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Abstract: This paper is concerned with the bifurcation analysis for a free boundary

problem modeling the growth of solid tumor with inhibitors. In this problem, surface

tension coefficient plays the role of bifurcation parameter, it is proved that there

exists a sequence of the nonradially stationary solutions bifurcate from the radially

symmetric stationary solutions. Our results indicate that the tumor grown in vivo

may have various shapes. In particular, a tumor with an inhibitor is associated with

the growth of protrusions.
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1 Introduction

During the past forty years, a number of mathematical models have been studied and devel-

oped, see review papers [1]–[5] and the references therein. Among those, the growth of solid

tumor models, described by partial differential equations with a free boundary, have been

given considerable attention, see [6]–[21]. Solid tumor growth can be regarded as a result of

various interactions within the micro environment, such as nutrient (e.g. oxygen, glucose),

or inhibitors (e.g. inhibitory material developed from the immune system of healthy cells,

anti-cancer drugs and radiation administered by medical treatment), etc.

In this paper, we consider a mathematical model describing the stationary state of an
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avascular solid tumor with inhibitor:

∆σ = f(σ) in Ω , (1.1)

∆β = g(β) in Ω , (1.2)

−∆p = h(σ, β) in Ω , (1.3)

σ = σ̄ on ∂Ω , (1.4)

β = β̄ on ∂Ω , (1.5)

∂p

∂ν
= 0 on ∂Ω , (1.6)

p = γκ on ∂Ω . (1.7)

In this model, Ω ⊆ R3 is the domain occupied by the tumor. σ, β denote the concentration of

nutrient and inhibitor within the tumor, respectively. The pressure p within the tumor comes

from the proliferation of the tumor cells. f(σ), g(σ), h(σ, β) are the nutrient consumption

rate, inhibitor consumption rate and tumor-cell proliferation rate function, respectively.

σ̄ and β̄ are positive constants, σ = σ̄ and β = β̄ mean that the tumor receives constant

nutrient and inhibitor supply from the exterior surface, respectively. ν is the outward normal

of the free boundary ∂Ω , γ is the surface tension coefficient, and κ is the mean curvature of

the free boundary ∂Ω .

According to the medicine and biology, as well as the need of the mathematics, we assume

that f , g, h are functions satisfying the following conditions:

(A1) f ∈ C∞[0,∞), g ∈ C∞[0,∞), h ∈ C∞([0,∞)× [0,∞));

(A2) f ′(σ) > 0 for σ ≥ 0 and f(0) = 0;

(A3) g′(β) > 0 for β ≥ 0 and g(0) = 0;

(A4)
∂h(σ, β)

∂σ
> 0,

∂h(σ, β)

∂β
< 0 for σ > 0, β > 0 and h(0, 0) < 0.

f(σ) is strictly monotone increasing about σ means the concentration of nutrient is much

larger, the tumor cells consume more nutrient in the unit time. f(0) = 0 means the nutrient

consumption is zero when there is no nutrient, we can make similar explanation for g(β).

h(σ, β) is strictly monotone increasing about σ and decreasing about β means increasing

the concentration of the nutrient and inhibitor will enlarge and lower the proliferation rate

of the tumor cells, respectively. h(0, 0) < 0 means that the number of tumor cells decreases

when the concentration of nutrient and inhibitor are all zero. Obviously, these assumptions

satisfy the medicine and biology principle.

For the system (1.1)–(1.7) without inhibitors, i.e., β = 0, the authors of [13], [15] and

[16] studied the linear case: f(σ) = σ, h(σ) = µ(σ− σ̃), and proved the existence of a unique

radially symmetric solution and a sequence of nonradially stationary solutions for this system

in two-dimensional case and three-dimensional case respectively. In [11], the above results

were extended to general case with f(σ), h(σ) are smooth functions. For the case β ̸= 0,

the existence of radially symmetric stationary solutions and nonradially stationary solutions

were analysed for the linear case of (1.1)–(1.7) by Cui et al. in [10], [12], [20] and [21]. For

general case of (1.1)–(1.7), the existence of the radially symmetric solutions was studied by
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Wei and Cui in [19]. In this paper, we study the existence of nonradially solutions of the

problem (1.1)–(1.7). We shall regard (1.1)–(1.7) as a bifurcation problem with γ being the

bifurcation parameter, and reduce this problem into the following bifurcation equation with

the form:

F(ρ, γ) = 0, (1.8)

where F is nonlinear operator. By studying the linearized problem, we compute all eigen-

values of its Fréchet derivative DρF(0, γ), then applying Crandall-Rabinowitz bifurcation

theorem (cf. Theorem 1.7 in [14]), we obtain that there exists a null sequence of numbers

{γk}, and an integer k∗ ≥ 2 such that in a neighborhood of each γk with k ≥ k∗, the

problem (1.1)–(1.7) has a branch of nonradially symmetric solutions bifurcating from the

radially symmetric solutions.

The rest of this paper is organized as follows. In Section 2, we study the linearization of

(1.1)–(1.7) at radially symmetric solution. In Section 3, we reduce problem (1.1)–(1.7) into

the abstract form (1.8) and study the properties of the operators F( · , γ). In Section 4, we

study bifurcation solutions and prove our main result. Some conclusions are also given in

the last section.

2 Linearization

It was shown in [19] that there exists a unique radially symmetric solution (σ0(r), β0(r),

p0(r), Ω0) of the problem (1.1)–(1.7) with Ω0 = {x ∈ R3 : |x| < Rs}. In this section, we

determine the linearization of the problem (1.1)–(1.7) at the radially symmetric solution.

We also provide conditions which imply that the linearized problem has nontrivial solutions.

For S(ω) ∈ S2, denote Ωε = {x ∈ R3 : r < Rs + εS(ω)}, we consider the perturbations

of the radially symmetric solution (σ0(r), β0(r), p0(r), Ω0) of the form

σ(x) = σ0(r) + εσ1(r, ω) + o(ε2),

β(x) = β0(r) + εβ1(r, ω) + o(ε2),

p(x) = p0(r) + εp1(r, ω) + o(ε2),

where r = |x| and w =
x

|x|
. Moreover, ε is a small parameter and σ1, β1, p1 are functions

to be determined. Let ∆w be the Laplace-Beltrami operator on the sphere S2. Similar to

[11], substituting the aforementioned expressions into (1.1)–(1.7) and using the relations

σ′′
0 (r) +

2

r
σ′
0(r) = f(σ0(r)), (2.1)

β′′
0 (r) +

2

r
β′
0(r) = g(β0(r)), (2.2)

p′′0(r) +
2

r
p′0(r) = −h(σ0(r), β0(r)), (2.3)

we can get that the linearizations of (1.1)–(1.7) satisfy the following:

∂2σ1

∂r2
+

2

r

∂σ1

∂r
+

1

r2
∆wσ1 = f ′(σ0(r))σ1, (2.4)
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∂2β1

∂r2
+

2

r

∂β1

∂r
+

1

r2
∆wβ1 = g′(β0(r))β1, (2.5)

∂2p1
∂r2

+
2

r

∂p1
∂r

+
1

r2
∆wp1 = −∂h

∂σ
(σ0(r), β0(r))σ1 −

∂h

∂β
(σ0(r), β0(r))β1, (2.6)

σ1(Rs, ω) + σ′
0(Rs)S(ω) = 0, (2.7)

β1(Rs, ω) + β′
0(Rs)S(ω) = 0, (2.8)

∂p1
∂r

(Rs, ω)− h(σ̄, β̄)S(ω) = 0, (2.9)

p1(Rs, ω) +
γ

R2
s

[
S(ω) +

1

2
∆ωS(ω)

]
= 0. (2.10)

Thus we have the following result.

Lemma 2.1 The linearization of the problem (1.1)–(1.7) at the radially symmetric solu-

tions (σ0(r), β0(r), p0(r), Ω0) is given by the problem (2.4)–(2.10).

We now investigate the question of whether there exists γ such that the problem (2.4)–

(2.10) has nontrivial solutions. For this purpose we first note that standard results for

second order elliptic partial differential equations imply that all solutions σ1, β1, p1 are

smooth, namely, σ1,β1, p1 ∈ C∞(B̄Rs) ⊆ C∞([0, Rs], C∞(S2)), and S ∈ C∞(S2). Thus

these functions can be expanded in the following way:

σ1 =
∞∑
k=1

k∑
l=−k

ukl(r)Ykl(ω), (2.11)

β1 =

∞∑
k=1

k∑
l=−k

vkl(r)Ykl(ω), (2.12)

p1 =
∞∑
k=1

k∑
l=−k

(
jkl(r)Ykl(ω) + qkl(r)Ykl(ω)

)
, (2.13)

S(ω) =
∞∑
k=1

k∑
l=−k

cklYkl(ω), (2.14)

where Ykl(ω) (k ≥ 0, −k ≤ l ≤ k) denotes the spherical harmonics of the order (k, l).

Substituting (2.11)–(2.14) into (2.4)–(2.10), using the relation

∆ωYkl(ω) = −k(k + 1)Ykl(ω),

we get

u′′
kl(r) +

2

r
u′
kl(r)−

k(k + 1)

r2
ukl(r) = f ′(σ0)ukl(r), (2.15)

v′′kl(r) +
2

r
v′kl(r)−

k(k + 1)

r2
vkl(r) = g′(β0)vkl(r), (2.16)

j′′kl(r) +
2

r
j′kl(r)−

k(k + 1)

r2
jkl(r) = −∂h

∂σ
(σ0, β0)ukl(r), (2.17)

q′′kl(r) +
2

r
q′kl(r)−

k(k + 1)

r2
qkl(r) = −∂h

∂β
(σ0, β0)vkl(r), (2.18)

ukl(Rs) + σ′
0(Rs)ckl = 0, (2.19)
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vkl(Rs) + β′
0(Rs)ckl = 0, (2.20)

(jkl + qkl)
′(Rs)− h(σ̄, β̄)ckl = 0, (2.21)

(jkl + qkl)(Rs) +
γ

R2
s

(
1− k(k + 1)

2

)
ckl = 0. (2.22)

Let ūk(r), v̄k(r) are the solutions of the following problems, respectively,

ū′′
k(r) +

2k + 2

r
ū′
k(r) = f ′(σ0(r))ūk(r), (2.23)

ūk(0) = 1, ū′
k(0) = 0 (2.24)

and

v̄′′k (r) +
2k + 2

r
v̄′k(r) = g′(β0(r))v̄k(r), (2.25)

v̄k(0) = 1, v̄′k(0) = 0. (2.26)

Denote

ukl(r) = aklr
kūk(r), (2.27)

vkl(r) = bklr
kv̄k(r), (2.28)

then ukl(r), vkl(r) satisfy the equations (2.15) and (2.16), where akl, bkl are arbitrary con-

stants.

Similarly, the solutions of (2.17)-(2.18) are given by:

jkl(r) = aklr
k j̄k(r) + dklr

k, (2.29)

qkl(r) = bklr
k q̄k(r) + eklr

k, (2.30)

where akl is as before, dkl, ekl are arbitrary constants proportional to akl and bkl for an

arbitrary constant c, respectively, and jkl(r) is the following boundary value problem

j̄′′k (r) +
2k + 2

r
j̄′k(r) = −∂h

∂σ
(σ0(r), β0(r))ūk(r), (2.31)

j̄k(0) = 0, j̄′k(0) = 0 (2.32)

and qkl(r) is the solution of the following problem

q̄′′k (r) +
2k + 2

r
q̄′k(r) = −∂h

∂β
(σ0(r), β0(r))v̄k(r), (2.33)

q̄k(0) = 0, q̄′k(0) = 0. (2.34)

Substituting (2.27)-(2.28), (2.29)-(2.30) into (2.19)–(2.22), after simplification, we get the

following equation for akl, bkl, ckl, dkl + ekl satisfying:

aklR
k
s ūk(Rs) + σ′

0(Rs)ckl = 0, (2.35)

bklR
k
s v̄k(Rs) + β′

0(Rs)ckl = 0, (2.36)

akl(kR
k−1
s j̄k(Rs) +Rk

s j̄
′
k(Rs)) + bkl(kR

k−1
s q̄k(Rs) +Rk

s q̄
′
k(Rs))

+ (dkl + ekl)kR
k−1
s − h(σ̄, β̄)ckl = 0, (2.37)

aklR
k
s j̄k(Rs) + bklR

k
s q̄k(Rs) + (dkl + ekl)R

k
s +

γ

R2
s

(
1− k(k + 1)

2

)
ckl = 0. (2.38)

Hence, (2.4)–(2.10) has a nontrivial solution if and only if there exists k ≥ 2 such that

(2.35)–(2.38) has a nontrivial solution. In the following, we provide conditions on γ which

guarantee that (2.35)–(2.38) has a nontrivial solution.



90 COMM. MATH. RES. VOL. 33

Lemma 2.2 The system (2.35)–(2.38) has a nontrivial solution if and only if γ = γk,

where

γk =
2R3

s

(k2 + k − 2)k

(
h(σ̄, β̄)− σ′

0(Rs)

ūk(Rs)R
2k+2
s

∫ Rs

0

∂h

∂σ
(σ0(ρ), β0(ρ))ūk(ρ)ρ

2k+2dρ

)

− β′
0(Rs)

v̄k(Rs)R
2k+2
s

∫ Rs

0

∂h

∂β
(σ0(ρ), β0(ρ))v̄k(ρ)ρ

2k+2dρ, k ≥ 2. (2.39)

In this case, the nontrivial solutions of (2.35)–(2.38) are unique up to a constant factor.

Moreover, there exists a positive integer k∗ such that

γk+1 < γk, k ≥ k∗. (2.40)

Proof. A simple computation shows that the determinant of the coefficient matrix of (2.35)–

(2.38) is equal to the product of R2k−1
s ūk(Rs) with

−h(σ̄, β̄)Rs −
β′
0(Rs)

v̄k(Rs)
Rsq̄

′
k(Rs)−

Rsσ
′
0(Rs)

ūk(Rs)
j̄′k(Rs)− k

(
γ

R2
s

)(
1− k(k + 1)

2

)
≡ Dk(γ).

Hence, (2.35)–(2.38) has a nontrivial solution if and only if Dk(γ) = 0, namely,

γ = γk =
2R3

s

(k2 + k − 2)k

(
h(σ̄, β̄) +

σ′
0(Rs)

ūk(Rs)
j̄′k(Rs) +

β′
0(Rs)

v̄k(Rs)
q̄′k(Rs)

)
.

From (2.31) and (2.33) we further infer that

j̄′k(Rs) = − 1

R2k+2
s

∫ Rs

0

∂h

∂σ
(σ0(ρ), β0(ρ))ūk(ρ)ρ

2k+2 dρ,

q̄′k(Rs) = − 1

R2k+2
s

∫ Rs

0

∂h

∂β
(σ0(ρ), β0(ρ))v̄k(ρ)ρ

2k+2 dρ,

which implies that γk is given by (2.39). If γ = γk, then clearly the solutions of (2.35)–(2.38)

are unique up to a constant factor.

To verify (2.40), we first observe (2.23) and (2.25), which imply that

ū′
k(r) =

1

r2k+2

∫ r

0

f ′(σ0(ρ))ūk(ρ)ρ
2k+2dρ > 0, 0 < r < R,

v̄′k(r) =
1

r2k+2

∫ r

0

g′(β0(ρ))v̄k(ρ)ρ
2k+2 dρ > 0, 0 < r < R.

Hence ū′
k(r), v̄

′
k(r) are increasing. Let us introduce the notation

δk1 =
β′
0(Rs)

v̄k(Rs)R
2k+2
s

∫ Rs

0

∂h

∂β
(σ0(ρ), β0(ρ))v̄k(ρ)ρ

2k+2dρ,

δk2 =
σ′
0(Rs)

ūk(Rs)R
2k+2
s

∫ Rs

0

∂h

∂σ
(σ0(ρ), β0(ρ))ūk(ρ)ρ

2k+2dρ.

Integration by parts shows that

δk1 =
β′
0(Rs)

v̄k(Rs)R
2k+2
s

∫ Rs

0

∂h

∂β
(σ0(ρ), β0(ρ))v̄k(ρ)d

(
ρ2k+3

2k + 3

)
=

Rsβ
′
0(Rs)

2k + 3

∂h

∂β
(σ̄, β̄)

− β′
0(Rs)

(2k + 3)v̄k(Rs)R
2k+2
s

∫ Rs

0

[
∂2h

∂β∂σ
σ′
0(ρ) +

∂2h

∂β2
β′
0(ρ)

]
v̄k(ρ)ρ

2k+3dρ
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− β′
0(Rs)

(2k + 3)v̄k(Rs)R
2k+2
s

∫ Rs

0

∂h

∂β
(σ0(ρ), β0(ρ))v̄

′
k(ρ)ρ

2k+3 dρ

=
Rsβ

′
0(Rs)

2k + 3

∂h

∂β
(σ̄, β̄)− β′

0(Rs)

(2k + 3)v̄k(Rs)R
2k+2
s

[
∂2h

∂β∂σ
σ′
0(ρ) +

∂2h

∂β2
β′
0(ρ)

]
v̄k(ρ)ρ

2k+3dρ

− β′
0(Rs)

(2k + 3)v̄k(Rs)R
2k+2
s

∫ Rs

0

∫ ρ

0

∂h

∂β
(σ0(ρ), β0(ρ))ρg

′(β0(η))v̄k(η)η
2k+2dηdρ

≡ Rsβ
′
0(Rs)

2k + 3

∂h

∂β
(σ̄, β̄)− β′

0(Rs)

2k + 3
εk1(Rs),

δk2 =
Rσ′

0(Rs)

2k + 3

∂h

∂σ
(σ̄, β̄)

− σ′
0(Rs)

(2k + 3)ūk(Rs)R
2k+2
s

∫ Rs

0

[
∂2h

∂σ2
σ′
0(ρ) +

∂2h

∂σ∂β
β′
0(ρ)

]
ūk(ρ)ρ

2k+3 dρ

− σ′
0(Rs)

(2k + 3)ūk(Rs)R
2k+2
s

∫ Rs

0

∫ ρ

0

∂h

∂σ
(σ0(ρ), β0(ρ))ρf

′(σ0(η))ūk(η)η
2k+2 dη dρ

≡ Rsσ
′
0(Rs)

2k + 3

∂h

∂σ
(σ̄, β̄)− σ′

0(Rs)

2k + 3
εk2(Rs).

Since ūk(r), v̄k(r) are increasing, we have

0 ≤ v̄k(ρ)ρ
2k+2

v̄k(Rs)R
2k+2
s

≤
(

ρ

Rs

)2k+2

, 0 ≤ ūk(ρ)ρ
2k+2

ūk(Rs)R
2k+2
s

≤
(

ρ

Rs

)2k+2

, 0 ≤ ρ ≤ Rs,

which implies that

lim
k→∞

v̄k(ρ)ρ
2k+2

v̄k(Rs)R
2k+2
s

= 0, lim
k→∞

ūk(ρ)ρ
2k+2

ūk(Rs)R
2k+2
s

= 0, 0 ≤ ρ < Rs.

Hence, by dominated convergence, we see that

lim
k→∞

εk1(Rs) = 0, lim
k→∞

εk2(Rs) = 0,

or

δk1 =
Rsβ

′
0(Rs)

2k + 3

∂h

∂β
(σ̄, β̄)(1 + o(1)), δk2 =

Rsσ
′
0(Rs)

2k + 3

∂h

∂σ
(σ̄, β̄)(1 + o(1)) as k → ∞.

Substituting the above expressions into (2.39), we have

γk =
2R3

s

(k2 + k − 2)k

(
h(σ̄, β̄)− Rsβ

′
0(Rs)

2k + 3

∂h

∂β
(σ̄, β̄)(1 + o(1))

− Rsσ
′
0(Rs)

2k + 3

∂h

∂σ
(σ̄, β̄)(1 + o(1))

)
,

we deduce that

γk+1 − γk = −6R3
s

k4
h(σ̄, β̄)(1 + o(1)) as k → ∞,

so that γk is strictly decreasing for k sufficiently large. This is to say that there exists a

positive integer k∗ such that for k ≥ k∗, γk+1 < γk. This completes the proof of (2.40).

We now summarize the main result of this section.

Theorem 2.1 The system of (2.4)–(2.10) has a nontrivial solution if and only if γ = γk

for some k ≥ 2.
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3 Reduction of the Problem

In this section, we perform the deduction of reducing problem (1.1)–(1.7) into an abstract

equation of the form (1.8), and study properties of the operators F( · , γ).
Recall Ω0 = {x ∈ R3 : |x| < Rs} and ∂Ω0 = {x ∈ R3 : |x| = Rs}. We first introduce

the so-called Hanzawa transformation to convert the free boundary problem (1.1)–(1.7)

into a nonlinear problem on the fixed domain Ω0. For this purpose, we take a function

χ ∈ C∞[0, ∞) such that

χ(t) = 0 for 0 ≤ t ≤ 1

2
; χ(t) = 1 for t ≥ 1; 0 ≤ χ′(t) ≤ 3 for t ≥ 0. (3.1)

Let m ≥ 3 and 0 < α < 1. For a sufficiently small positive δ <
1

3
min{Rs, 1}, we denote

Om+α
δ (∂Ω0) = {ρ ∈ Cm+α(∂Ω0) :∥ ρ ∥C1(∂Ω0)< δ}.

Given ρ ∈ Om+α
δ (∂Ω0), we denote

Ωρ = {x ∈ R3 : x = rω, 0 ≤ r < Rs + ρ(Rsω), ω ∈ S2}. (3.2)

Now, the Hanzawa transformation Ψρ : R3 → R3 can be defined by Ψρ(0) = 0 and

Ψρ(x) = x− ρ(Rsω)χ

(
r

Rs + ρ(Rsω)

)
ω, x ∈ R3,

where r = |x| and ω =
x

|x|
for x ̸= 0. Clearly, Ψρ(Ωρ) = Ω0. Using (3.1), we can easily

verify that the function r → r − ρχ

(
r

Rs
+ ρ

)
is strictly monotone increasing for any fixed

ω ∈ S2, hence Ψρ ∈ Diffm+α(R3, R3) ∩Diffm+α(Ωρ, Ω0). As usual, we denote by Ψ∗
ρ and

(Ψρ)∗ the pullback and push-forward operators induced by Ψρ, respectively, that is,

Ψ∗
ρu = u ◦Ψρ for u ∈ C(Ω0) and (Ψρ)∗v = v ◦Ψ−1

ρ for v ∈ C(Ωρ).

Clearly, if ρ ∈ Cm+α(∂Ω0), then

Ψ∗
ρ ∈ L(Cm+α(Ω0), Cm+α(Ωρ)) and (Ψρ)∗ ∈ L(Cm+α(Ωρ), Cm+α(Ω0)).

Next, given ρ ∈ Om+α
δ (∂Ω0) (m ≥ 3, 0 < α < 1), we define operators L(ρ) : Cm+α(Ω0) →

Cm+α−2(Ω0) and N (ρ) : Cm+α(Ω0) → Cm+α−1(∂Ω0), respectively, by

L(ρ) = (Ψρ)∗ ◦∆ ◦Ψ∗
ρ and N (ρ) = (Ψρ|∂Ωρ)∗ ◦

∂

∂n
◦Ψ∗

ρ ,

where
∂

∂n
denotes the outward normal derivative operator on ∂Ωρ, and Ψρ|∂Ωρ denotes

the restriction of Ψρ on ∂Ωρ. Note that L(ρ) is a second-order elliptic partial differential

operator on Ω0 with variable coefficients, and N (ρ) is a first-order boundary differential

operator. Clearly,

L ∈ C∞(Om+α
δ (∂Ω0), L(C

m+α(Ω0), C
m+α−2(Ω0))),

N ∈ C∞(Om+α
δ (∂Ω0), L(C

m+α(Ω0), C
m+α−1(∂Ω0))).

Finally, for ρ as mentioned earlier, we define κ : Cm+α(∂Ω0) → Cm+α−2(∂Ω0) by

κ(ρ)(Rsω)

={the mean curvature of the hypersurface r = Rs + ρ(Rsω) at the point Ψ−1
ρ (Rsω)}.

Note that for any ω ∈ S2, we have

Ψ−1
ρ (Rsω) = (Rs + ρ(Rsω))ω.
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Using these notation, it is not difficult to verify that the Hanzawa transformation (3.2)

converts problem (1.1)–(1.7) into the following equivalent system:

L(ρ)u = F (u) in Ω0, (3.3)

L(ρ)v = G(v) in Ω0, (3.4)

L(ρ)w = −H(u, v) in Ω0, (3.5)

u = σ̄ on ∂Ω0, (3.6)

v = β̄ on ∂Ω0, (3.7)

w = γκ(ρ) on ∂Ω0, (3.8)

N (ρ)w = 0 on ∂Ω0, (3.9)

More precisely, we have

Lemma 3.1 If (σ, β, p,Ω), where σ, β ∈ Cm+α(Ω), p ∈ Cm+α−2(Ω) and Ω = Ωρ for

some ρ ∈ Cm+α(∂Ω0), is a solution of problem (1.1)–(1.7), then by setting u = (Ψρ)∗σ, v =

(Ψρ)∗β and w = (Ψρ)∗w, we obtain a solution (u, v, w, ρ) of problem (3.3)–(3.9). Conversely,

if (u, v, w, ρ) ∈ Cm+α(Ω0)×Cm+α(Ω0)×Cm+α−2(Ω0)×Cm+α(∂Ω0) is a solution of problem

(3.3)–(3.9), then by setting σ = Ψ∗
ρu, β = Ψ∗

ρ v, w = Ψ∗
ρw and Ω = Ωρ, we obtain a solution

of the problem (1.1)–(1.7).

Fix m ∈ N with m ≥ 3, 0 < α < 1 and 0 < δ <
1

3
min{Rs, 1}. Given ρ ∈ Om+α

δ (∂Ω0),

we use the standard Schauder theory for elliptic boundary value problems to solve (3.3)–

(3.8). Then we obtain a unique solution

(u, v, w) = (U(ρ),V(ρ),Wγ(ρ)) ∈ Cm+α(Ω0)× Cm+α(Ω0)× Cm+α−2(Ω0)× Cm+α(∂Ω0).

Substituting w = Wγ(ρ) into (3.9) and denoting F(ρ, γ) = N (ρ)Wγ(ρ), we obtain the

following equation:

F(ρ, γ) = 0. (3.10)

By the reduction and standard theory of elliptic equations, we can verify that

F( · , γ) ∈ C∞
(
Om+α

δ (∂Ω0), Cm+α−3(∂Ω0)
)
. (3.11)

The following result will play an important role in later discussion:

Lemma 3.2 The Fréchet derivative of F(ρ, γ) at ρ = 0 is a Fourier multiplication

operator and has the following expression: For any ρ ∈ C∞(∂Ω0) with expansion ρ =
∞∑
k=1

k∑
l=−k

cklYkl(ω), we have

DρF(0, γ)ρ =
∞∑
k=1

k∑
l=−k

ηk(γ)cklYkl(ω), (3.12)

where

η0(γ) ≡ η0 = −f ′(u) ̸= 0, η0(γ) = 0, (3.13)

and

ηk(γ) =
k(k2 + k − 2)

2R3
s

(γ − γk), (k ≥ 2). (3.14)
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Proof. Because the equation (3.10) is equivalent to the problem (1.1)–(1.7), the lineariza-

tion of (3.10) at ρ = 0, that is, the equation DρF(0, γ)ρ = 0, is correspondingly equivalent

to the system of equations (2.15)–(2.22). Hence, from the deduction in Section 2, we see that

DρF(0, γ)ρ has an expression of the form (3.12). Furthermore, this argument also shows

that the coefficient of Ykl(ω) in the expression of DρF(0, γ)ρ, that is, ηk(γ)ckl equals the

left-hand side of (2.21), by a direct calculation, we obtain (3.13) and (3.14).

4 Bifurcation

In this section, we study bifurcation solutions for the problem (1.1)–(1.7). The main result

of this paper is as follows:

Theorem 4.1 Let (σ0, β0, p0,Ω0) be a radial solution of problem (1.1)–(1.7) satisfying

p′0(Rs) ̸= 0. If h(σ, β) > 0, then there exists a null sequence of positive numbers γk{k ≥ k∗},
where k∗ is an integer, k∗ ≥ 2, such that for each k ≥ k∗ even, in an neighborhood of

(σ0, β0, p0,Ω0, γk), there exists a bifurcation branch of solutions (σε, βε, pε,Ωε, γε) of problem

(1.1)–(1.7) with the following form:

σε(r, ω) = σ0(r) + uk(r)Yk0(ω)ε+ o(ε),

βε(r, ω) = β0(r) + vk(r)Yk0(ω)ε+ o(ε),

pε(r, ω) = p0(r) + wk(r)Yk0(ω)ε+ o(ε),

Ωε = r = Rs + εYk0(ω)ε+ o(ε),

γε = γk + (2k + 2)ε+ o(ε),

where r = |x|, ω =
x

|x|
, ε is a real parameter varying in the interval (−ξk, ξk) for some

small ξk > 0, uk( · ), vk( · ) and wk( · ) are certain smooth functions, Yk0(ω) is the spherical

harmonic of order (k, 0).

It should be pointed out that the bifurcation equation (3.10) is not of the classical

type. By Lemma 3.2, we see that Fréchet derivative DρF(0, γ) has a kernel of dimension 3,

implying that DρF(0, γ) is always degenerate. Indeed, because any translation of a solution

of (1.1)–(1.7) is still a solution, thus all solutions of (3.10) obtained from translating radial

solutions make up a 3-dimension manifold, so it is natural.

For any m ≥ 3 and 0 < α < 1, we introduce

X = the closure of the span {Yk0(ω), k = 0, 2, 4, · · · } in Cm+α(∂Ω0),

Y = the closure of the span {Yk0(ω), k = 0, 2, 4, · · · } in Cm−3+α(∂Ω0).

Note that in the spherical coordinates (θ, ϕ), 0 ≤ θ ≤ π, 0 ≤ ϕ ≤ 2π, the spherical

harmonics

Ykl(θ, ϕ) = (−1)l

√
(2k + 1)(k − l)!

2(k + l)!
P ′
k(cos θ)

eilϕ√
2π

,

where

P ′
k(z) =

1

2kk!
(1− z2)

1
2
dk+l

dzk+l
(z2 − 1)k.
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It is easy to verify that for k ≥ 0 even, Yk0(θ, ϕ) is independent of ϕ and satisfies Yk0(θ) =

Yk0(π−θ). Hence, for any function ρ ∈ X, ρ is independent of ϕ and ρ(θ) = ρ(π−θ). Using

this fact and (3.11), we can verify that

F( · , γ) ∈ C∞(Om+α
δ (∂Ω0) ∩X, Y ). (4.1)

Later we say γk is distinct if j ̸= k then γj ̸= γk. The following result holds:

Theorem 4.2 For distinct γk (k ≥ k∗ even), (0, γk) is a bifurcation point of the equation

F(ρ, γ) = 0. More precisely, there exists a constant ξk > 0 and a smooth mapping ε →
(ρε, γε) from (−ξk, ξk) to X ×R+ of the form:

ρε = εYk0(ω) + o(ε); γε = γk + (2k + 2)ε+ o(ε) for ε ∈ (−ξk, ξk), (4.2)

such that F(ρε, γε) = 0.

Proof. By the reduction in Section 3 and the definition of operator F( · , γ), it is clear

that

F(0, γ) = 0. (4.3)

From Lemma 3.2, we see that

DρF(0, γ)Y00(ω) = α0Y00(ω) ̸= 0,

and

DρF(0, γ)Yk0(ω) =
k(k2 + k − 2)

2R3
s

(γ − γk)Yk0(ω) for k ≥ k∗ even.

Hence, for distinct γk(k ≥ k∗ even), we have

kerDρF(0, γk) = span{Yk0(ω)}, (4.4)

ImDρF(0, γk) has codimension 1. (4.5)

and

DγρF(0, γk)Yk0(ω) = −k(k2 + k − 2)

2
γkYk0(ω) /∈ ImDρF(0, γk). (4.6)

By (4.3)–(4.6), we see all suppositions of the well-known Crandall-Rabinowitz bifurcation

theorem (Theorem 1.7 in [22]) are satisfied, thus (0, γk) is a bifurcation point of the equation

F(ρ, γ) = 0, and the proof is completed.

Proof of Theorem 4.1 Assume h(σ, β) > 0 and let k ≥ k∗ even. By Lemma 2.2, we see

that γk is distinct, so that (0, γk) is a bifurcation point of the equation F(ρ, γ) = 0. Then

by the reductions in Sections 2 and 3, the assertion of Theorem 4.1 follows.

5 Conclusion

Although the tumor model with inhibitor we studied is quite simple, we may nevertheless

draw some interesting biological conclusions from the mathematical result. Tumors grown

in culture are typically sphere. However, tumor grown in vivo may have various shapes. In

particular, a tumor with an inhibitor is associated with the growth of protrusions. In our

model, these protrusions are expressed by the shape r = Rs + εYm,0(θ, φ)+ o(ε2) of the free

boundary. We show that in case h(σ, β) > 0, there exist infinite many nonradial branches

of solutions bifurcating at each γk (k ≥ k∗ even).
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