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Abstract. In this paper, we use the topological and shape gradient framework, to op-
timize a current carrying multicables. The geometry of the multicables is modeled as a
coated inclusions with different conductivities and the problem we are interested is the
location of the inclusions to get a suitable thermal environnent. We solve numerically
the optimization problem using topological and shape gradient strategy. Finally, we
present some numerical experiments.
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1 Introduction

In modern electrical machines like hybrid and electrical cars, manufacturers reduce ca-
ble diameters to save material, space and weight. But smaller diameters of the electrical
cables result a higher temperatures in the connecting structures. This may cause over-
heating and irreparable damages of the machines. The heat transfer in the current carry-
ing multi-cables depend on the position of the cables. Therefore finding the positions of
cables which lead to the minimal temperature is of interest.

In the sequel, we will use the following notations:
The k-th single cable Ck =(xk,yk,ri

k,re
k) is described by its center (xk,yk), the radius of

the current carrying part ri
k and the outer radius re

k. It is surrounded by insulation part
with thickness re

k−ri
k and boundaries Γi

k and Γe
k .

The multi-cable MC=((x0,y0,ri
0,re

0),C1 . . .CN) consists of N single cables, has the cen-
ter coordinates (x0,y0), the inner radius ri

0 and the outer radius re
0. It is surrounded by
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insulation layer with thickness re
0−ri

0 and conductivity σe. Each single cable consists of
a core part Ωcore

k with heat conductivity σcore
k , carrying the current Ik, and an insulation

part Ωiso
k with heat conductivity σiso

k . The gaps between the single cables and the exterior
insulation can be of solid material or air. They are modeled by pure conduction with heat
conductivity σgap.

Ωcore

Ωiso

Ωgap

Ωe

Figure 1: The cross section of a single cable.

The temperature distribution is described by the following Helmoltz equation :
−div(σ∇u)−cu= f in Ω\Γi,
σe∂nu+α(u)(u−uamb)=0 on Γe,

JuK=0 on Γi,

Jσ∂nuK=0 on Γi,

(1.1)

where Ω=∪N
k=1(Ω

core
k ∪Ωiso

k )∪Ωgap∪Ωe is the two-dimensional cross section of the multi-
cable with regular exterior boundary ∂Ω=Γe and interface boundaries Γi=

⋃N
k=1(Γ

e
k∪Γi

k)∪
Γgi, Γgi represents the interface between the exterior insulation and the gaps, Γi

k = ∂Ωcore
k

and Γe
k represents the external boundary of Ωiso

k .
The heat conductivity σ, the linear temperature coefficient c and the source term f are

given respectively by

σ :=
N

∑
k=1

(
σcore

k 1Ωcore
k

+σiso
k 1Ωiso

k

)
+σe1Ωe +σgap1Ωgap , (1.2)

c :=
N

∑
k=1

1
nk

(
4Ik

din
k δkπ

)2

ρ0,kαρ,k1Ωcore
k

, (1.3)
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f :=
N

∑
k=1

1
nk

(
4Ik

din
k δkπ

)2

ρ0,k
(
1−αρ,kure f

)
1Ωcore

k
, (1.4)

where din
k is the interior diameter of the k-th single cable, nk is the number of metallic

conductor and δk is their diameter, ρ0,k is the electrical resistivity of Ωcore
k at reference tem-

perature ure f (normally 20◦C), uamb is the ambiant temperature and αρ,k the linear temper-
ature coefficient of electrical resistivity. The heat transfer coefficient α(u) is nonlinearly
temperature and geometry dependent quantity, incorporating the effects of radiation and
convection at the transition from solid material to air.

α(u)=αconv(u)+αrad(u),

where αconv(u) is the convective part of α(u), summarizes the fluid dynamic properties
of air and αrad(u) is the radiative part, it is derived from the Stefan-Boltzmann law.

In the particular case of cylindrical multi-cable, the transfert coefficient α is given by

α(u)=


α(uamb) if u<uamb,
α(u) if uamb≤u≤umax,
α(umax) if u>umax,

(1.5)

where

α(s)=
(

αd√
dΩ

+αu
6√s−uamb

)2

︸ ︷︷ ︸
=αconv

+εrσb
(
u2

amb+s2)(uamb+s)︸ ︷︷ ︸
=αrad

.

The parameters αd and αu describe the dependence of the convection term on the exterior
multicable diameter dΩ and the difference in temperature, respectively [11]. εr is the
emission coefficient of the conductor surface, σb the Stefan-Boltzmann constant (=5.67e−
8) and s̄=u0+s where u0≈273.15K denotes the difference from 0◦C to absolute zero. The
maximal temperature satisfies umax≤200◦c.

In this paper, we aim to find the best locations of electrical multicables in order to get
suitable thermal environment. We mention that this problem was considered in [9]. For
the numerical computation the authors develop an algorithm which is combination of a
squeezing algorithm, helping to find feasible cable configurations for a genetic algorithm
and a gradient-based shape optimization approach.

In this work, we use a topological and shape gradient strategy [1, 3, 4, 13, 15–17, 19] to
find a desired multicable configuration.

The papaer is organized as follows in Section 2 we prove the existence and unique-
ness of the direct problem and we introduce the minimization problem. In Section 3, we
compute the shape derivative of the proposed cost functional using the framework of
the min-sup differentiability. In Section 4 we give the asymptotic expansion of the cost
functional. In the last section, we propose a numerical algorithm and we present some
numerical simulations.
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2 Existence and uniqueness for the Helmholtz equation

In this section we prove the existence and uniqueness for the Helmholtz equation (1.1).
For simplicity of calculus, we assume that uamb =0.

The weak formulation of problem (1.1) is given by:

Find u∈H1(Ω) such that∫
Ω

σ∇u·∇vdx−
∫

Ω
cuvdx+

∫
Γe

α(u)uvds=
∫

Ω
f vds, ∀v∈H1(Ω). (2.1)

By a solution of problem (1.1) we actually mean a solution of (2.1). Throughout the rest
of the paper, we assume that the fonctions α and c satisfy the following hypothesis:

(H1) :

i) There exist constants α−,α+ such that 0<α−≤α(x)≤α+,

ii) α is continuously differentiable on (0,∞),

iii) ∃m>0 such that (α(s)s)′=α(s)+α′(s)s≥m,

(H2) : There exist a positive constants c+,c− small enough such that c−≤ c≤ c+<α−.

Remark 2.1. The condition iii) imply that the function s→ α(s)s is strongly monotone
with monotonicity constant m:

(α(s)s−α(t)t)(s−t)≥m(s−t)2.

Theorem 2.1. Under hyporthesis (H1), (H2), problem (2.1) has a unique solution u∈H1(Ω).

Proof. Introduce the functional

J(u)=
1
2

∫
Ω

σ|∇u|2−cu2 dx+
∫

Γe

∫ u

0
α(t)tdt−

∫
Ω

f udx.

It is easy to check that the functional J is of classe C1 on H1(Ω). Its derivative can be
computed as

J′(u)v=
∫

Ω
σ∇u·∇vdx−

∫
Ω

cuvdx+
∫

Γe
α(u)uvds−

∫
Ω

f vds,

and the first-order optimality condition

J′(u)v=0 ∀v∈H1(Ω),

implies that a minimizer of J is a solution of (2.1).
To prove the existence of a weak solution it suffices to prove that J is coercive.
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Denote
ū :=

1
|Ω|

∫
Ω

udx the mean-value of u.

Using Young-inequality, we obtain

J(u)≥
∫

Ω
σ|∇u|2 dx−

∫
Ω

cu2 dx− ε

2

∫
Ω
|u|2 dx− 1

2ε

∫
Ω
| f |2 dx+

α−
2

∫
Γe

u2 ds

≥min
(

min(σ),
α−
2

)(∫
Ω
|∇u|2 dx+

∫
Γe

u2 ds
)
−
(

c++
ε

2

)∫
Ω

u2 dx− 1
2ε

∫
Ω
| f |2 dx

=min
(

min(σ),
α−
2

)
‖u‖2

?−
(

c++
ε

2

)
‖u‖2

L2(Ω)−
1
2ε

∫
Ω
| f |2 dx,

where

‖u‖?=
(∫

Ω
|∇u|2 dx+

∫
Γe

u2 ds
)1/2

,

is a norm equivalent to the natural norm of H1(Ω). i.e.,

c1‖u‖H1(Ω)≤‖u‖?≤ c2‖u‖H1(Ω).

Using the fact that ‖u‖2
L2(Ω)

≤‖u‖2
H1(Ω)

, we obtain

J(u)≥
(

c2
1min

(
min(σ),

α−
2

)
−(c++

ε

2
)
)
‖u‖2

H1(Ω)−
1
2ε

∫
Ω
| f |2 dx.

From hypothesis (H2) and choosing ε small enough, we can conclude that

lim
‖u‖H1(Ω)

→∞
J(u)=+∞.

In the next step we show that J is strictly convex. We have(
J′(u)− J′(v),u−v

)
=
∫

Ω
σ|∇(u−v)|2 dx−

∫
Ω

c(u−v)2 dx+
∫

Γe
(α(u)u−α(v)v)(u−v)ds.

Using hypothesis (H1) and (H2), we can show that(
J′(u)− J′(v),u−v

)
≥0,

and if (J′(u)− J′(v),u−v)=0 then u=v. This concludes the proof.

In order to get a suitable thermal environment inside the multi-cable, we consider the
following minimization problem:

minimize Jp(ω,u) :=
1
p

∫
Ω
|u|p dx, p≥2,

subject to ω∈Oad and u the solution of (1.1), (2.2)
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where

Oad :=
{

ω=∪N
k=1ωk⊂Ω\Ωe, ωk =Ωcore

k ∪Ωiso
k , Ωcore

k is surrounded by Ωiso
k

}
.

Throughout this paper, we assume that all interface boundaries Γi
k=∂Ωiso

k ,Γe
k= the exter-

nal boundary of Ωiso, Γgi = the internal boundary of Ωe and Γe = the external boundary
of Ωe are C2-smooth.

The numerical resolution of (2.2) requires the sensitivity analysis of Jp with respect to
ω. The differentiation with respect to the shape ω is the main purpose of the following
section.

3 Shape derivative

3.1 Preliminaries

In this section we recall some basic facts about the velocity method from shape opti-
mization used to calculate the shape derivatives of the functional Jp ; see [7, 18]. In the
velocity (or speed) method a domain Ω is deformed by the action of a velocity field V.
The evolution of the domain is described by the following dynamical system:

d
dt

x(t)=V(x(t)),t∈ [0,ε),

x(0)=X,
(3.1)

for some real number ε> 0. Assume V ∈D1(Ω;R2) where D1(Ω;R2) denotes the space
of continuously differentiable functions with compact support in Ω, then the ordinary
differential equation (3.1) has a unique solution. This allows us to define the diffeomor-
phism

Tt :R2→R2 : X 7→Tt(X) := x(t). (3.2)

For t∈ [0,ε), Tt is invertible. Furthermore, the Jacobian ξ(t) is strictly positive

∀ t∈ [0,ε), ξ(t)= |detDTt(X)|>0, (3.3)

where DTt(X) is the Jacobian matrix of the transformation Tt associated with the velocity
field V. In the sequel, we use the following notation : M−1 for the inverse of M and M−∗

for the transpose of its inverse. We also denote by

w(t)= ξ(t)|(DTt)
−∗n|, (3.4)

the tangential Jacobian of Tt on ∂Ω.

Remark 3.1. As the sets ωk are made of two pieces (Ωcore
k and Ωiso

k ), we will restrict the
fields V to those preserving such structure. This easily done for example if we concate-
nate local smooth fields.
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Proposition 3.1 ([7, 18]). For a function ϕ∈W1,1
loc (R

2) and V∈D1(R2), we have the following
formulae

∇(ϕ◦Tt)=DT∗t (∇ϕ)◦Tt, (3.5)

d
dt
(ϕ◦Tt)=(∇ϕ·V)◦Tt, (3.6)

dξ(t)
dt

=[divV]◦Ttξ(t), (3.7)

w′(0)=div(V)−DVn·n. (3.8)

Let J be a real valued function J : Ω−→R. We say that J has a Eulerian semiderivative
at Ω in the direction V if the following limit exists and is finite:

dJ(Ω;V)= lim
t↘0

J(Tt(Ω))− J(Ω)

t
.

If V−→dJ(Ω;V)) is linear and continuous, we say that J is shape differentiable at Ω.

Definition 3.1 ([7, 18]). Let Ω be an open domain of class C2 with compact boundary ∂Ω. We
denote by U(∂Ω) a neighborhood of ∂Ω.

(i) Let f∈C1(∂Ω) and f̃ be an extension of f in a neighborhood of ∂Ω. The tangential gradient
of f at a point of ∂Ω is defined as

∇τ f =∇ f̃−∂n f̃ n,

where n is the outward unit normal vector to ∂Ω.

(ii) For a vector function v∈C1(∂Ω)d,d≥ 1 and its extension ṽ, the tangential divergence is
defined as

divτ v=div(ṽ)−Dṽn·n,

where Dṽ denotes the Jacobian matrix of ṽ.
Note that the tangential divergence and gradient are independent of the extension.

3.2 Min-sup formulation

In what follows we focus on the computation of the shape derivative of Jp. We introduce
the Lagrangian functional

G(ω,ϕ,ψ)= Jp(ω,ϕ)+b(ω,ϕ,ψ)−l(ψ), ∀ϕ,ψ∈H1(Ω),

where

b(ω,ϕ,ψ)=
∫

Ω
σ∇ϕ·∇ψdx−

∫
Ω

cϕψdx+
∫

∂Ω
α(ϕ)ϕψds, l(ψ)=

∫
Ω

f ψds.
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Then, it is easy to check that

Jp(ω,u(ω))= min
ϕ∈H1(Ω)

sup
ψ∈H1(Ω)

G(ω,ϕ,ψ),

since

sup
ψ∈H1(Ω)

G(ω,ϕ,ψ)=
{

J0(ω,u(ω)) if ϕ=u(ω),
+∞ otherwise.

It is easily shown that the functional G is convex continuously differentiable with respect
to ϕ and concave continuously differentiable with respect to ψ. Therefore, according to
Ekeland and Temam [8], the functional G has a saddle point (u,v) if and only if (u,v)
solves the following system:

∂ψG(ω,u,v;ψ̂)=∂ψb(ω,u,v;ψ̂)−∂ψl(v;ψ̂)=0,
∂ϕG(ω,u,v; ϕ̂)=∂ϕ Jp(ω,u; ϕ̂)+∂ϕb(ω,u,v; ϕ̂)=0,

for all ψ̂∈H1(Ω) and ϕ̂∈H1(Ω). This yields that G has a saddle point (u,v), where the
state u is the unique solution of (1.1) and the adjoint state v= v(ω) is the solution of the
following adjoint problem:∫

Ω
σ∇v·∇v̂dx−

∫
Ω

cvv̂dx+
∫

Γe
(α(u)+α′(u)u)vv̂ds+

∫
Ω

u|u|p−2v̂dx=0, (3.9)

for all v̂∈H1(Ω).
Since u is Hölder continuous (from elliptic regularity results), u|u|p−2 is at least in

L2(Ω). Therefore problem (3.9) has unique solution v∈H1(Ω). Summarizing the above,
we have obtained

Theorem 3.1. The functional Jp(ω,u(ω)) is given by

Jp(ω,u(ω))= min
ϕ∈H1(Ω)

sup
ψ∈H1(Ω)

G(ω,ϕ,ψ), (3.10)

The unique saddle point for G is given by (u,v), where u solves the direct problem (1.1) and v
solves the adjoint problem (3.9).

Similarly, the previous analysis holds for the functional depending on the transformed
subdomain ωt =Tt(ω). Thus, we have

Jp(ωt,u(ωt)= min
ϕ∈H1(Ω)

sup
ψ∈H1(Ω)

G(ωt,ϕ,ψ). (3.11)

The corresponding saddle point (u(ωt),v(ωt)) is characterized by

∂ψG(ωt,u(ωt),v(ωt);ψ̂)=0, ∀ ψ̂∈H1(Ω),

∂ϕG(ωt,u(ωt),v(ωt); ϕ̂)=0, ∀ ϕ̂∈H1(Ω).
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3.3 Shape derivative by the min-sup differentiability

In this section we apply Theorem 6.1 to compute the shape derivative of Jp. Let us con-
sider transformation Tt defined by (3.2) with V∈D1(Ω,R2). In this case Tt(Ω)=Ω but in
general Tt(ω) 6=ω. Our aim is to compute the derivative of Jp(ωt,u(ωt)) with respect to
the parameter t≥0.

In order to differentiate G(ωt,ϕ,ψ) with respect to t, the integrals in G(ωt,ϕ,ψ) need
to be transported back on the reference interface ω using the transformation Tt. How-
ever, composing by Tt inside the integrals creates terms ϕ◦Tt and ψ◦Tt which might be
non-differentiable. To avoid this problem, we need to parameterize the space H1(Ω) by
composing the elements of H1(Ω) with T−1

t . Following this argument, we rewrite (3.11)
as

Jp(ωt,u(ωt))= min
ϕ∈H1(Ω)

sup
ψ∈H1(Ω)

G̃(t,ϕ,ψ), (3.12)

where
G̃(t,ϕ,ψ) :=G(ωt,ϕ◦T−1

t ,ψ◦T−1
t ). (3.13)

Note that since Tt(Ω) = Ω we have H1(Tt(Ω)) = H1(Ω) and the sets over which the
minimum and supremum are taken in (3.12) stay unchanged. Furthermore (ut,vt) =
(u(ωt)◦Tt,v(ωt)◦Tt) is the saddle point of G̃.

We can rewrite expression (3.13) on the fixed domain Ω by using the transformation
Tt. This yields

G̃(t,ϕ,ψ)=
1
p

∫
Ω
|ϕ|pξ(t)dx+

∫
Ω

σA(t)∇ϕ·∇ψdx−
∫

Ω
cϕψξ(t)dx

−
∫

Ω
f ◦Ttψξ(t)dx+

∫
∂Ω

w(t)α(ϕ)ϕψds, (3.14)

where
A(t) :=(DTt)

−∗(DTt)
−1ξ(t),

and ξ(t), ω(t) are defined in (3.3),(3.4), respectively. The saddle point (ut,vt) is charac-
terized by∫

Ω
σA(t)∇ut ·∇ψdx−

∫
Ω

cutψξ(t)dx+
∫

∂Ω
w(t)α(ut)utψds=

∫
Ω

ξ(t) f ◦Ttψds, (3.15)∫
Ω

σA(t)∇vt ·∇ϕdx−
∫

Ω
cvt ϕdx+

∫
∂Ω

w(t)(α′(ut)+α(ut))vt ϕds

=−
∫

Ω
ξ(t)ut|ut|p−2ϕdx, (3.16)

for all ψ∈H1(Ω) and ϕ∈H1(Ω).
Now we are ready to compute the limit

dJp(ω;V) := lim
t→0

Jp(ωt)−Jp(ω)

t
,
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where
Jp(ωt) := Jp(ωt,u(ωt)).

Theorem 3.2. The functional Jp is shape differentiable and its shape derivative in the direction
V∈D1(Ω) is given by

dJp(ω,V)=
1
p

∫
Ω
|u|p divVdx+

∫
Ω

σ(divV−DVT−DV)∇u·∇vdx

−
∫

Ω
cuvdivVdx−

∫
Ω

f vdivVdx, (3.17)

where u is solution of the problem (1.1) and the adjoint state v is solution of∫
Ω

σ∇v·∇v̂dx−
∫

Ω
cvv̂dx+

∫
∂Ω

(α(u)+α′(u)u)vv̂ds+
∫

Ω
u|u|p−2v̂dx=0, (3.18)

for all v̂∈H1(Ω).

Proof. We apply Theorem 6.1 given in the appendix to compute the shape derivative of
Jp; see Section 6.1. To this end, we should verify the four assumptions (H1)−(H4).

Assumption (H1): Given (β,γ) satisfying 0< c+<β<γ, we can find ε>0 such that

∀η∈R2, β|η|2≤σA(t)η ·η≤γ|η|2, for t∈ [0,ε]. (3.19)

As in Theorem 6.1, introduce the sets

X(t) :=

{
xt∈H1(Ω) : sup

y∈H1(Ω)

G̃(t,xt,y)= inf
x∈H1(Ω)

sup
y∈H1(Ω)

G̃(t,x,y)

}
,

Y(t) :=

{
yt∈H1(Ω) : inf

x∈H1(Ω)
G̃(t,x,yt)= sup

y∈H1(Ω)

inf
x∈H1(Ω)

G̃(t,x,y)

}
.

We obtain
∀ t∈ [0,ε] S(t)=X(t)×Y(t)={ut,vt} 6=∅,

and assumption (H1) is satisfied.

Assumption (H2): Defining B(t)=DT−∗t , we may compute

B′(t)=−B(t)DV∗B(t), ξ ′(t)= tr(DVB(t)∗)ξ(t),
A′(t)=−A(t)tr(DVB(t)∗)+A(t)B(t)∗DV+DV∗B(t)A(t),

w′(t)= ξ ′(t)|B(t)n|+ξ(t)|B(t)n|−1B′(t)n.

Consequently we obtain the derivatives

∂tG̃(t,ϕ,ψ)=
1
p

∫
Ω
|ϕ|pξ ′(t)dx+

∫
Ω

σA′(t)∇ϕ·∇ψdx−
∫

Ω
cϕψξ ′(t)dx

+
∫

∂Ω
w′(t)α(ϕ)ϕψds−

∫
Ω

f ◦Ttξ
′(t)dx. (3.20)
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At t=0 we also have

A′(0)=div(V)I2−DV∗−DV, w′(0)=divτ V,

where I2 is the 2×2 identity matrix. Since V ∈ D1(Ω),t→ DTt is continuous in [0,ε]
and consequently also t 7→ (B(t),A(t),A′(t),w(t),w′(t)). Therefore the partial derivatives
∂tG̃(t,ϕ,ψ) exists everywhere in [0,ε] and the condition (H2) is satisfied.

Assumptions (H3) and (H4): We show first the boundedness of (ut,vt). Let ψ= ut in the
variational equation (3.15). By the choice of ε satisfying the condition (3.19), with

Tt(x)= x, ξ(t)=1 w(t)=1 on ∂Ω,

and hypotheses H1 and H2 in section 2, we get from (3.15)

β‖∇ut‖2
L2(Ω)−c+‖ut‖2

L2(Ω)+α−‖ut‖2
L2(∂Ω)≤‖ξ(t) f ◦Tt‖L2(Ω)‖ut‖L2(Ω).

Using Young’s inequality, we obtain

β‖∇ut‖2
L2(Ω)−c+‖ut‖2

L2(Ω)+α−‖ut‖2
L2(∂Ω)≤

1
2r
‖ξ(t) f ◦Tt‖2

L2(Ω)+
r
2
‖ut‖2

L2(Ω),

for some r>0. This imply that

β‖∇ut‖2
L2(Ω)−

(
c++

r
2

)
‖ut‖2

L2(Ω)+(α−)‖ut‖2
L2(∂Ω)≤

1
2r
‖ξ(t) f ◦Tt‖2

L2(Ω).

We choose s such that α> s/2, and using the fact that

‖u‖2 :=‖∇u‖2
L2(Ω)+‖u‖

2
L2(∂Ω)

is a norm on H1(Ω) equivalent to the natural norm (cf. [14]), we obtain

min(β,α−)‖ut‖2
H1(Ω)−

(
c++

r
2

)
‖ut‖2

L2(Ω)≤
1
2r
‖ξ(t) f ◦Tt‖2

L2(Ω).

Choosing r such that min(β,α−)−(c++r/2)>0, we deduce that

‖ut‖2
H1(Ω)≤C

(
1
2r
‖ξ(t) f ◦Tt‖2

L2(Ω)

)
,

where C is a positive constant. Since ξ(t)→1 as t→0 and f ◦Tt→ f in L2(Ω) (see [7, Lemma
2.1 pp 397]), then ut is bounded:

there exists c>0 such that sup
t∈[0,ε]

‖ut‖H1(Ω)≤ c.
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We apply the same technique to the variational equation (3.16) and we are able to show
that the function vt is bounded. The next step is to show the continuity with respect to t
of the vector (ut,vt). Subtracting (3.15) at t>0 and t=0 and choosing ψ=u−ut yields∫

Ω
σ|∇(u−ut)|2 dx−

∫
Ω

c|u−ut|2 dx+
∫

∂Ω
α(ut)|u−ut|2 ds

=
∫

Ω
(σA(t)−σI2)∇ut ·∇(u−ut)dx−

∫
Ω
(ξ(t)−1)cut(u−ut)dx

+
∫

∂Ω

(
ξ(t)α(ut)−α(u)

)
ut(u−ut)ds+

∫
Ω
(ξ(t) f ◦Tt− f )(u−ut)dx

≤‖σA(t)−σI2‖L∞(Ω)‖∇ut‖L2(Ω)‖∇(u−ut)‖L2(Ω)

+c+‖(ξ(t)−1)‖L∞(Ω)‖ut‖L2(Ω)‖u−ut‖L2(Ω)

+‖(ξ(t)α(ut)−α(u))‖L∞(∂Ω)‖ut‖L2(∂Ω)‖u−ut‖L2(∂Ω)

+‖ξ(t) f ◦Tt− f ‖L2(Ω)‖u−ut‖L2(Ω).

Furthermore due to the boundedness of ut and the fact that ‖u‖2 :=‖∇u‖2
L2(Ω)

+‖u‖2
L2(∂Ω)

is a norm on H1(Ω) equivalent to the natural norm, we obtain

‖ut−u‖H1(Ω)≤c
(
‖σA(t)−σI2‖L∞(Ω)+‖ξ(t)−1‖L∞(Ω)

+‖ξ(t)α(ut)−α(u)‖L∞(∂Ω)+‖ξ(t) f ◦Tt− f ‖L2(Ω)

)
.

Due to the strong continuity of A(t) (as a function of t) and ξ(t) f ◦Tt→ f , ξ(t)α(ut)→α(u)
in L2(Ω) as t→0, one deduces that ut→u in H1(Ω) as t→0. Concerning the continuity of
vt, one may show from (3.16) that vt→v in H1(Ω). Finally in view of the strong continuity
of

(t,ϕ)→∂tG̃(t,ϕ,ψ) and (t,ψ)→∂tG̃(t,ϕ,ψ),

assumptions (H3) and (H4) are verified. All assumptions of Theorem 6.1 are satisfied
and therefore, we obtain

dJp(ω;V)=∂tG̃(t,u,v)
∣∣
t=0,

where

∂tG̃(t,u,v)
∣∣
t=0=

1
p

∫
Ω
|u|p div(V)dx+

∫
Ω

σA′(0)∇u·∇vdx

−
∫

Ω
cuvdiv(V)dx−

∫
Ω

f div(V)dx.

This completes the proof.
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Theorem 3.3. (Boundary expression). The shape derivative of the functional Jp in the direction
V∈D1(Ω) is given by

DJp(ω,V)=−
N

∑
k=1

∫
Γi

k

Jσ∂nu∂nvKΓ1V ·nds−
N

∑
k=1

∫
Γe

k

Jσ∂nu∂nvKΓ2V ·nds

+
N

∑
k=1

∫
Γi

k

JσKΓi
k
∇Γi

k
u·∇Γi

k
vds+

N

∑
k=1

∫
Γe

k

JσKΓe
k
∇Γe

k
u·∇Γe

k
vds

−
N

∑
k=1

∫
Γi

k

JcuvKΓi
k
V ·nds−

N

∑
k=1

∫
Γe

k

JcuvKΓe
k
V ·nds

−
N

∑
k=1

∫
Γi

k

J f vKΓi
k
V ·nds−

N

∑
k=1

∫
Γe

k

J f vKΓe
k
V ·nds. (3.21)

Remark 3.2. Note that the volume expression of the shape derivative presented in Thorem
3.2 can be rewritten in canonical form as

dJp J(ω;V)=
∫

Ω
S : DVdx,

where

S=−σ(∇u⊗∇v+∇v⊗∇u)+σ(∇u·∇v)I+
1
p
|u|p I−cuvI− f vI.

Using standard tensor relation (∇u⊗∇)n=(∇v·n)∇u, one may obtain directly the bound-
ary expression of the shape derivative presented in Theorem 3.3. For more details about
tensor representation, we refer the reader to [10].

4 Topological derivative

In this section, we assume that Ω=(Ωcore∪Ωiso)∪Ωgap∪Ωe (See, Figure 1) where Ωcore :=
x0+δεB and Ωis is such that Ωcore∪Ωiso = x0+εB, where B is the unit ball in R2, ε>0 and
0 < δ < 1. We rewrite Ωcore

ε and Ωiso
ε instead of Ωcore and Ωiso. This allows to perform

an asymptotic expansion of the shape functional Jp(ωε) where ωε :=Ωcore
ε ∪Ωiso

ε . We also
introduce Γε :=Γcore

ε ∪Γiso
ε where Γcore

ε :=∂Ωcore
ε and Γiso

ε the outer boundary of Ωiso
ε .

In the perturbed domain, the state uε is solution to the following problem :

−div(σε∇uε)−cεuε = fε in Ω\Γε,

σe∂nuε+α(uε)(uε−uamb)=0 on Γe,

JuεK=0 on Γε,

Jσ∂nuεK=0 on Γε,

(4.1)
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where

σε =σcore1Ωcore
ε

+σiso1Ωiso
ε
+σe1Ωe +σgaps1Ω\Ωcore

ε ∪Ωiso
ε ∪Ωe ,

cε = ccore1Ωcore
ε

, and fε = f core1Ωcore
ε

.

The functions f core, ccore are defined in (1.3) and (1.4) . The variational formulation asso-
ciated with the problem (4.1) is defined by :

find uε∈H1(Ω), such that , Fε(uε,v)=0, ∀v∈H1(Ω), (4.2)

where

Fε(uε,v)=
∫

Ω
σε∇uε ·∇vdx−

∫
Ω

cεuεvdx+
∫

∂Ω
α(u)(u−uamb)vds−

∫
Ω

f vdx.

The asymptotic expansion of the cost functional will be provided by the following propo-
sition

Proposition 4.1. Let V be a real Hilbert space. For ε∈ [0,ξ),ξ≥0, we consider

• a differentiable map Fε :V→V ′,

• a function uε∈V satisfying

Fε(uε)=0, (4.3)

• a differentiable functional Jε :V −→R,

We assume that there exists v0∈V , called adjoint state, solving

〈DF0(u0)ϕ,v0〉V ′,V=−DJ0(u0)ϕ, ∀ϕ∈V . (4.4)

Suppose that there exists real numbers δF1,δF2,δJ1 and δJ2 as well as a function h(ε) tending to
zero with ε such that when ε→0

〈Fε(uε)−F0(uε),v0〉=h(ε)δF1+o(h(ε)), (4.5)

〈F0(uε)−F0(u0)−DF0(u0)(uε−u0),v0〉=h(ε)δF2+o(h(ε)), (4.6)

Jε(uε)− J0(uε)=h(ε)δJ1+o(h(ε)), (4.7)

J0(uε)− J0(u0)+DJ0(u0)(uε−u0)=h(ε)δJ2+o(h(ε)). (4.8)

Then we have the asymptotic expansion

Jε(uε)− J0(u0)= f (ε)(δF1+δF2+δJ1+δJ2))+o(h(ε)). (4.9)



Belhachmi et al. / J. Math. Study, 52 (2019), pp. 425-447 439

Proof. In view of equation (4.3), we can write

Jε(uε)− J0(u0)= Jε(uε)− J0(u0)+〈Fε(uε)−F0(u0),v0〉.

Using (4.5)-(4.8), yields

DJ0(u0)(uε−u0)+h(ε)(δJ1+δJ2)+DF0(u0)(uε−u0)+h(ε)(δF1+δF2)+o(h(ε))

From equation (4.4), we obtain the desired result.

Using Proposition 4.1 and following the same lines as in the proof of [2, Thm 3], we
can prove the following theorem.

Theorem 4.1. The topological asymptotic expansion of the functional Jp is given by

Jp(uε)− Jp(u0)= ε2G(x0)+o(ε2),

where

G(x0)=πΛ∇u0(x0)·∇v0(x0)−ccoreπδ2u0(x0)v0(x0)− f coreπδ2v0(x0), (4.10a)

Λ :=
2(1−δ2)σgaps(σiso−σgaps)(σiso+σcore)+4δ2σgapsσiso(σcore−σgaps)

(σiso+σcore)(σiso+σgaps)−δ2(σiso−σcore)(σiso−σgaps)
, (4.10b)

where u0 is solution of the problem (1.1) with Ωiso
k =Ωcore

k =∅ and the adjoint state v0 is solution
of ∫

Ωe
σe∇v0 ·∇v̂dx+

∫
Ωgaps

σgaps∇v0 ·∇v̂dx+
∫

∂Ω

(
α
′
(u0)(u0−uamb)+α(u0)

)
v0v̂ds

+
∫

Ω
u0|u0|p−2v̂dx=0, ∀ v̂∈H1(Ω). (4.11)

5 Algorithm and numerical results

5.1 Descent direction

Definition 5.1. Let V∈D1(Ω,Rd)( the space of continuous functions with support cmm-
pact in Ω) and denote Tt(x)= x+tV(x) the associated transformation. We say that V is a
descent direction for a functional J : Ω→R if there exists ε>0 such that

J(Tt(Ω))< J(Ω) ∀ t∈ (0,ε).

If the Eulerian semiderivative of J at Ω in direction V exists and if it is a descent direction
then by definition

dJ(Ω;V)<0.
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We use descent descent directions in iterative methods to find a possible local min-
imizers of the functional Jp. The strategy is to start with initial shape Ω and compute
descent direction V, then we proceed a long this direction as long as the cost functional
Jp reduces sufficiently using a line search strategy.

In our problem the shapes ωk are known and invariant under a rotation but their
locations are unknown. It is meaningful to use translations to move the shapes ωk.

One may choose a velocity V as a piecewise linear function so that V is a translation
on Γi

k,Γe
k and vanish on Ωe. In order to obtain transformation which is locally a translation

one may choose the class of vector fields V=(b1
kζ,b2

kζ)T :=(V1
k ,V2

k )
T, where b1

k ,b2
k∈R and

ζ is a smooth function equal to one in a neighborhood ω∗k of ωk and equal to zero in Ωe.
The boundary expression of the shape derivative can be written as

dJp(Ω;V)=
N

∑
k=1

∫
Γi

k

gkV ·nds+
N

∑
k=1

∫
Γe

k

hkV ·nds.

On the boundaries Γi
k,Γe

k, V =(b1
k ,b2

k)
T. Then plugging V with n=(n1

k ,n2
k)

T in the above
expression, one obtains

dJ(Ω;V)=
N

∑
k=1

b1
k

∫
Γi

k

gkn1
k ds+

N

∑
k=1

b1
k

∫
Γe

k

hkn1
k ds+

N

∑
k=1

b2
k

∫
Γi

k

gkn2
k ds+

N

∑
k=1

b2
k

∫
Γe

k

hkn2
k ds.

To get a descent direction, one may choose

b1
k =−

∫
Γi

k

gkn1
k ds−

∫
Γe

k

hkn1
k ds and b2

k =−
∫

Γi
k

gkn2
k ds−

∫
Γe

k

hkn2
k ds. (5.1)

For our numerical results, we use the boundary expression of the shape derivative to get
a descent directions and gradient algorithm with backtracking line search to solve the
optimization problem.

To avoid the overlap of the inclusions during the optimization process, we follow
the routine presented in [12]. To prevent the exit to the external boundary, we make
a constraint on the distance between the center of the inclusions and the center of the
domain Ω. Since we use a gradient-based method, we implement a line search to adjust
the time-stepping. The algorithm is stopped when the decrease of the functional becomes
insignificant.

5.2 Algorithms

The numerical procedure, is described in the following algorithms.
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Table 1: Parameter values of the simulations.

Parameter value Symbol Value Unit
Heat conductivity of metallic conductors σcore

k 401 W/(m.K)
Heat conductivity of single cables insulation σiso

k 0.19 W/(m.K)
Heat conductivity of outer insulation σgap 2.61e-02 W/(m.K)
Heat conductivity of air σe 0.08 W/(m.K)
Electr. resistivity at reference temperature ρ0,k 1.71e-08 Ω.m
Temperature coefficient of electr. resistivity αρ,k 4.04e-03 1/K
Emission coefficient εr 0.93
Reference temperature ure f 20 ◦C
Ambient temperature uamb 32 ◦C
Number of metallic conductors nk 50
Metallic conductors’ diameter δk 0.2 mm

Algorithm 1 (One-shot method).

1. Solve the direct problem and the adjoint problem in the safe domain.

2. Compute the topological gradient G.

3. Determine the local minima (x0,y0) where G is the most negative.

Algorithm 2 (Topology and shape gradient strategy).

1. Initialization : Finding (x0,y0) using Algorithm 1.

2. Iteration: (xk,yk) being computed

a. compute the state uk and the adjoint state vk, then we can evaluate the
descent direction (5.1).

b. update the center by the gradient method with backtracking linesearch.

3. Stop test: If
∣∣DJp(ω;V)

∣∣ is smaller than a prescribed threshold, then stop, else
return to step (2) with k= k+1.

5.3 Numerical results

In the following examples, we consider realistic values of the physical parameters as
in [9]. The parameter values of the simulations are presented in Table 1. In our problem,
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Figure 2: (a) the initial configuration of temperature (b) the topological derivative of J2.

the non linear heat transfer coefficient α is given by the expression (1.5) where αd and αu
are explicitly expressed in [12].

5.4 Example 1

In this example, we optimize the position of one single cable using Algorithm 2.
The initial coated inclusion is composed of two concentric disks Ωiso and Ωcore with

radius r1 =0.2 and r2 =0.1 centered at the point (0.00203,0.49036), where the topological
gradient is most negative (cf. Figures 3.a)). The optimal position given by the algorithm
is (2.90e−05,0.49033) (cf. Figures 3.b)).

5.5 Example 2

In this example, we optimize the positions of identical three and four cables respectively
using the shape gradient algorithm.
We remark that during the optimization process the inclusions go toward the boundary.
Also from figures 4 and 5 we remark that the maximal temperature decrease from 300◦C
to 130◦C in the case of three cables and from 326◦C to 122◦C in the case of four ones.

5.6 Example 3

In this example, we optimize the positions of identical four cables using the topological
and shape gradient algorithm. The iterative algorithm using the expression (3.21) gives
a local minima while the one shot algorithm using the expression (4.10) gives a global
minima independent of the choice of the initial positions around the multicable’s center.
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Figure 3: (c) the final configuration of temperature by the topological derivative and (d) the final configuration
of the temperature using Algorithm 1 with p=2.
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Figure 4: (e) the temperature distribution of the initial configuration and (f) the temperature distribution for
the final configuration of J10 for three single cables.

From figure (7) we remark that the use of the iterative method decrease the temperature
from 290.62◦C to 79◦C and to 71.87◦C using the one shot method.

Remark 5.1. When p is large enough, the functional Jp approximate well the L∞-norm,
which is the suitable functional to minimize the maximum temperature. From the nu-
merical point of view, we didn’t get a good approximation of the multi-cables when p is
large.

For the numerical simulation, we have used two different values of the parameter
p, p= 2 and p= 10. Although that with this values the functional Jp does not approxi-
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Figure 5: (g) the temperature distribution of the initial configuration and (h) the temperature distribution for
the final configuration of J10 for four multicables.
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Figure 6: (i) the temperature distribution of the initial configuration and (j) the topological derivative of J10.

mate the L∞-norm very accurately, the maximum temperature is lower than at the initial
configuration for the examples presented in this paper.

6 Appendix

6.1 An abstract differentiability result

In this section, we give an abstract result for differentiating Lagrangian functionals with
respect to a parameter. This result is used to prove Theorem 3.2. We first introduce some
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Figure 7: (k) the temperature distribution at the final configuration given by (4.10) and (l) the temperature
distribution at the final configuration given by (3.21)

notations. Consider the functional

G : [0,ε]×X×Y→R (6.1)

for some ε>0 and the Banach spaces X and Y. For each t∈ [0,ε], define

g(t)= inf
x∈X

sup
y∈Y

G(t,x,y), h(t)=sup
y∈Y

inf
x∈X

G(t,x,y), (6.2)

and the associated sets

X(t)=

{
xt∈X : sup

y∈Y
G(t,xt,y)= g(t)

}
, (6.3)

Y(t)=
{

yt∈Y : inf
x∈X

G(t,x,yt)=h(t)
}

. (6.4)

Note that inequality h(t)≤ g(t) holds. If h(t)= g(t) the set of saddle points is given by

S(t) :=X(t)×Y(t). (6.5)

We state now a simplified version of a result from [6] derived from [5] which gives real-
istic conditions that allows to differentiate g(t) at t= 0. The main difficulty is to obtain
conditions which allow to exchange the derivative with respect to t and the inf-sup in
(6.2).

Theorem 6.1 (Correa and Seeger [5, 7]). Let X,Y,G and ε be given as above. Assume that the
following conditions hold :
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(H1) S(t) 6=∅ for 0≤ t≤ ε.

(H2) The partial derivative ∂tG(t,x,y) exists for all (t,x,y)∈ [0,ε]×X×Y.

(H3) For any sequence {tn}n∈N, with tn→0, there exist a subsequence {tnk}k∈N and x0∈X(0),
xnk ∈X(tnk) such that for all y∈Y(0),

lim
t↘0,k→∞

∂tG(t,xnk ,y)=∂tG(0,x0,y).

(H4) For any sequence {tn}n∈N, with tn→0, there exist a subsequence {tnk}k∈N and y0∈Y(0),
ynk ∈Y(tnk) such that for all x∈X(0),

lim
t↘0,k→∞

∂tG(t,x,ynk)=∂tG(0,x,y0).

Then there exists (x0,y0)∈X(0)×Y(0) such that

dg
dt

(0)=∂tG(0,x0,y0).

Acknowledgment

The authors thank the referee for their helpful remarks and comments, which improve
the quality of the paper.

References

[1] S. Amstutz. Sensitivity analysis with respect to a local perturbation of the material property.
Asymptotic Anal., 49(1):87–108, 2006.

[2] Z. Belhachmi, A. Ben Abda, B. Meftahi and et al. Topology optimization method with respect
to the insertion of small coated inclusion. Asymptotic Anal., 106(2):99–119, 2018.

[3] Z. Belhachmi and H. Meftahi. Shape sensitivity analysis for an interface problem via mini-
max differentiability. Appl. Math. Comput., 219(12):6828–6842, 2013.

[4] S. Chaabane, M. Masmoudi and H. Meftahi. Topological and shape gradient strategy for
solving geometrical inverse problems. J. Math. Anal. Appl., 400(2):724–742, 2013.

[5] R. Correa and A. Seeger. Directional derivative of a minimax function. Nonlinear Anal.,
9(1):13–22, 1985.

[6] M. C. Delfour and J.-P. Zolésio. Shape sensitivity analysis via min max differentiability.
SIAM J. Control Optim., 26(4):834–862, 1988.

[7] M. C. Delfour and J.-P. Zolésio. Shapes and geometries, volume 22 of Advances in Design and
Control. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, second
edition, 2011. Metrics, analysis, differential calculus, and optimization.

[8] I. Ekeland and R. Temam. Analyse convexe et problèmes variationnels. Dunod, 1974. Collection
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