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Abstract. We propose a multiscale approach for a nonstandard higher-order PDE
based on the p(·)-Kirchhoff energy. We first use the topological gradient approach for a
semi-linear case in order to detect important objects of the image. We consider a fully
nonlinear p(·)-Kirchhoff equation with variable-exponent functions that are chosen
adaptively based on the map provided by the topological gradient in order to preserve
important features of the image. Then, we consider the split Bregman method for
the numerical implementation of the proposed model. We compare our model with
other classical variational approaches such as the TVL and bi-harmonic restoration
models. Finally, we present some numerical results to illustrate the effectiveness of
our approach.
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1 Introduction

Image restoration is a fundamental task in image processing and it arises in diverse field-
s like geophysics, optics, medical imaging, etc. In this work, we are interested in the
restoration of images highly corrupted with multiplicative noise. Such a problem is a
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challenging task in various fields and particularly in ultrasound medical imaging. The
reason is that ultrasound images are strongly influenced by the quality of data usual-
ly corrupted with Rayleigh-distributed multiplicative noise. The latter is called speckle
noise [40, 41, 44] and usually affects image analysis methods by making important fea-
tures hard to detect. We aim at reconstructing an image u : Ω→R from an observed one
f : Ω⊂R2 →R which is degraded and contaminated by noise. The degradation model
that we consider is the following:

f =u+η
√

u, (1.1)

where η : Ω→R is a positive function that follows the Rayleigh-distribution. The recon-
struction problem based on model (1.1) is well known to be an ill-posed inverse problem
and thus regularization techniques are needed. Generally, the regularization technique
turns the reconstruction problem based on model (1.1) into a well-posed optimization
one where the energy to be minimized is the sum of a regularization term (mostly a
semi-norm of a functional space fixed a priori) and a data fitting term. The well-posed
minimization problem has the following form:

min
{u>0;u∈H}

{
J (u) := J(u)+λ

∫
Ω

(
f −u√

u

)2

dx

}
. (1.2)

The first part in the energy J (·) is a regularization term, the second one is the fitting
term, λ is a positive weight which controls the trade-off between them and H is the space
where the solution is sought.

Motivated by the advantages of the total variation, the authors in [40] proposed a
convex variational model which consists in minimizing

min
{u>0;u∈H}

{
J (u) :=

∫
Ω
|Du|+λ

∫
Ω

(
f −u√

u

)2

dx

}
. (1.3)

However, the total variation regularizer produces staircase effects in the restored images.
In [58], the authors proposed the fitting term∫

Ω

(
f√
u

log
f
u
− f√

u
+
√

u
)

dx,

which is derived from the Kullback-Leibler divergence, also known as the I-divergence
[45]. After that, they used first- and second-order total variation as a regularization which
yields the following model:

min
u∈H1

{
α
∫

Ω
|D2u|dx+β

∫
Ω
|Du|dx+λ

∫
Ω

(
f√
u

log
f
u
− f√

u
+
√

u
)

dx
}

, (1.4)

where α, β and λ are regularization parameters. Instead of solving the model (1.4), they
in practice used the auxiliary variable z= logu and then solved:

min
z∈H2

{
α
∫

Ω
|D2z|dx+β

∫
Ω
|Dz|dx+λ

∫
Ω
( f e−z/2 log

f
ez − f e−z/2+ez/2)dx

}
. (1.5)



396 H. Houichet, A. Theljani, B. Rjaibi and M. Moakher / J. Math. Study, 52 (2019), pp. 394-424

The denoised image u is then obtained by applying the exponential transformation to
the denoised image z in the logarithm domain. It is clear that there is no equivalence
between the two models (1.4) and (1.5) as the regularization in the former is applied
in the logarithmic domain. A better formulation would be the following constrained
optimization problem:

min
(u,z)

α
∫

Ω
|D2u|dx+β

∫
Ω
|Du|dx+λ

∫
Ω
( f e−z/2 log

f
ez − f e−z/2+ez/2)dx,

such that z= logu,

which can be solved using the alternating direction method of multipliers or the aug-
mented Lagrangian method.

The main issue in image denoising is how to choose the “best” regularization ter-
m which can selectively smooth a noisy image without losing significant features such
as edges and thin structures. Various regularizers based on first- or/and second-order
derivatives have been used [11, 13, 17, 50, 53], yielding various linear and nonlinear d-
iffusion PDEs. Usually, a linear diffusion PDE is more interesting and effective in ho-
mogeneous regions, whereas, a nonlinear diffusion PDE is more powerful in regions
containing edges and details. Motivated by the effectiveness of both linear and non-
linear diffusion models, we consider in this work a new regularization functional which
is compromise between them. More precisely, we consider the following regularizer:

Jp,q(u) :=α
∫

Ω

1
p(x)

|∆u|p(x) dx+β
∫

Ω

1
q(x)

|∇u|q(x) dx, (1.6)

where the functions p(·) and q(·) are defined on Ω and satisfy 1< p(·),q(·)≤2. Consider-
ing the above regularizer will lead to nonstandard PDEs with variable exponents p(.) and
q(·). This kind of PDEs, especially for the p-Laplace equation, were considered in several
works (see e.g. [9, 29, 43]). A lot of recent research studied partial differential equations
and variational problems with p(·)-growth conditions which arise in electro-rheological
fluids [51], elasticity theory [61] and image processing [19, 36, 42].

The smoothing proprieties of these nonstandard PDEs are driven by the variable ex-
ponents p(·) and q(·). The approach that we propose automatically balances between the
L1-Laplace (respectively L1-gradient) and the L2-Laplace (respectively L2-gradient) reg-
ularization effects. Thus, by giving the variable exponents p(·) and q(·) the possibility
to take values between 1 and 2 to slow diffusion (nonlinear) near edges, and enhance it
(linear) in smooth regions. This choice avoids over smoothing and stair-casing artifact
effects of L2- and L1-regularization. However, the main question is how to choose the
values of the exponents p(·) and q(·). A classical approach is to make an adaptive choice
for p(·) and q(·). We first identify the important features using classical edge and thin-
structure detector and then we vary the exponents p(·) and q(·), according to an edge
map, in the restoration process by considering a fully nonlinear p(·)-Kirchhoff model for
1< p(·),q(·)≤ 2. For the edge and thin-structure detection task, we consider the topo-
logical gradient approach. The natural choice is to consider the nonlinear p(·)-Kirchhoff
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energy. Unfortunately, it has not yet been studied thoroughly for p(·)-biharmonic oper-
ators and we do not address it in this work. However, it was recently studied in [6, 22]
for the biharmonic operator with very satisfactory result in the detection of fine features
(the arteries, filaments, internal organs, etc.). We extend the result obtained in [6,7,22] by
considering the topological gradient for the particular case p(·)≡q(·)≡2.

This paper is organized as follows. In Section 2, we fix notations and recall useful
results for the generalized Lebesgue/Sobolev spaces. In Section 3, we prove, by standard
variational techniques, the existence and uniqueness of the minimizer of the energy func-
tional (1.2). In Section 4, we give the formula of the topological gradient for p(·)≡q(·)≡2.
In Section 5, we present the adaptive algorithm and we present the split-Bregman scheme
for the restoration process. Finally, in Section 6, we treat some numerical examples to test
the efficiency and robustness of the proposed model.

2 Preliminaries and notations

Before going further, we recall some useful definitions and results about the variable-
exponent generalized Lebesgue and Sobolev spaces Lp(·)(Ω) and Wk,p(·)(Ω). For more
details, we refer the reader to [21, 24, 25, 27, 28]. For a bounded Lipschitz open set Ω⊂
RN with sufficiently smooth boundary ∂Ω, we define the variable-exponent generalized
Lebesgue space Lp(·)(Ω) as follows:

Lp(·)(Ω) :=
{

u : Ω→R measurable and
∫

Ω
|u(x)|p(x) dx<∞

}
,

where p(·)∈C(Ω) be a measurable function, called variable exponent on Ω and satisfy
the following condition:

1< p− := inf
x∈Ω

p(x)≤ p(x)≤ p+ :=sup
x∈Ω

p(x)≤2. (2.1)

Here Lp(·)(Ω) is a normed linear space equipped with the Luxemburg norm [21]:

∥u∥Lp(·) = inf

{
ϱ>0 :

∫
Ω

∣∣∣∣u(x)
ϱ

∣∣∣∣p(x)

dx≤1

}
.

Similarly, the Sobolev space with variable exponent Wk,p(·)(Ω) is defined as:

Wk,p(·)(Ω)=
{

u∈Lp(·)(Ω) : Dξu∈Lp(·)(Ω),|ξ|≤ k
}

,

where Dξu= ∂|ξ|

∂xα1
1 ∂xξ2

2 ...∂xξN
N

u with ξ=(ξ1,. . .,ξN)∈NN is a multi-index and |ξ|=∑N
i=1 ξi. The

space Wk,p(·)(Ω), is equipped with the norm:

∥u∥k,p(·) := ∑
|ξ|≤k

∥Dξu∥Lp(·) .
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We recall that both (Lp(·)(Ω),∥·∥Lp(·)) and (Wk,p(·)(Ω),∥·∥k,p(·)) are separable, reflexive
and uniformly convex Banach spaces [28].

Remark 2.1. We consider the following space X={u∈W2,p(·)(Ω)| ∂u
∂n

∣∣∣
∂Ω

=0}. The norm

∥u∥2,p(·) is equivalent to the following norm

∥u∥X = inf
{

ϱ>0 :
∫

Ω

∣∣∣∆u(x)
ϱ

∣∣∣p(x)
dx+

∫
Ω

∣∣∣u(x)
ϱ

∣∣∣p(x)
dx≤1

}
,

in the spaces W2,p(·)(Ω) and X (see [10] for more details). Moreover, (W2,p(·)(Ω);∥·∥X)
and (X;∥·∥X) are separable and reflexive Banach spaces. The norm ∥·∥X is equivalent to
the following norm

∥∆u∥Lp(·)+∥u∥Lp(·) . (2.2)

Proposition 2.1. Let p(x),r(x)∈C+(Ω).

a) If p(x)≤ r(x) for x∈Ω, then Lr(x)(Ω) ↪→Lp(x)(Ω) and the embedding is continuous.

b) Let A be one the operators Id, ∇, and ∆. Then, for u∈W2,p(·)(Ω), we have:

∥Au∥p−
Lp(·) ≤

∫
Ω

1
p(x)

|Au|p(x) dx≤∥Au∥p+
Lp(·) , if ∥Au∥Lp(·) ≥1,

∥Au∥p+
Lp(·) ≤

∫
Ω

1
p(x)

|Au|p(x) dx≤∥Au∥p−
Lp(·) , if ∥Au∥Lp(·) ≤1.

Proof. The proof of this proposition is similar to the proof of Theorem 1.3 in [28].

3 Mathematical formulation of the problem

In this paper, we discuss the image restoration problem, using model (1.2), based on the
minimization of the following energy functional:

J (u)=
{

Jp,q(u)+λ
∫

Ω
W(u, f )dx

}
, (3.1)

where W is the continuous function defined by:

W(s,z) :=
(

z−s√
s

)2

, ∀s,z>0.

Moreover, the first derivative of W with respect to s is

∂W
∂s

(s,z)=(s−z)ϕ(s) where ϕ(s)=
(z+s)

s2 .
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It is easy to see that ∂2W
∂2s (s,z) = 2z2

s3 > 0 and that W(s,z) is a strictly convex function for
s>0 [40].

Moreover, let m, M>0 such that m≤ z≤M, the following inequality holds

∂W
∂s

(m,z)≤0 and
∂W
∂s

(M,z)≥0. (3.2)

For brevity, we sometimes write W(·) for W(·, f ) and DuW(·, f ) for ∂W
∂s (·, f ).

3.1 Existence and uniqueness of solution

We recall that if (E,∥·∥E) and (F,∥·∥) are two Banach spaces with non empty intersection,
then on the intersection space, H=E∩F, one can define the norm ∥·∥H=∥·∥E+∥·∥F. For
our specific problem, given p(·), q(·)∈C(Ω) satisfying (2.1), we introduce the function
space Hp(·) by:

Hp(·)(Ω)=X∩W1,q(·)(Ω),

which can be equipped with the norm ∥·∥=∥·∥X+∥·∥1,q(·).
In this section, we establish the well-posedness of the proposed minimization prob-

lem.

Proposition 3.1. The following minimization problem

min
u∈Hp(·)(Ω)

J (u), (3.3)

admits a unique minimizer u in Hp(·)(Ω). Moreover, we have

0< inf
Ω

f ≤u≤sup
Ω

f . (3.4)

Proof. First, it easy to see that the energy J (·) is strictly convex and weakly lower semi-
continuous in the space Hp(·)(Ω). Let us consider a minimizing sequence (un)n⊂H(Ω):=
{u>0, u∈Hp(·)(Ω)} of J (·), i.e.,

J (un)−→n→∞
inf

u∈Hp(·)(Ω)
J (u).

We denote by m := infΩ f and M := supΩ f and let (vn)n ⊂H(Ω) be the sequence defined
by vn =min(un,M) and set D= {x∈Ω; un(x)≥ M}. Since on Ω\D we have un = vn, it
follows that

J (un)−J (vn)=α
∫

D

1
p(x)

|∆vn|p(x) dx+β
∫

D

1
q(x)

|∇un|q(x) dx

+λ
∫

D

(
W(un)−W(M)

)
dx. (3.5)
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Using the convexity property of W and the second inequality in (3.2), we have:∫
D

(
W(un)−W(M)

)
dx≥

∫
D

DuW(M)(un−M)dx≥0.

It follows that J (vn)≤J (un) and (vn)n is also a minimizing sequence satisfying vn≤M.
The same analysis goes for wn = max(un,m) and we also obtain that (wn)n satisfying
m≤wn. Therefore, we can assume, without restriction, that

un ∈S :={u∈Hp(·)(Ω);m≤u(·)≤M, a.e. in Ω}.

Now, consider a minimizing sequence (un)n ∈S . Then, we can easily see that ∥un∥L2(Ω)

is uniformly bounded. Using Proposition 2.1-a) and the fact 1< p(·),q(·)≤2, we get that
∥un∥Lp(·) and ∥un∥Lq(·) are uniformly bounded. In addition, we have that Jp,q(un)≤ C,
which implies, using Proposition 2.1-b) for A(un)=∇un and A(un)=∆un, that ∥∆un∥Lp(·)

and ∥∇un∥Lq(·) are uniformly bounded. Thus, we obtain that (un)n is uniformly bounded
in Hp(·)(Ω) which means that there exists a subsequence, still denoted (un)n∈N, such that
un ⇀

n→∞
u weakly in Hp(·)(Ω) and that the limit u is a minimizer of J (·). As the subset S

is weakly closed, we have the limit u∈S . The uniqueness comes from the strict convexity
of J (·).

The solution u of the minimization problem (3.3) is a weak solution of the Euler-
Lagrange equation:{

α∆
(
|∆u|p(x)−2∆u

)
−βdiv(|∇u|q(x)−2∇u)+λDuW(u, f )=0, in Ω,

∂
∂n (|∆u|p(x)−2∆u)= ∂u

∂n =0, on ∂Ω.
(3.6)

The operator ∆2
p(·)u :=∆

(
|∆u|p(x)−2∆u

)
is of fourth-order and usually called the p(·)-

biharmonic operator [1, 26]. In the particular case where p(·)≡ q(·)≡ 2, we get a linear
fourth-order PDEs corresponding to the bi-Laplace operator. As mentioned in the intro-
duction, we will consider the topological gradient for the particular case p(·)≡q(·)≡2.

4 Detection of important features via the topological gradient
method

A thin structure, like a filament in 3-D or a point in 2-D, is an object that can be linked to
a curve. The usual spatial gradient is classically used for the edge detection. However, it
is not efficient for thin structures [56,57]. Thin structures have a profile in the form of the
delta function, whereas edges have a profile in the form of the Heaviside function. The
edges have a jump of intensity through the discontinuity but the thin structure does not
have a jump of intensity through the discontinuity more precisely the size of thin struc-
tures no greater than few pixels. The difficulties comes from the presence of noise and
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the fact that filaments are thin or/and non regular. Fortunately, the topological gradient
approach provides an accurate identification of these kind of discontinuities [6, 22].

In the sequel, we recall the basic idea of the topological gradient method. For a small
parameter ε> 0, let Ωε be the perturbed domain of Ω obtained by creating a small hole
ωε=εω around the point x∈Ω, i.e., Ωε=Ω\ωε, where ω is the fixed smooth open bounded
subset in R2. Let Jε(uε) be a cost functional where uε is a solution of a given PDE on
the perturbed domain Ωε. Note that J0(u) where u is the solution of the given PDE on
the initial domain Ω. The variation of the cost functional, has the following asymptotic
expansion [55]:

Jε(uε)− J0(u)=ρ(ε)G(x0)+o(ρ(ε)).

In this expansion, ρ is an explicit function such that ρ(ε)≥0 and limε→0 ρ(ε)=0, G(x0) is
the topological gradient which does not depend on ε. To minimize the criterion Jε(·), one
has to create holes at some points where the topological gradient G is negative, which
correspond to regions containing important features to be detected.

In our approach, we define the following Fréchet differentiable cost functional which
will be minimized outside the important features:

J(u)=
α

2

∫
Ω
|∆u|2 dx+

β

2

∫
Ω
|∇u|2 dx, (4.1)

where α and β are positive parameters. The choice of this cost functional has two moti-
vations. First, second-order derivatives are mostly used in order to detect and preserve
thin structures, points or filaments [5, 6, 22], where there is no jump across the intensity.
Second, the classical gradient (first-order derivatives) usually gives a promising result in
edge detection [3, 4, 7, 39]. The parameters α and β can be chosen so that either an edge
or thin-structure is privileged.

We assume that important features are modeled by cracks and that the perturbed
domain (Ωε)ε≥0 is obtained by inserting a small family of insulating cracks (σε)ε≥0, where
σε=x0+εσ(n) and σ is a straight segment centered at the origin and with normal n (is the
fixed crack) in Ω. We denote by τ the tangent vector to the crack σ such that (n,τ) forms
a direct orthonormal basis and by dτ the curvilinear Lebesgue measure along σ.

The solution uε of the previous minimization problem fulfills the following optimality
conditions: 

α∆2uε−β∆uε+λDuW(uε, f )=0, in Ωε,
∂∆uε

∂n = ∂uε
∂n =0, on ∂Ω,

∂∆uε
∂n =∆uε =0, on σε,

(4.2)

where ∆2 :=∆.∆ is the bi-Laplace operator and ∂Ωε =∂Ω∪σε.
The computation of the topological gradient for the cost function (4.1) is a straightfor-

ward application of the analysis given in [5,6,22,23,38]. When calculating the topological
gradient for (4.2), the second-order PDE will be dominated by the bi-Laplace operator
and in this case we can not compute the topological gradient for the second-order PDEs.
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For this reason, we give in the following proposition the topological gradient for the
second- and fourth-order PDE separately.

Proposition 4.1. Let u be the solution of (3.6) with p(x)≡ q(x)≡ 2. Then, the topological
gradient associated with the cost function (4.1) is given by:

• If β=0, we have the following topological gradient for a fourth-order PDE:

GF(x0,n)=−α
2π

3
∇2u(x0)(n,n)∇2ϕ(x0)(n,n), (4.3)

where ϕ solves the following adjoint equation:{
α∆2ϕ+λD2

uW(u, f )ϕ=−α∆2u, in Ω,
∂∆ϕ
∂n = ∂ϕ

∂n =0, on ∂Ω.
(4.4)

• If α=0, we have the following topological gradient for a second-order PDE (with the Neu-
mann boundary condition on ∂Ωε):

GS(x0,n)=−βπ∇u(x0)·n∇ϕ(x0)·n, (4.5)

where ϕ solves the following adjoint equation:{
−β∆ϕ+λD2

uW(u, f )ϕ=β∆u, in Ω,
∂ϕ
∂n =0, on ∂Ω,

with D2
uW(s,z) is the second derivative of s 7→W(s,z) evaluated at s∈R∗

+.

Remark 4.1. The adjoint equation (4.4) comes from the first-order optimality condition
for the Lagrangian:

L(u,ϕ)= J(u)+α
∫

Ω
∆u∆ϕdx+β

∫
Ω
∇u∇ϕdx+λ

∫
Ω

DuW(u, f )ϕdx.

Equation (4.4) can be directly obtained by taking ∂L
∂u (u,ϕ)= 0 and applying Green’s for-

mula. For background materials we refer the reader to, e.g. [16, 30, 46, 55]. Moreover, the
adjoint equation is linear and by applying the Lax-Milgram theorem, it admits a unique
solution ϕ∈H2(Ω) if β=0 and ϕ∈H1(Ω) if α=0.

The quantity GS(x0,n) corresponds to the topological gradient result of first-order
derivatives (i.e., α=0) and it is sensitive to edges (see [7, 39]). It can be written as:

GS(x0,n)= ⟨M(x)n,n⟩E,

where ⟨·,·⟩E is the Euclidean inner product, n=(cosθ,sinθ) is a unit normal to the crack
with θ∈ [0,π] and M(x) is the 2×2 symmetric matrix defined by:

M(x)=−πβ
∇u(x)∇ϕ(x)T+∇ϕ(x)∇u(x)T

2
.
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On each point x0, GS(x0,n) takes its minimal value when n is the eigenvector associated
to the smallest eigenvalue of M. This value will be considered as the topological gradient
indicator associated with the optimal orientation of the crack which corresponds to an
edge of the image.

However, the quantity GF(x0,n) is the topological gradient for fourth-order deriva-
tives (i.e., β=0) and it is sensitive to thin structures and points. It has been proven in [22]
that the quantity GF(x0,n) can be written as:

GF(x0,θ)=−α
2π

3
P
(

∂xxu(x0),∂yyu(x0),∂xyu(x0),θ
)

P
(

∂xxϕ(x0),∂yyϕ(x0),∂xyϕ(x0),θ
)

,

where P :R4→R is defined by:

P(x,y,z,θ)=
1
2
(x+y)+

1
2
(x−y)cos(2θ)+zsin(2θ),

which is clearly a π-period function with respect to θ.

Remark 4.2. The topological gradient method was studied in [2, 12, 23, 37, 38] for a semi-
linear Laplace equations (more precisely, equation (4.2) for α= 0), and in [6] for the bi-
Laplace operator with a linear second-member. The analysis in our case requires some
tedious modifications of the result in [6]. For the reader’s convenience and for the shake
of completeness, we give the details in Appendix A.

In order to deal with the inequality constraint (3.4), we consider the following mini-
mization problem:

min
u

Jp,q(u)+λ
∫

Ω

( f −u)2

u
dx+ ιC(u), (4.6)

where ιC is the indicator function of C=[m,M] and which is given by:

ιC(u)=

{
0, if u∈C,
+∞, if u /∈C.

The proof of existence and uniqueness of a minimizer for the energy (4.6) can be found
in Appendix B.

5 Implementation

The smoothness of the solution is driven by the variable exponents p(·) and q(·) which
will be chosen adaptively in order to slow diffusion near edges in the aim to sharpening
and highlighting them, and to enhance diffusion in homogeneous regions. The restora-
tion task is carried out in two steps: In an initial step, we use the topological gradient
method for the biharmonic cost function (i.e., for p(·)≡q(·)≡2), to detect important fea-
tures. In a second step, we use the information furnished by the topological gradient
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(calculated for p(·)≡q(·)≡2) in order to vary the exponent p(·) in the restoration process
by considering a p(·)-biharmonic model for 1<p(·),q(·)≤2. The particularity of topolog-
ical gradient of being an efficient edge- and thin structure-detector makes it well suited
to control and locally select the exponent using the following algorithm:

Data: Given f and λ.

1. For p(·)≡2 and q(·)≡2, compute u and v which solve equations (4.2) and (4.4),
respectively.

2. Compute the topological gradient G(x0,n) for each point x0∈Ω.

3. Update p(·) and q(·) to obtain new exponents pa(·) and qa(·). Then, solve (3.6)
for p(·)= pa(·) and q(·)=qa(·).

Algorithm 1: Main algorithm

In order to update the exponents p(·) and q(·), we use the following formulas:

pa(x)=1+exp(−κ1|GF(x,n)|), qa(x)=1+exp(−κ2|GS(x,n)|), ∀x∈Ω,

where κ1,κ2 are positive constants. In homogeneous regions, we have GF(x,n)≈ 0, (re-
spectively GS(x,n)≈ 0) leading to a new exponent pa(x) (respectively qa(x)) close to 2.
Then, the model behaves like the biharmonic equation leading to strong diffusion and
hence noise is damped. Near edges, GF(x,n) (respectively GS(x,n)) is very important
and therefore pa(x) (respectively qa(x)) will be close to 1 which slows down diffusion.
However, for such a choice of pa(·) and qa(·), equation (3.6) is strongly nonlinear. For
that, we will use a split Bregman algorithm to numerically solve it.

5.1 Split-Bregman Algorithm

In [35], the authors proposed a new technique based on the Bregman iteration for solving
non-smooth problems, particularly, L1- regularized problems. Originally, it was invented
to solve the Rudin, Osher and Fatemi (ROF) model in image restoration. See also the
works by Getreuer [31–33] which use the split-Bregman method for TV denoising, de-
blurring and inpainting. Then, it was applied for more general problems such as higher-
order models. In our case, the original energy functional (1.6) is a non-differentiable
functional of u.

We assume that our discrete images have r×c pixels, where r and c are the numbers
of rows and columns in the image, respectively. We define the discrete operators and
norms that will be used in the numerical implementation. We first consider the following
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discrete norms:

∥u∥2=

(
r

∑
i=1

c

∑
j=1

u(i, j)2

)1/2

, u :{1,··· ,r}×{1,··· ,c}−→R,

∥m∥p =
r

∑
i=1

c

∑
j=1

1
p(i,j) |m(i, j)|p(i,j), m :{1,··· ,r}×{1,··· ,c}−→R,

∥n∥q =
r

∑
i=1

c

∑
j=1

1
q(i,j)

(
n1(i, j)2+n2(i, j)2)q(i,j)/2

, n :{1,··· ,r}×{1,··· ,c}−→R2.

(5.1)

For the discrete differential operators, we assume periodic boundary conditions for u.
By choosing periodic boundary conditions, the action of each of the discrete differential
operators can be regarded as a circular convolution of u and allows the use of fast Fourier
transform (see [49, 59, 60] for more details). We consider the discrete first- and second-
order derivatives Dx, Dy, Dxx and Dyy as operators from Rr×c to R. The discrete gradient
is Du=(Dxu,Dyu) where Dx and Dy are forward difference operators.

In the sequel, we will use the split Bregman algorithm for solving the optimization
problem (4.6). The main idea is to introduce auxiliary variables into the unconstrained
optimization problem and then solve a constrained one which is more easy to handle.
First, we rewrite the original optimization problem (4.6) in the following form:

min
u∈Rℓ

F(u)+
3

∑
k=1

Gk(Aku), (5.2)

where 
[A1,A2,A3]T=[I,∆·,∇·]T, F(u)= ιC(u), ∀u∈Rℓ, ℓ= r×c,

G1(v)=λ
r

∑
i=1

c

∑
j=1

(v(i, j)− f (i, j))2

v(i, j)
, ∀v∈Rℓ, G2(m)=α∥m∥p, ∀m∈Rℓ,

G3(n)=β∥n∥q, ∀n∈R2ℓ.

Then, the split-Bregman method applied to the problem (4.6) consists in solving the fol-
lowing constrained optimization problem:

min
u∈Rℓ

F(u)+G(X), s.t., Au=X, (5.3)

where A=[I,∆·,∇·]T, X=[v,m,n]T and G(X)=G1(v)+G2(m)+G3(n). The strong point of
the split Bregman method is that it is easier to solve the constrained optimization problem
(5.3) rather than the unconstrained optimization problem (5.2).

Remark 5.1. It appears on first sight that it is not necessary to introduce the auxiliary
variable v. However, this auxiliary variable is crucial since it allows to avoid solving a
nonlinear problem which will be faced in the u-subproblem due to the nonlinear data
fitting term W(u, f ).
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The split Bregman algorithm applied to the constrained optimization problem (5.3)
consists on the following iterations:

1 Initialization: u1=u0, X1=(v1,m1,n1)=(u0,∆u0,∇u0), b0
0 =1, b1

0 =1 and b2
0 =1.

2 Find uk+1 and Xk+1=(vk+1,mk+1,nk+1) which solve

[uk+1,Xk+1]=argmin
u,X

F(u)+G(X)+ λ0
2 ∥b0

k+u−v∥2
2+

λ1
2 ∥b1

k+∆u−m∥2
2

+ λ2
2 ∥b2

k+∇u−n∥2
2, X=(v,m,n),

(5.4)

3 Update

b0
k+1=b0

k+uk+1−vk+1,

b1
k+1=b1

k+∆vk+1−mk+1,

b2
k+1=b2

k+∇vk+1−nk+1.

Algorithm 2: Split-Bregman iterations

Remark 5.2. The proposed problem is splited into two blocks. The convergence proof
of the two-block split Bregman method can be found in [15, 35, 48, 52, 54]. In our case, as
F(·) and Gk(·), (k=1,2,3) in the optimization problem (5.2) are proper, convex and lower
semi-continuous functionals, the convergence can easily be proved following the same
line of proof in [54]. Thus, the sequence (uk) obtained by the u-subproblem converges to
the solution of the original minimization problem (4.6).

It is difficult to minimize the energy (5.4) with respect to all variables jointly. Thus in
every iteration, we split it into four separate subproblems, each of which can be quickly
solved. We apply an alternating minimization iterative procedure, namely, for k=0,1,.. .,
we solve sequentially:

The u-subproblem: uk+1=argmin
u

F(u)+ λ0
2 ∥b0

k+u−vk∥2
2+

λ1
2 ∥b1

k+∆u−mk∥2
2

+λ2
2 ∥b2

k+∇u−nk∥2
2.

The v-subproblem: vk+1=argmin
v

G1(v)+ λ0
2 ∥b0

k+uk+1−v∥2
2.

The m-subproblem: mk+1=argmin
m

G2(m)+ λ1
2 ∥b1

k+∆uk+1−m∥2
2.

The n-subproblem: nk+1=argmin
n

G3(n)+ λ2
2 ∥b2

k+∇uk+1−n∥2
2.

The bi-update (i=0,1,2)
b0

k+1=b0
k+uk+1−vk+1, b1

k+1=b1
k+∆uk+1−mk+1, b2

k+1=b2
k+∇uk+1−nk+1.
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The u-subproblem: This problem is

uk+1=argmin
u∈Rℓ

F(u)+ λ0
2 ∥b0

k+u−vk∥2
2+

λ1
2 ∥b1

k+∆u−m∥2
2+

λ2
2 ∥b2

k+∇u−n∥2
2.

Remark 5.3. Solving the above u-subproblem is a non-trivial task because of the the p-
resence of the term F(u). Such a problem can be handled by using the Moreau-Yosida
penalty function method. However, this u-subproblem will lead to a semi-linear PDE
which can be solved using different algorithms such as fixed-point iterations, Newton
method [58] and time-marching method that are known to be very slow. Here, we choose
to use an inner split Bregman iterations which allows us to obtain two easy sub-problems.
In fact, the first problem can be solved easily using the FFT transform, and the solution
of the second problem is explicitly given by a proximity operator [14].

Here, we will use an inner split-Bregman method to solve the u-subproblem by intro-
ducing a variable w and we solve

uk+1=argmin
u∈Rℓ

F(w)+ λ0
2 ∥b0

k+u−vk∥2
2+

λ1
2 ∥b1

k

+∆u−m∥2
2+

λ2
2 ∥b2

k+∇u−n∥2
2, such that, w=u.

We introduced the auxiliary variable w in order to avoid solving non classical PDE which
will be faced in the u-subproblem. For this case, we can also use the following iterative
algorithm to solve for the variables v and w in the above constrained u-subproblem

1 Initialization: w0=v1 and b3
0 =0.

2 Solve

uk+1=argmin
u∈Rℓ

λ0
2 ∥b0

k+u−vk∥2
2+

λ1
2 ∥b1

k+∆u−m∥2
2+

λ2
2 ∥b2

k+∇u−n∥2
2

+ λ3
2 ||b

3
k+uk+1−w||22. (5.5)

wk+1=argmin
w∈Rℓ

F(w)+ λ3
2 ||b

3
k+uk+1−w||22. (5.6)

3 Update the Bregman iteration

b3
k+1=b3

k+uk+1−wk+1.

Algorithm 3: Split-Bregman iterations for the u-subproblem

The subproblems (5.5) and (5.6) can be efficiently solved. The problem (5.5) is quadrat-
ic and it is solved through its optimality condition given by the following fourth-order
PDE:

λ1∆2u−λ2∆u+(λ0+λ3)u=λ0(b0
k−vk)+λ3(b3

k−wk)+λ1∆(mk−b1
k)−λ2div(b2

k−nk).



408 H. Houichet, A. Theljani, B. Rjaibi and M. Moakher / J. Math. Study, 52 (2019), pp. 394-424

To solve the previous fourth-order PDE we use the 2-dimensional discrete Fourier trans-
forms F . In fact, we have:

F (u)(i, j)=
F (λ0(b0

k−vk)+λ3(b3
k−wk)−λ2div(b2

k−nk))+λ1Mi,jmk

λ1M2
i,j−λ2Mi,j+(λ0+λ3)δij

, (5.7)

where Mi,j is the discrete Fourier of the operator ∆ and which is given by:

Mi,j =
2

(∆x)2

(
cos
(

2πi
r

)
−1
)
+

2
(∆y)2

(
cos
(

2π j
c

)
−1
)

,

where ∆x and ∆y are the mesh size in the x- and y-directions, respectively, see for instance
[34, 49].

Therefore, the discrete solution u can be obtained by applying the inverse of the dis-
crete two-dimensional Fourier transform F−1 to equation (5.7).

The solution w of (5.6) is given by the proximal operator

w=prox ιC(w)
λ3

(b3
k+uk+1)=


b3

k+uk+1, if b3
k+uk+1∈ [m,M],

M, if b3
k+uk+1>M,

m if b3
k+uk+1<m.

(5.8)

The v-subproblem: This problem is

vk+1=argmin
v∈Rℓ

G1(v)+ λ0
2 ∥b0

k+uk+1−v∥2
2, (5.9)

whose solution fulfills:
Av(i, j)3+Bv(i, j)2+C=0,

where A=λ0, B=λ+λ0(b0
k(i, j)+uk+1(i, j)) and C=−λ f (i, j)2. The polynomial

P(X)=AX3+BX2+C,

is of degree 3 and hence has at least one real root. However, in our case, we can prove
that it has exactly one real root which corresponds to the solution of (5.9). In fact, every
root of P(·) is a solution of (5.9) which clearly is unique, because the strict convexity of
the energy functional.

The m-subproblem: This problem is

mk+1=argmin
m∈Rℓ

G2(m)+ λ1
2 ∥b1

k+∆uk+1−m∥2
2,

whose minimizer mk+1 is given explicitly by the following shrinkage-like formula [8]:

mk+1=max

{
|b1

k+∆uk+1|−
α|b1

k+∆uk+1|p(·)−1

λ1 p(·) ,0

}
b1

k+∆uk+1

|b1
k+∆uk+1|

,

where 0
0 =0 is assumed.
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The n-subproblem: This problem is

nk+1=argmin
n∈R2ℓ

G3(n)+ λ2
2 ∥b2

k+∇uk+1−n∥2
2,

whose minimizer nk+1 is given explicitly by the following shrinkage-like formula:

nk+1=max

{
∥b2

k+∇uk+1∥2−
β∥b2

k+∇uk+1∥
q(·)−1
2

λ2q(·) ,0

}
b2

k+∇uk+1

∥b2
k+∇uk+1∥2

,

where ∥·∥2 is the Euclidean norm.

6 Numerical experiments

In the following section, we use some numerical experiments to examine the efficiency
and robustness of the Algorithm 5.1. All numerical experiments were run for noisy gray
images to recover the original ones. All the images used here were downloaded from the
internet and are significantly related to the purpose of this work which is to detect edges
and thin structures from medical images. The performance of the proposed approach is
illustrated for multiplicative speckle noise removal and important features detection. We
compare our model with the following classical ones:

• The TVL model i.e., p(·)≡q(·)≡1:

minu,v,m,n α∥m∥1+β∥n∥1+λ
r

∑
i=1

c

∑
j=1

(v(i, j)− f (i, j))2

v(i, j)
+ ιC(u),

such that u=v,∆u=m,∇u=n. (6.1)

• The biharmonic model i.e., p(·)≡q(·)≡2:

minu,v,m,n α∥m∥2+β∥n∥2+λ
r

∑
i=1

c

∑
j=1

(v(i, j)− f (i, j))2

v(i, j)
+ ιC(u),

such that u=v,∆u=m,∇u=n. (6.2)

We also used the split-Bregman algorithm to solve the two problems (6.1) and (6.2).
For all models, we stop the split-Bregman iterations when the following stopping criteri-

on ∥uk+1−uk∥
∥uk∥ ≤10−3 is satisfied. Denoising performance is evaluated using the Structural

Similarity Index (SSIM) which measures the perceptual difference between the restored
and the original images. The SSIM takes values between 0 and 1, where a value close to
one means that the noise is low. We also use the the Signal-to-Noise Ratio (SNR) and Peak
Signal-to-Noise Ratio (PSNR) indicators (the higher SNR/PSNR is the better restoration
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is). For all numerical examples to be discussed below, we display the original image,
noisy one, the topological gradient indicator for the second- and fourth-order PDE, and
the variable-exponent functions p(·) and q(·).

In order to reduce the number of parameters to tune, we set λ0 =λ3 = 1, λ1 = 2 and
λ2 = 5 in all numerical experiments. The choice of the parameters α,β, and λ will affect
how much the image is regularized. These parameters provide a balance between de-
noising and preserving the important objects and edges.

In the first example presented in Figure 1, we test the efficiency of the proposed ap-
proach in detecting thin-structures such as blood vessels and veins. We also compare all
the competitive models and the optimal choice of the regularization parameters for all
models were chosen after making different tests by setting α= 0.2, β= 0.3 and varying
λ∈{1,1.5,2,2.5,3,3.5,4,4.5,5}. We have found that the optimal parameters are λ=3, λ=3
and λ=5 for the biharmonic, p(·)-Kirchhoff and the TVL models, respectively.

Figures 1(c) and 1(d) show the topological gradient indicators for the second- and
fourth-order operators, respectively. The topological gradient (4.3) coming from the fourth-
order derivatives performs well in detecting thin-structures. Whereas, the gradient (4.5)
which is coming from second-order derivatives is effective only in detecting normal
edges, i.e., not the edges a thin-structures.

The images 1(e) and 1(f) show the variable-exponent functions q(·) and p(·), respec-
tively. Their values are ranging between 1 and 2. Near important features, they took
values close to 1 which means slowing down diffusion in the model, whereas the values
are close to 2 elsewhere. We note that the topological gradients and the masks created by
the exponents give a good description of the image objects, i.e., edges and thin structures.
Moreover, we measure the quality of restoration using the SSIM, PSNR, and SNR indica-
tors which confirm that our model; e.g. image 1(g) in Figure 1, gives better restoration
results compared to the other models.

Figure 2 shows the convergence of the split-Bregman scheme for the three models.
We display the curves of SSIM indicators as functions of split-Bregman iterations. The
SSIM indicator for the TVL model converges monotonically and slowly to 0.84 after 101
iterations. This is not surprising since the ∆

(
∆·

|∆·|δ

)
and div

(
∇·

|∇·|δ

)
have low impact on

smoothness. For the biharmonic model, the SSIM values tends to 0.83 after only 39 iter-
ations and slightly decreases after 39 iterations (see Figure 2). This is expected because
of the high-smoothness properties of the bi-Laplace operator, ∆2. If more iterations were
performed, the image will be over-smoothed. However, the SSIM values for the p(·)-
Kirchhoff model rapidly tends to 0.84 and less iteration (48 iterations) are needed com-
pared to the other models.
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In order to show the robustness of the topological gradient approach in detecting
thin-structures such as filaments and points, we consider in Figure 3 an image which
contains point-like objects. The fourth-order topological gradient is more efficient than
the second-order topological gradient in detecting thin structures. This result highlights
the importance of the high-order terms in detecting and preserving thin structures.

In Figures 4 and 5, we compared the three competitive models in denoising ultra-
sound medical images. In both examples, our model is more effective than the TVL and
the biharmonic models in noise reduction as well as thin-structure preservation. The de-
noised images using the different models look visually similar. The main dissimilarity is
highlighted by zooming in the middle parts of the images in Figure 7 where it is clear that
the proposed approach outperforms the TVL and the biharmonic models. We give in Fig-
ure 6 the curve of the SSIM values, for the images in Figures 4 and 5, as a function of the
level of noise σ2. For σ2 < 0.06, the three models are broadly comparable. However, the
advantages of the proposed model can be seen for σ2 >0.06. We quantitatively compare
all results using the SSIM, PSNR and SNR indicators which are summarized in Table 1.

7 Conclusion

In this paper, we have presented a new approach to restore images corrupted with speck-
le multiplicative noise. The proposed approach combines the advantages of the topolog-
ical gradient method for the detection of important features and the diffusion proprieties
of a nonstandard p(·)-Kirchhoff operator for the denoising. A split Bregman algorithm is
used to solve the proposed model. Different numerical examples and comparison with
different models were performed. The results showed a good quality in image denoising
and thin-structure preservation.

A Proof of Proposition 4.1

The topological gradient for the second-order semilinear PDE (i.e., α=0) is given in [23,
37, 38]. Here, we only give the main steps of the proof in the case of the fourth-order
semilinear PDE (i.e., β=0). For more details, see [6].

Table 1: Comparison between the p(·)-Kirchhoff, TVL and biharmonic models.

p(·)-Kirchhoff biharmonic TVL
SSIM PSNR SNR Iter. SSIM PSNR SNR Iter. SSIM PSNR SNR Iter.

Figure 1 0.847 29.3 26.52 48 0.842 28.58 25.97 39 0.837 27.79 25.19 101
Figure 3 0.7 25.74 24.03 41 0.66 23.44 21.83 57 0.67 24.41 22.8 32
Figure 4 0.96 32.28 21.08 76 0.95 30.68 20.33 52 0.962 32.2 20.85 69
Figure 5 0.868 30 21.62 44 0.861 29.36 20.98 51 0.867 29.91 21.53 46
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(a) (b)

(c) (d)

[X,Y]: [305 312]
Index: 1.058
[R,G,B]: [0.2078 0.2353 0.6745]

[X,Y]: [225 174]
Index: 1.971
[R,G,B]: [0.9804 0.9804 0.9804]

(e)

[X,Y]: [305 312]
Index: 1.01
[R,G,B]: [0 0 0]

[X,Y]: [225 174]
Index: 1.921
[R,G,B]: [0.9176 0.9176 0.9176]

(f)

(g) (h) (i)

Figure 1: (a) Original image, (b) noisy one, (c) topological gradient for the second-order model, (d) topological
gradient for the fourth-order model, (e) the variable exponent q(·), (f) the variable exponent p(·), (g) p(·)-
Kirchhoff model, (h) TVL model and (i) biharmonic model.
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Figure 2: Convergence of the split-Bregman method (applied to the image in Figure 1).

A.1 Exterior boundary-value problem

Let Σ a regular open manifold of dimension 1 included in R2. We denote by Wm(R2\Σ)
the weighted Sobolev space defined by [47]:

Wm(R2\Σ)=

u,
∇ku

(1+r2)
m−k

2 log(2+r2)
∈L2(R2\Σ) for k∈{0,.. .,m−1} and ∇mu∈L2(R2\Σ)

,

where r=|x|. We denote by Wm(R2\Σ)/Pm−1 is the quotient space of functions Wm(R2\
Σ) defined up to a polynomial of degree less or equal than m−1.

Let us now introduce the following boundary value problem for the bi-Laplace prob-
lem defined in the weighted Sobolev space.

Theorem A.1. Given the auxiliary exterior-domain problem
∆2H=0, on R2\Σ,
∂∆H
∂n = g1, in Σ,

∆H= g2, in Σ,

(A.1)

where (g1,g2) ∈
(

H
3
2
00(Σ)

)
′×
(

H
1
2
00(Σ)

)
′. We assume that Λ = R2\Σ is connected. Then,

equation (A.1) admits an unique solution H∈W2(Λ)/P1 satisfying

H(x)=
∫

σ
∆E(x−y)η(y)dσ(y),
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(a) (b)

(c) (d)

(e) (f)

(g) (h) (i)

Figure 3: (a) Original image, (b) noisy one, (c) topological gradient for the second-order model, (d) topological
gradient for the fourth-order, (e) the variable exponent q(·), (f) the variable exponent p(·), (g) p(·)-Kirchhoff
model, (g) TVL model and (i) biharmonic model, (α=0.2 and β=0.1).
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(a) (b)

(c) (d)

(e) (f)

(g) (h) (i)

Figure 4: (a) Original image, (b) noisy one, (c) topological gradient for the second-order model, (d) topological
gradient for the fourth-order model, (e) the variable exponent q(·), (f) the variable exponent p(·), (g) p(·)-
Kirchhoff model, (h) the TVL model and (e) the biharmonic model, (α=0.2 and β=0.2).
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(a) (b)

(c) (d)

(e) (f)

(g) (h) (i)

Figure 5: (a) Original image, (b) noisy one, (c) topological gradient for the second-order model, (d) topological
gradient for the fourth-order model, (e) the variable exponent q(·), (f) the variable exponent p(·), (g) p(·)-
Kirchhoff model, (h) TVL model and (i) biharmonic model, (α=0.2 and β=0.2).
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Figure 6: The sensitivity of noise level as a function of the SSIM for the three models applied to the images in
Figures 4 and 5, respectively.

Figure 7: Zooms of Figure 4: (a) The original part, (b) the noisy one, (c) p(·)-Kirchhoff model, (d) the TVL
model and (e) the biharmonic model.

where E is the fundamental solution of the 2D bi-Laplace operator, which is given by

E(x−y)=− 1
8π

|x−y|2 ln(|x−y|),

and η is the solution of the following boundary equations, for all x∈Σ, we have∮
Σ

η1(y)
∂

∂nx

(
∂∆E(x−y)

∂ny

)
dσ(y)+

∮
Σ

η2(y)
∂(∆yE(x−y))

∂nx
dσ(y)= g1(x),∮

Σ
η1(y)∆x

(
∂(∆E(x−y))

∂ny

)
dσ(y)+

∮
Σ

η2(y)∆x(∆yE(x−y)))dσ(y)= g2(x),

where
∮

denotes the Cauchy principal value. Moreover, the jump conditions across Σ can be
written as

[H]=η1, [∂nH]=−η2. (A.2)
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If Σ is a straight crack written as Σ=(−1,1)×{0}, g1(x)=0 and g2(x)=Cst, then

η1(x)=0, η2(x)=Cst
√

1−x2
1, ∀x=(x1,0)∈Σ. (A.3)

Proof. The well-posedness of problem (A.1) results from the Deny-Lions inequality [20].
The integral representation and the jump relation are obtained by using a similar method
to that presented in [6,18]. The values of η1 and η2 for a straight crack have been obtained
in [6].

A.2 The topological gradient asymptotic

Let Xε = {u∈ H2(Ωε)| ∂u
∂n

∣∣
∂Ω = 0}, Ωε =Ω\{x0+εσ} and to simplify the presentation we

assume that x0≡0. We set σε ={x, x
ε σ} and we assume that ∂Ω∩σε =∅.

The variational formulation of the perturbed equation (4.2) is:

Find uε ∈Xε such that, ⟨Fε(uε),φ⟩=0, ∀φ∈Xε, (A.4)

where
⟨Fε(uε),φ⟩=α

∫
Ωε

∆uε∆φdx+λ
∫

Ωε

DuW(uε, f )φdx.

Here, the brackets ⟨·,·⟩ denotes the duality product between Xε and X′
ε. For brevity, in

the sequel we write F v(u) := ⟨F (u),v⟩.
We introduce the Lagrangian associated with problem (A.4) for all φ,ϕ∈Xε

L(φ,ϕ) :=Jε(φ)+Fϕ
ε (φ).

The adjoint state equation is obtained by differentiating L with respect to φ evaluated at
φ=u and ϕ=vε,

DφL(φ,ϕ)=0, ∀ φ∈Xε,

or, equivalently
DuF vε

ε (u)(φ)=−Du Jε(u)(φ), ∀ φ∈Xε, (A.5)

where
DuF vε

ε (u)(φ)=α
∫

Ωε

∆vε∆φdx+λ
∫

Ωε

D2
uW(u, f )vε φdx.

Using Green’s formula, we deduce the corresponding strong form of (A.5)
α∆2vε+λD2

uW(u, f )vε =−α∆2u, in Ωε,
∂vε
∂n = ∂∆vε

∂n =0, on ∂Ω,
∆vε =

∂∆vε
∂n =0, on σε.

(A.6)
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Let uε and vε be the solutions of (4.2) and (A.5), respectively, and u the solution of (3.6)
with p(x)=2 and β=0. Taylor’s expansion of Fε and (A.5) gives

F vε
ε (uε)−F vε

ε (u)=DuF vε
ε (u)(uε−u)+

1
2

D2
uF vε

ε (uζε
)(uε−u)2

=−Du Jε(u)(uε−u)+E1(ε), (A.7)

where

E1(ε)=
1
2

D2
uF vε

ε (uζε
)(uε−u)2=

1
2

∫
Ωε

D3
uW(uζε

, f )(uε−u)2vε dx, (A.8)

uζε
= θu+(1−θ)uε, 0≤ θ≤1.

From Green’s formula and (A.7), we get

Jε(uε)− J0(u)=α
∫

Ωε

(∆uε−∆u)∆udx+
α

2

∫
Ωε

|∆uε−∆u|2 dx,

=F vε
ε (u)−F vε

ε (uε)−E1(ε)+E2(ε)+E3(ε)+E4(ε),

where

E2(ε)=
α

2

∫
Ωε

|∆uε−∆u|2 dx, (A.9)

E3(ε)=α
∫

σε

∂∆u
∂n

[uε−u]dτ(x), (A.10)

E4(ε)=−α
∫

σε

∆u
[

∂(uε−u)
∂n

]
dτ(x). (A.11)

Then, using (A.4) and Green’s formula on F vε
ε (u) and we set wε = vε−v0, where v0 and

vε are solutions of (4.4) and (A.6), respectively. Thus, the variation of the cost function
Jε(uε)− J0(u) can be written as

Jε(uε)− J0(u)=−α
∫

σε

∆u
[

∂wε

∂n

]
dτ(x)+α

∫
σε

∂∆u
∂n

[wε]dτ(x)−E1(ε)

+E2(ε)+E3(ε)+E4(ε),
=A−E1(ε)+E2(ε)+E3(ε)+E4(ε)+E5(ε), (A.12)

where

A=−α
∫

σε

∆u
[

∂wε

∂n

]
dτ(x), (A.13)

E5(ε)=α
∫

σε

∂∆u
∂n

[wε]dτ(x). (A.14)
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To compute the topological derivative of the cost function we need to approximate the
solutions of the adjoint state wε =vε−v0. We recall that wε ∈Xε is solution of

α∆2wε+λD2
uW(u, f )wε =0, on Ωε,

∂∆wε
∂n = ∂wε

∂n =0, in ∂Ω,
∂∆wε

∂n =− ∂∆v0
∂n , in σε,

∆wε =−∆v0, in σε.

We split wε as

wε = ε2H
( x

ε

)
+eε, (A.15)

where H∈W2(R2\σ)/P1 is the solution of the following boundary-value problem
∆2H=0, in R2\σ,
∂∆H
∂n

=0, on σ,

∆H=−∆v0(0), on σ,

(A.16)

and eε is the solution of the following equation

α∆2eε+λD2
uW(u, f )eε =−ε2λD2

uW(u, f )H
( x

ε

)
, in Ω,

∂∆eε
∂n =− 1

ε
∂H
∂n

( x
ε

)
, on ∂Ω,

∂eε
∂n =−ε ∂H

∂n

( x
ε

)
, on ∂Ω,

∆eε =−(∆v0−∆v0(0)), on σε,
∂∆eε
∂n =− ∂∆v0

∂n , on σε.

(A.17)

Using classical computations as it is done in [6], we have

∥eε∥2,Ωε
=O(−ε2 logε), ∥wε∥2,Ωε

=O(ε).

We proceed now to evaluate the asymptotic expansion of the cost function (A.12).
Using (A.15) the jump relation (??) and using the change of variable x= εy, we obtain

A=αε2∆u(0)
∫

σ
η2(y)dτ(y)+E6(ε)+E7(ε), (A.18)

where

E6(ε)=−εα
∫

σ
(∆u(εy)−∆u(0))

[
∂wε

∂n
(εy)

]
dy, (A.19)

E7(ε)=−εα
∫

σ
∆u(εy)

[
∂eε

∂n
(εy)

]
dy. (A.20)
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Using the asymptotic expansion of the density η2 in the case of straight crack (A.3) with
g2=−∆v0(0) (see equation (A.1)), we obtain

A=−ε2α
4
3

∆u(0)∆v0(0)
∫ 1

−1

√
1−y2dτ(y2)+E6(ε)+E7(ε)

=−ε2α
2π

3
∆u(0)∆v0(0)+E6(ε)+E7(ε). (A.21)

Standard computations similar that used in [6, 23] lead to

Ei(ε)= o(ε2), for 1≤ i≤7. (A.22)

It follows from (A.12), (A.21) and (A.22) that the topological gradient at x0=0 is given by

GF(0)=−α
2π

3
∆u(0)∆v0(0).

For all points x0 in Ω the general expression of the topological gradient for the fourth-
order PDE of a cracked domain Ω\{x0+εσ(n)} is given in (4.3).

B Existence and uniqueness of a minimizer for energy (4.6)

In this appendix, we establish the well-posedness of energy (4.6). Let us consider a mini-
mizing sequence (un)n ⊂Hp(·)(Ω) of E(·), then there exists C>0 such that

E(un)≤C. (B.1)

Thus, Jp,q(un)≤C and hence ∥∆un∥Lp(·) and ∥∇un∥Lq(·) are uniformly bounded. Moreover,
from the definition of the operator ιC(·) and the inequality (B.1), we necessary get that
ιC(un) = 0, which means that un ∈ [m,M] and then un is uniformly bounded in L2(Ω).
Therefore, using Proposition 2.1-a) and the fact that 1< p(·),q(·)≤2, we get that ∥un∥Lp(·)

and ∥un∥Lq(·) are uniformly bounded. Thus, we obtain that (un)n is uniformly bounded
in Hp(·)(Ω) which means that there exists a subsequence, still denoted (un)n∈N, such
that un ⇀

n→∞
u weakly in Hp(·)(Ω) and the limit u is a minimizer of E(·). By using the

lower semi-continuity of E(·) and Fatou’s Lemma we obtain that u is a solution of (4.6).
Uniqueness follows from the strict convexity of E(·) for u>0.
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[44] Th. Loupas. Digital image processing for noise reduction in medical ultrasonics. PhD thesis,

University of Edinburgh, UK, 1988.
[45] D. L. Marks, T. S. Ralston, and S. A. Boppart. Speckle reduction by I-divergence regulariza-

tion in optical coherence tomography. JOSA A, 22(11):2366–2371, 2005.
[46] M. Masmoudi. The topological asymptotic. In R. Glowinski, H. Kawarada, and J. Periaux,

editors, Computational Methods for Control Applications, volume 16 of Math. Sci. Appl., pages
53–72. GAKUTO International, 2002.
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