<C ! ( ! >€0 (3.1)

|z =yl |z —y[™

for 0 <egg < min{l, i}.
m
t d t
I—eth :/ d—e_”“dr = —/ Le "Edr.
o ar 0
Hence, by (1.3),

(1 -2 ( )/ [ (o)

d o
The kernel of vd—e’”L also satisfies (1.1) (see [12]). Hence, the operator (I —e™**)L~% has
v

Proof. Note that

1 dsdr
r+s s 3tl’

v=r—+s

an associated kernel K, ;(z, y ) which satisfies

|l —y|™\ 1 dsdr
K, = . dsc
o v)l < < )// (rts)” g( r+s Jr+s s 3t
| —y™ 1 dsdr
<C ik
< /0/()(7’+s) 9< s )i 5

t 00
_ |z —y|™\ 1 dsdr
O m : a
+ /o/r (r+3) g( r+s Jr+s szt
=1+1IL
It follows from (1.2) that one has lim r®g(r™) = 0 for any a, 0 < a < n+¢e. Choose an

=00

€ 2n mao
such that 0 < g9 < min {1, }, then since a < —, we get 0 < n+mey — - < n+e, this
m m

ma 1 n a
implies that lim r"*t™m =" g(r™) = 0. Furthermore, we have that g() < Cslmteo=3),
r—00 S

Let us estimate term I. Note that 0 < s < r, one has



78 COMM. MATH. RES.

VOL. 33

|l —y|™\1 dsdr
< 771 _—
B
:07/‘1 E u~mlg L du
|z —y[" Jo u

t

1 le=yI™ o n n o

<C—ae w2 " m T lym T dy
|z —yl 2 Jo

< ()
e E )

For II, note that 0 < r < s, one has
neo [ Tera(50) L
<o w5
n C’/ / g<m Sy|m)i . Scir%djl
_ C/O :;g(lx 2Syl’”) S_d%sﬂ

)
_n “T*y|m ds
Ct m a
o [Tl

= IT; + IL,.

Similar to the estimate of term I, one has

1 t co
I, <C — g ( m) .
lz —y|"= % \ |z —yl

On the other hand,

o a_n 1
R i e E [P
t u

[x—y[™

1 a_n_p =
P | / wim Rym oS qu
xr — x—y

(Jz— y\)m

- iy ()
lz —y |z —y|™

Therefore, condition (3.1) is satisfied and then the proof of Lemma 3.1 is completed.

We remark that when L has a Gaussian upper bounds, Lemma 3.1 is proved in [7] for

0 <a<1,andin [13] for 0 < a < n, respectively.

2
Remark 3.1 Let0 < a< il
m

. Using the formula (1.3), together with properties (1.1)

and (1.2) and elementary integration, it can be verified that the kernel K,(x, y) of L™%

satisfies
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X e n (le—ylm\dt
0 t t

<C 17@ (3.2)

|z —y["™ 3

for some positive constant C.

Lemma 3.2 Let b€ BMO. Then there exists a positive constant C such that
M (b, L2)f) (@) < O]l [Za(lfD)(@) + MLiog 1 f ()] (3.3)

Proof. Since Z,,f € Ay, it suffices to prove that there exists a constant C' such that for all
x € R™ and for all B 5 «,

|B|/| e )b, L7E]f(y)ldy < OBl [M(Za(I£1)(2) + Mprogpof(2)],  (3.4)

where tgp = 7}, and rp is the radius of B.
For an arbitrary fixed z € R", choose a ball B = B(zg; r) = {y € R" : |zg — y| < r}
which contains x. Let f; = fx2op and fo = f — f1. One writes

b, L72]f =(b—bap)L™ 2 f = L™2((b—bap)f1) — L™ 2 ((b—bap)f2)
and
e 'Ph([b, L2)f) = e PE[(b—bap) L3 f — L2 ((b—bap) f1) — L™ 2 ((b—bap) f2)].
Then,

LHS of (3.4) = ﬁ / b L 217 (y) — e "= Eb, L™ %] f(y)ldy

|B| {IL7E((b = bap) )W) + e L7 (b~ b2p) f1) ()|} dy

+ ®/3|e—tBL((b— bap) L% f)(y)|dy

+ﬁ/3|@_%_e—tBLL—%)((b—bw)fz)(y)\dy

=I4+II+IIT4+1V.
We estimate each integral in turn. Obviously, by (3.2), we have the following pointwise
inequality
L5 (f)(@)] < CLa(|f])(x),  z€R™ (3.5)

For I, by Lemma 2.2, Z,, f satisfies the reverse Holder’s inequality with exponent r, by Lemma
2.2 and (3.5), we have

1< <|;|/B|b(y)—b23|rldy):/(|;/ L )
< C||b|*(|;| / IIa(If)(y)l’”de
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< cnbu*% /B Za(1£) ()ldy

< Cpll« M(Za(] f1)(2)-
To estimate the second integral, note that by Lemmas 2.1, 2.2 and (3.5),
[L75((b = b2p) f1)(y)] < CLa(|(b - b2p) f1]) (1),
and
™2 E L2 ((b = bap) 1) (y)| < OM(Za(|(b = ban) /i) (y) < CLa(|(b— ban) f1]) (y).
Hence, by Lemmas 2.2, 2.1, and by the generalized Holder’s inequality (2.2),

I< B|/ —bag) f1])(y)dy

< OU'T'BM /23 |(b(y) — bap)||f(y)|dy

< C|2B
< COlbll«Mriog L,0.f ().

mao
2n

|(b - b2B)||eXPL,2B”fHLlogL,QB

For term III, we have

Il = ﬁ/B le™* (b — bap) L™ 3 [)(y)Idy
< ﬁ /B /R Jacs (y, 2)Ilb(z) = b2p||L™ % f(2)|dzdy

1
= |B|/ / lats (Y, 2)|[b(2) — bap|Za(]f])(2)d2dy

+Z|B|//2k+13\2k3|at3 y, 2)||b(z) — bap|Za(|f])(2)dzdy

= III; + IIIs.
We now estimate III;. For y € B, z € 2B, we have

_n y—z|m> g(0) C C
a,(y, 2)| < t5" <99 _C_ &

Similar to the estimate of term I we obtain

1, < ﬁ@ / / — o | T (| 1) (2)d=dy

S MLCE A TEE

< ClIbl[« M (Za(]f]) ().

Regarding I1I,, for y € B and z € 2¥*1 B\ 2B, we have
ly— 2| =25 1rp

and

|y _ Zm> - g(z(kfl)m) g(z(kfl)m)z(kJrl)n
5 =

la, (y, 2)| <tp g( r% = 2K 1B

Similarly, by Lemma 2.1, we have



NO. 1 LIU X. J. et al. COMMUTATORS OF FRACTIONAL INTEGRALS 81

L, < C (2Uk=1m g (kt1)n // ) — byp|Ta dzd
2 ;g ) |B| |2k+1B| 2k+13\2k3 25|Za(|f])(2)dzdy

1

0o
(kfl)m (k+1)n
=C 200 2 2801 B| Jartip

k=1

[6(2) = bap|Za(lf])(2)d2

m n 1
g(2tk=Dm)9(+1) DB oy b(2) — byr+1|Za (| f])(2)dz

M8

k=1

+C Z 9(2(k—1)m)2(k+1)n
k=1

< ClIbl[+ M (Za(]f])(x).

Let us see what happens with term IV. By using Lemmas 3.1 and 2.1, one has

1
V< g [ e 0G) ~ba)f () azdy

<oy | e () 100~ b

k=1 2k7‘3<‘$0 Z‘<2k+1’r3 |x0 - Z|n |1"0 - Z|m

|2k:+1B| ki1 |b2’“+1B - b2B|Ioc(|f|)(Z)dZ

1
—kmeog - .
SCE} S ., 106) — b))

1
kmEo
< 022 |2k+1B|1 ma /2’C+1B |[(b(2) = bar+1g) f(2)[d2

1
C 2~ kmeoyy —b 7,%/ d
+ ; | 2k+1 B B||2k+1B|1_Tn 2k+1B|f(Z)| Z

S
< O 27 Fm 2P BIE (1b(2) — borr pllexp L2441 511 f | L1og 2441 5
k=1

+ bl Y 27Fme (k + 1) M, f ()
k=1

< OBl Y 27F "0 Mprog 1o f () + Cl[bll 27570 (k + 1) M f ()
k=1 k=1
< CHbH*ML logL,af(x)'
Combining the above estimates I, II, III and IV, we obtain (3.4), and the proof of Lemma
3.2 is completed.

4 Proof of Theorem 1.1

(i) By Lemmas 2.4, 3.2 and 2.2, we have
1o, L %11 llg < e ME (b, L2 fllg
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< ellblll|Zafllqg + cllbll« | MLiogL,a fllq
< c|blll[Zafllq + cllbll«]| Mo M fllq
< e[|l flps
1 1 moa
where we use the fact that Z,,, M,, are both bounded from LP(R") to L(R"™) for - = —— S
q p n

2
and 1 <p < m—z, M is bounded from LP(R™) to LP(R™) for 1 < p < oc.

(ii) Without loss of generality, we assume that f is a smooth function with compact

support. By homogeneity, it suffices to verify that (1.4) is true for A = 1, that is,
- 1
{z eR":|[b, L™ 2]f(2)| > 1}|7

<c| [ e(irwme.)ae] [1+ 2% 10s [ o (ispl. Jas].

Note that
{z e R": |[b, L~ ¥](f)|(z) > 1}|7
1 o 1
< ®(&(1))sup S e € R b, L2 f ()] > )]
Yo(2(3))
1 o 1
< ®(&(1))sup [{z € R™: [M([b, L™ %]f)(z)| > t}]7.
>0 1
o(+(3))
Let

A straightforward calculation shows that ¢(t) is a doubling function. So
p(2t) < Cp(t).
1
By Lemmas 2.4, 2.2 and 2.3 in sequence, and note that t@(@(t)> > 1, we have
—a 1
H{z e R™ :|[b, L™2](f)|(x) > 1}[«
[{z e R": [MF([b, L™ 2]f) ()] > t}]7

A
&
D
=
Y
o
ol

1
q

1 t
C RnIZa M1, «a P2t
= 3218@(@6))’{% (IfD@) + Mriogr.af(2) > C”b”*}
< Csu = HxER"'I (1fD)(xz) > t};
0 4 @C)) e Cllel-

1
q

t
&EER":MLIO L7af:1c >}
{ sLaf (@) > F

(4.1)
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el

+Ci§€¢(;<1)>[/ (P Jae] [+ Fort [ o oo
)

2 [ lis@ds + Csup o >>¢(¢( 3)
< | [ atplllsnas] [1+ 508 [ ol ireas

=J+ Jo. (42)

Furthermore, since ¢ < ¢(t), we have

Joetis@las < | [ aqoisenas] |1+ 5 oe [ aqolis@has]. @

From (4.2) and (4.3) we get

na<e| [ aqulis@ha [+ 5 or [ ool

which proves (4.1). The proof of Theorem 1.1 is completed.

Remark 4.1  The heat kernel upper bound (1.1) of Theorem 1.1 is satisfied by large
classes of differential operators. We list some of them as follows.

(a) Let V be a nonnegative function on R™. The Schrodinger operator with potential
V is defined by

L=-A+V(x). (4.4)

By domination, the kernel a;(z, y) of the semigroup {e~**};~¢ has a Gaussian upper
bound (see [14]). Therefore, the result for the fractional integrals L~ 2, that is Theorem 1.1,
holds for the operator L of (4.4) in which V is a nonnegative function on R™.

Note that unless V satisfies additional conditions, the heat kernel can be a discontinuous
function of the space variables and the Holder continuous estimates may fail to hold.

b) Let A = ((a;j(x))1<i.j<n be an n X n matrix of complex with entries a;; € L>°(R"™
J 1)> J

satisfying

Rezau glgj > )\|£|2
for all z € R™, £ = (&1, &, -+, &,) € C™ and some A > 0. We define a divergence form
operator

Lf = —div(AVY),

which we interpret in the usual weak sense via a sesquilinear form.
It is known that the Gaussian upper bound on the heat kernel e~** is true when A has
real entries, when n = 1, 2 in the case of complex entries, see Chapter 1 of [15].



84 COMM. MATH. RES. VOL. 33
References
[1] Stein E M. Singular Integral and Differentiability Properties of Functions. Princeton: Princeton
Univ. Press, 1970.
[2] Chanillo S. A note on commutators. Indiana Univ. Math. J., 1982, 31: 7-16.
[3] Ding Y, Lu S Z, Zhang P. Weak estimates for commutators of fractional integral operators.
Sci. China Ser. A, 2001, 44: 877-888.
[4] Cruz-Uribe D SFO, Fiorenza A. Endpoint estimates and weighted norm inequalities for com-
mutators of fractional integrals. Publ. Mat., 2003, 47(1): 103-131.
[5] Bramanti M, Cerutti M. Commutators of singular integrals and fractional integrals on homo-
geneous spaces. Contemp. Math., 1995, 189: 81-94.
[6] Hu G E, Meng Y, Yang D C. Multilinear commutators for fractional integrals in non-
homogeneous spaces. Publ. Mat., 2004, 48: 335-367.
[7] Duong X T, Yan L X. On commutators of fractional integrals. Proc. Amer. Math. Soc., 2004,
132: 3549-3557.
[8] Martell J M. Sharp maximal functions associated with approximations of the identity in spaces
of homogeneous type and applications. Studia Math., 2004, 161: 113-145.
[9] Peréz C. Endpoint estimates for commutators of singular integral operators. J. Funct. Analysis,
1995, 128: 163-185.

[10] Duoandikoetxea J. Fourier Analysis. in: Humphreys J (chair), Saltman D, Sattinger D, Stern
R ed. Grad. Studies Math. 29, Amer. Math. Soc., Providence, Rhode Island, 2000.

[11] Duong X T, Robinson D W. Semigroup kernels, Poisson bounds, and holomorphic functional
calculus. J. Funct. Anal., 1996, 142: 89-128.

[12] Duong X T, Yan L X. Duality of Hardy spaces associated with operators with heat kernel
bounds. J. Amer. Math. Soc., 2005, 18: 943-973.

[13] Deng D G, Duong X T, Sikora A, Yan L X. Comparison of the classic BMO with the BMO
spaces associated with operators and applications. Rev. Mat. Iberoamericana, 2008, 24: 267—
296.

[14] Davies E B. Heat Kernels and Spectral Theory. Cambridge: Cambridge Univ. Press, 1989.

[15] Auscher P, Tchamitchian P. Square root problem for divergence operators and related topics.

Asterisque, 1998, 249. Soc. Math. France. 30-31.



