
J. Math. Study
doi: 10.4208/jms.v52n4.19.05

Vol. 52, No. 4, pp. 448-469
December 2019

Stable Semi-Implicit Monolithic Scheme for
Interaction Between Incompressible Neo-hookean
Structure and Navier-Stokes Fluid

Cornel Marius Murea∗
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Abstract. We present a monolithic algorithm for solving fluid-structure interaction.
The Updated Lagrangian framework is used for the incompressible neo-hookean struc-
ture and Arbitrary Lagrangian Eulerian coordinate is employed for the Navier-Stokes
equations. The algorithm uses a global mesh for the fluid-structure domain which is
compatible with the fluid-structure interface. At each time step, a non-linear system
is solved in a domain corresponding to the precedent time step. It is a semi-implicit
algorithm in the sense that the velocity, the pressure are computed implicitly, but the
domain is updated explicitly. Using one velocity field defined over the fluid-structure
mesh, and globally continuous finite elements, the continuity of the velocity at the
interface is automatically verified. The equation of the continuity of the stress at the
interface does not appear in this formulation due to action and reaction principle. The
stability in time is proved. A second algorithm is introduced where at each time step,
only a linear system is solved in order to find the velocity and the pressure. Numerical
experiments are presented.
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1 Introduction

We can solve numerically fluid-structure interaction problems by partitioned procedures
or monolithic algorithms and a large literature exists in this subject. In some monolithic
formulations [12, 14], two non-overlapping meshes are used for fluid and structure do-
mains and the boundary conditions at the fluid-structure interface appear as equations
in the global system.
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Other monolithic formulations use Eulerian mesh which does not fit to the fluid-
structure interface. In [6, 7, 22], an Eulerian approach is used for the fluid as well as
for the structure and the interface is captured with Initial Point Set. Extended Finite Ele-
ment Method (XFEM) was used in [9]. In [2, 3], fictitious domain method with Lagrange
multiplier was employed where the structure is assumed to be visco-elastic. This as-
sumption is used in [26], too. Explicit schemes for fluid-structure interaction problems
using Nitsche’s method and RobinRobin coupling are discussed in [4]. The stability is
proved under a hyperbolic type CFL condition.

In [11, 16, 18-20, 24] one global mesh for fluid-structure domain which fits to the
interface is used. In [11, 20], an Eulerian formulation derived from Cayley-Hamilton
theorem is used for the incompressible Mooney-Rivlin structure. The fluid equations are
solved by the Characteristics-Galerkin method. The fluid-structure equations are written
in the unknown Eulerian domain and fixed-point iterations are performed at each time
step. The authors prove the time stability of the scheme.

In [16] where the structure is linear elastic and in [18] where the structure is com-
pressible neo-hookean, the Updated Lagrangian coordinates are used for the structure
combined with the Arbitrary Lagrangian Eulerian framework for the fluid equations.
Using one velocity field defined over the fluid-structure mesh, and globally continuous
finite elements, the continuity of the velocity at the interface is automatically verified.
The equation of the continuity of the stress at the interface does not appear in this formu-
lation due to action and reaction principle. Another advantage of this approach is that the
fluid-structure equations are written in the known domain obtained at the precedent time
step. It is a semi-implicit algorithm in the sense that the fluid and structure unknowns
are computed implicitly, but the time advancing scheme for the domain is explicitly.

We follow this idea in the present paper, but for incompressible neo-hookean struc-
ture with a different computation of the mesh velocity. The structure equations in Updat-
ed Lagrangian coordinates is well posed. The stability in time of the monolithic algorithm
is proved. The system to be solved at each time step can be easely linearised. Numerical
results are presented in the last section.

2 Fluid-structure interaction problem

Without restriction of generality, we consider the geometrical configuration of the bench-
mark FSI3 from [25]. The results presented in this paper, including the stability analysis,
hold for different 2D geometrical configurations, for example the flow in a channel with
elastic wall, [16]. For 3D configurations, for example blood flow in artery [19], the sta-
bility result for the structure remains true but the stabilization term added in the fluid
scheme has to be adapted accordingly.

We consider a rectangular flexible structure of length ℓ and thickness h immersed in
an incompressible fluid occupying the rectangular domain (0,L)×(0,H). The rectangular
structure is attached to a fixed body of boundaries: the segment [DE], which is the left
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side of the flexible structure, and Σ5 the circular curve of center (xC,yC), radius r, see
Figure 1.

We denote by Σ1 ={0}×[0,H], Σ3 ={L}×[0,H] the left and the right vertical bound-
aries of the fluid domain and by Σ2=[0,L]×{0}, Σ4=[0,L]×{H} the bottom and the top
boundaries, respectively.

The interface between the fluid and the flexible structure is denoted by Γ0 at the initial
time and by Γt at time instant t > 0. To resume, the fluid domain denoted by ΩF

t is
bounded externally by Σ1∪Σ2∪Σ3∪Σ4 and internally by Σ5∪Γt and the structure domain
denoted by ΩS

t is bounded by the ΓD∪Γt where ΓD =[DE].

2
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Figure 1: Initial geometrical configuration.

The displacement of the structure is denoted by US =(US
1 ,US

2 ) : ΩS
0×[0,T]→R2 using

Lagrangian coordinates. A particle of the structure of position X in the initial domain
ΩS

0 , will moves to the position x=X+US (X,t) in the deformed domain ΩS
t . We use the

notations F(X,t)=I+∇XUS (X,t) for the gradient of the deformation, where I is the unity
matrix, J(X,t)=det F(X,t) and

∇XUS (X,t)=


∂US

1
∂X1

(X,t) ∂US
1

∂X2
(X,t)

∂US
2

∂X1
(X,t) ∂US

2
∂X2

(X,t)

.

For a square matrix A, we denote by det(A), tr(A), A−1, AT, cof(A) the determinant,
the trace, the inverse, the transpose and the cofactor matrix of A, respectively. We shall
write A−T=

(
A−1)T and we have cof(A)=det(A)

(
A−1)T. If A, B, C are square matrices,

we have AB : C=B : ATC=A : CBT and A : B=AT : BT.
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We denote by Π and Σ the first and the second Piola-Kirchhoff stress tensors, respec-
tively and we have the identity Π= FΣ. The Cauchy stress tensor of the structure is σS

and the following equality holds

σS(x,t)=
1

J(X,t)
F(X,t)Σ(X,t)FT (X,t).

We suppose that the material of the structure is incompressible neo-hookean. We have
J(X,t)=1 for all X∈ΩS

0 , t≥0 and

σS(x,t)=−pS(x,t)I+µS
(

F(X,t)FT (X,t)−I
)

,

where pS is the structure pressure in the Eulerian coordinates and µS>0 is a constant. We
can deduce

Π(X,t)=(FΣ)(X,t)=−PS(X,t)F−T (X,t)+µS
(

F(X,t)−F−T (X,t)
)

,

where PS is the structure pressure in the Lagrangian coordinates and we have the identity
PS(X,t)= pS(x,t).

We assume that the fluid is governed by the Navier-Stokes equations, then the fluid
stress tensor is σF =−pFI+2µFϵ

(
vF), where

ϵ
(

vF
)
=

1
2

(
∇vF+

(
∇vF

)T
)

is the fluid rate of strain tensor, vF is the velocity, pF is the pressure in the Eulerian coor-
dinates and µF>0 is a constant. To simplify the notation, we write ∇vF in place of ∇xvF,
when the gradients are computed with respect to the Eulerian coordinates x.

The fluid-structure interaction problem is: find the structure displacement US and
pressure PS, the fluid velocity vF and pressure pF, such that:

ρS
0 (X)

∂2US

∂t2 (X,t)−∇X ·(FΣ)(X,t)=ρS
0 (X)g, in ΩS

0×(0,T), (2.1)

US (X,t)=0, on ΓD×(0,T), (2.2)

ρF
(

∂vF

∂t
+(vF ·∇)vF

)
−2µF∇·ϵ

(
vF

)
+∇pF =ρFg, ∀t∈ (0,T), ∀x∈ΩF

t , (2.3)

∇·vF =0, ∀t∈ (0,T), ∀x∈ΩF
t , (2.4)

σFnF =hin, on Σ1×(0,T), (2.5)
σFnF =hout, on Σ3×(0,T), (2.6)
vF =0, on Σ2∪Σ4∪Σ5, (2.7)

(2.8)
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vF
(

X+US (X,t),t
)
=

∂US

∂t
(X,t), on Γ0×(0,T), (2.9)(

σFnF
)
(X+US(X,t),t)

=−(FΣ)(X,t)NS (X), onΓ0×(0,T), (2.10)

US (X,0)=US,0(X), in ΩS
0 , (2.11)

∂US

∂t
(X,0)=VS,0(X), in ΩS

0 , (2.12)

vF (X,0)=vF,0(X), in ΩF
0 , (2.13)

where ρS
0 : ΩS

0 → (0,∞) is the mass density of the structure in the initial domain, g is the
acceleration of gravity vector, here is constant, NS is the unit outer normal vector to ∂ΩS

0 ,
ρF > 0 and µF > 0 are the mass density and the viscosity of the fluid which are constant,
hin, hout are the inflow and outflow boundary stress, nF is the unit outer normal vector
to ∂ΩF

t . For the numerical tests, we use v= vin on Σ1 as in the original paper [25], but
the non-homogeneous boundary condition introduces complications in the proof of the
stability.

3 Approximation of the structure using the Lagrangian
coordinates

Introducing the structure velocity VS, the equation (2.1) is equivalent to

ρS
0 (X)

∂VS

∂t
(X,t)−∇X ·(FΣ)(X,t)=ρS

0 (X)g, in ΩS
0×(0,T), (3.1)

∂US

∂t
(X,t)=VS (X,t), in ΩS

0×(0,T). (3.2)

We denote by N ∈N∗ the number of time steps and by ∆t= T/N the time step and
we set tn = n∆t for n = 0,1,.. .,N. We consider VS,n (X) and US,n (X) approximations of
VS (X,tn) and US (X,tn). We set also

Fn = I+∇XUS,n, Σn =−PS,n (Fn)−1(Fn)−T+µS
(

I−(Fn)−1(Fn)−T
)

, n≥0.

The system (3.1)–(3.2) will be approached by the implicit Euler scheme

ρS
0 (X)

VS,n+1(X)−VS,n (X)
∆t

−∇X ·
(

Fn+1Σn+1
)
(X)=ρS

0 (X)g, in ΩS
0 , (3.3)

US,n+1(X)−US,n (X)
∆t

=VS,n+1(X), in ΩS
0 . (3.4)

From (3.4), we can eliminate the displacement US,n+1 and we rewrite (3.3) in function of
VS,n+1 and PS,n+1.
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By Green formula we can get the weak form of the equation (3.3): find VS,n+1:ΩS
0→R2,

VS,n+1=0 on ΓD and PS,n+1 : ΩS
0 →R, such that

∫
ΩS

0

ρS
0

VS,n+1−VS,n

∆t
·WS dX+

∫
ΩS

0

Fn+1Σn+1 :∇XWS dX

=
∫

ΩS
0

ρS
0 g·WS dX+

∫
Γ0

Fn+1Σn+1NS ·WS dS (3.5)

for all WS : ΩS
0 →R2, WS =0 on ΓD, subject to

det
(

I+∇XUS,n+∆t∇XVS,n+1
)
=1, in ΩS

0 . (3.6)

We have assumed that the forces Fn+1Σn+1NS on the interface Γ0 are known, for instant.

4 Approximation of the structure using the updated Lagrangian
coordinates

We follow the approach as in [16], where the structure was a compressible neo-hookean
material.

We set ΩS
n the image of ΩS

0 via the map X→X+US,n (X) and we define Ω̂S =ΩS
n the

computational domain for the structure.
The application from ΩS

0 to ΩS
n+1 given by X→ x=X+US,n+1(X) is the composition

of two maps: the application from ΩS
0 to Ω̂S defined by X → x̂ = X+US,n (X) with the

application from Ω̂S to ΩS
n+1 defined by

x̂→x= x̂+US,n+1(X)−US,n (X)= x̂+û(x̂).

Using the notations F̂= I+∇x̂û and Ĵ=detF̂, Jn =detFn, we get

Fn+1(X)= F̂(x̂)Fn (X), Jn+1(X)= Ĵ(x̂) Jn (X). (4.1)

For an incompressible material, normally we have Jn= Jn+1= Ĵ=1. But, in the following,
these constraints are not respected exactly, we will have only Jn ≈1, Jn+1≈1, Ĵ≈1.

The Cauchy stress tensor at the time instant tn+1 is

σS,n+1(x)=
(

1
Jn+1 Fn+1Σn+1

(
Fn+1

)T
)
(X), x=X+US,n+1(X).

We introduce v̂S,n+1 :Ω̂S→R2 and vS,n :Ω̂S→R2 defined by v̂S,n+1(x̂)=VS,n+1(X) and
vS,n (x̂)=VS,n (X). Also, for WS : ΩS

0 →R2, we define ŵS : Ω̂S →R2 and wS : ΩS
n+1→R2 by

ŵS (x̂)=wS (x)=WS (X).
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We want to rewrite Eq. (3.5) over the domain Ω̂S. For the first term of (3.5), we get∫
ΩS

0

ρS
0

VS,n+1−VS,n

∆t
·WS dX=

∫
Ω̂S

ρS
0

Jn
v̂S,n+1−vS,n

∆t
·ŵS dx̂

and in a similar way, we get ∫
ΩS

0

ρS
0 g·WS dX=

∫
Ω̂S

ρS
0

Jn g·ŵS dx̂.

Using [5], Chapter 1.2, we have
(
∇wS (x)

)
Fn+1(X)=∇XWS (X) and we get∫

ΩS
0

Fn+1Σn+1 :∇XWS dX=
∫

ΩS
n+1

σS,n+1 :∇wS dx.

Before to write the above integral over the domain Ω̂S, we introduce the tensor

Σ̂(x̂)= Ĵ(x̂)F̂−1(x̂)σS,n+1(x)F̂−T (x̂). (4.2)

Since
(
∇wS (x)

)
F̂(x̂)=∇x̂ŵS (x̂), once again see [5], Chapter 1.2 and taking into account

(4.2), we get ∫
ΩS

n+1

σS,n+1 :∇wS dx=
∫

Ω̂S
F̂Σ̂ :∇x̂ŵS dx̂.

Now we present the updated Lagrangian version of (3.5). Knowing US,n : ΩS
0 →R2,

Ω̂S =ΩS
n and vS,n : Ω̂S →R2, find v̂S,n+1 : Ω̂S →R2, v̂S,n+1 = 0 on ΓD and p̂S,n+1 : Ω̂S →R,

such that ∫
Ω̂S

ρS
0

Jn
v̂S,n+1−vS,n

∆t
·ŵS dx̂+

∫
Ω̂S

F̂Σ̂ :∇x̂ŵS dx̂

=
∫

Ω̂S

ρS
0

Jn g·ŵS dx̂+
∫

Γ0

Fn+1Σn+1NS ·WS dS (4.3)

for all ŵS :Ω̂S→R2, ŵS=0 on ΓD. The forces Fn+1Σn+1NS on the interface Γ0 are assumed
known.

In the following, we derive the expression of F̂Σ̂ as function of v̂S,n+1 and p̂S,n+1. From
û(x̂)=US,n+1(X)−US,n (X)=∆tVS,n+1(X)=∆tv̂S,n+1(x̂), we get

F̂= I+∆t∇x̂v̂S,n+1. (4.4)

From (4.1) and (4.2), it follows that

Σ̂= ĴF̂−1σS,n+1F̂−T = Ĵ
1

Ĵ Jn
F̂−1Fn+1Σn+1

(
Fn+1

)T
F̂−T

=
1
Jn FnΣn+1(Fn)T . (4.5)
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For the incompressible neo-hookean material, we have

Σn+1= −PS,n+1
(

Fn+1
)−1(

Fn+1
)−T

+µS
(

I−
(

Fn+1
)−1(

Fn+1
)−T

)
= −PS,n+1(Fn)−1 F̂−1F̂−T (Fn)−T+µS

(
I−(Fn)−1 F̂−1F̂−T (Fn)−T

)
.

Then

Σ̂=
1
Jn FnΣn+1(Fn)T

= − 1
Jn p̂S,n+1F̂−1F̂−T+

µS

Jn

(
Fn (Fn)T−F̂−1F̂−T

)
,

and finally

F̂Σ̂= − 1
Jn p̂S,n+1F̂−T+

µS

Jn

(
F̂Fn (Fn)T−F̂−T

)
with p̂S,n+1(x̂)=PS,n+1(X). Since detF̂≈1, we get that F̂−T ≈cof

(
F̂
)

, the cofactor matrix

of F̂. Then

F̂Σ̂≈ − 1
Jn p̂S,n+1cof

(
I+∆t∇x̂v̂S,n+1

)
+

µS

Jn

((
I+∆t∇x̂v̂S,n+1

)
Fn (Fn)T−cof

(
I+∆t∇x̂v̂S,n+1

))
= − 1

Jn p̂S,n+1I− 1
Jn p̂S,n+1(∆t)cof

(
∇x̂v̂S,n+1

)
+

µS

Jn

((
I+∆t∇x̂v̂S,n+1

)
Fn (Fn)T−I−(∆t)cof

(
∇x̂v̂S,n+1

))
. (4.6)

The exact incompressibility condition Ĵ=1 gives

1+(∆t)∇x̂ ·v̂S,n+1+(∆t)2det(∇x̂v̂S,n+1)=1,

but it will approached by the condition

x∇x̂ ·v̂S,n+1=0, in Ω̂S. (4.7)

First, we introduce

L̂1

(
v̂S,n+1, p̂S,n+1

)
=− 1

Jn p̂S,n+1I+
µS

Jn

((
I+∆t∇x̂v̂S,n+1

)
Fn (Fn)T−I

)
. (4.8)

We remark that the expression (4.8) is first-order consistent in time with (4.6).
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The first updated Lagrangian weak formulation of the structure is: knowing US,n :
ΩS

0 →R2, Ω̂S =ΩS
n and vS,n : Ω̂S →R2, find v̂S,n+1 : Ω̂S →R2, v̂S,n+1 =0 on ΓD and p̂S,n+1 :

Ω̂S →R, such that∫
Ω̂S

ρS
0

Jn
v̂S,n+1−vS,n

∆t
·ŵS dx̂+

∫
Ω̂S

L̂1

(
v̂S,n+1, p̂S,n+1

)
:∇x̂ŵS dx̂

=
∫

Ω̂S

ρS
0

Jn g·ŵS dx̂+
∫

Γ0

Fn+1Σn+1NS ·WS dS (4.9)

for all ŵS : Ω̂S →R2, ŵS =0 on ΓD, subject to (4.7). For the new time step, using (3.4), we
put

US,n+1(X)=US,n (X)+∆tVS,n+1(X)=US,n (X)+∆tv̂S,n+1(x̂). (4.10)

We have assumed that all expression before are well defined. In the follows, we pre-
cise the regularity of the data. We assume that Jn ∈ L∞(Ω̂S) and there exits δ∈ (0,1) such
that 1−δ≤ Jn (X)≤ 1+δ, a.e. Also, we assume that each component of Fn is in L∞(Ω̂S)
and we introduce the spaces

ŴS =

{
ŵS ∈

(
H1

(
Ω̂S

))2
; ŵS =0 on ΓD

}
, Q̂S =L2

(
Ω̂S

)
.

We can write the system (4.9), (4.7) as a mixed problem: find v̂S,n+1∈ŴS, p̂S,n+1∈Q̂S such
that

âS(v̂S,n+1,ŵS)+ b̂S(ŵS, p̂S,n+1)=LS(ŵS), ∀ŵS ∈ŴS, (4.11)

b̂S(v̂S,n+1,q̂S)=0, ∀q̂S ∈ Q̂S, (4.12)

where

âS(v̂S,n+1,ŵS)=
∫

Ω̂S

ρS
0

Jn
v̂S,n+1

∆t
·ŵS dx̂+

∫
Ω̂S

µS

Jn

(
∆t∇x̂v̂S,n+1

)
Fn (Fn)T :∇x̂ŵS dx̂,

b̂S(ŵS,q̂S)=−
∫

Ω̂S

1
Jn

(
∇x̂ ·ŵS

)
q̂Sdx̂.

Proposition 4.1. The mixed problem (4.11), (4.12) has an unique solution.

Proof. The continuous function ŵS → âS(ŵS,ŵS) verifies for all ŵS ∈ŴS, ŵS ̸=0

0< âS(ŵS,ŵS)=
∫

Ω̂S

ρS
0

Jn
ŵS

∆t
·ŵS dx̂+

∫
Ω̂S

µS

Jn (∆t)∇x̂ŵSFn :∇x̂ŵSFn dx̂

and it has a minimum αS >0 on the compact set {ŵS ∈ŴS;
∥∥ŵS

∥∥
1,Ω̂S =1}. Then, we get

the ellipticity of âS,

αS
∥∥∥ŵS

∥∥∥2

1,Ω̂S
≤ âS(ŵS,ŵS), ∀ŵS ∈ŴS.

Including Jn in q̂S, we obtain that b̂S(ŵS,q̂S) verifies the inf-sup condition in ŴS×Q̂S,
then we get the conclusion of the Proposition by Babuska-Brezzi theory, [1, 17].
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Now, we will treat the condition (4.7) by penalization and we introduce

L̂2

(
v̂S,n+1

)
=

1
ε

(
∇x̂ ·v̂S,n+1

)
I+µS

((
I+∆t∇x̂v̂S,n+1

)
Fn (Fn)T

−cof
(

I+∆t∇x̂v̂S,n+1
))

, (4.13)

where ε>0 is the penalization parameter. The second updated Lagrangian weak formu-
lation of the structure using the penalization is: find v̂S,n+1 : Ω̂S →R2, v̂S,n+1 = 0 on ΓD
such that (4.9) holds, where L̂1

(
v̂S,n+1, p̂S,n+1) is replaced by L̂2

(
v̂S,n+1) and Jn replaced

by 1. We point out that the condition (4.7) is not necessary and the structure pressure
does not appear in this second formulation.

To justify the introduction of the second formulation, we precise that the pressure
is not necessary continuous at the fluid-structure interface. Then using finite element
function globally continuous like P1 in the fluid-structure domain is not appropriate.

5 Stability of the first updated Lagrangian algorithm for the
structure

Theorem 5.1. The time advancing scheme for the structure (4.9), (4.7) and (4.10) verifies

1
2

∫
ΩS

0

ρS
0

∣∣∣VS,n+1
∣∣∣2 dX+

1
2

∫
ΩS

0

µSFn+1 : Fn+1dX

≤ 1
2

∫
ΩS

0

ρS
0

∣∣∣VS,n
∣∣∣2 dX+

1
2

∫
ΩS

0

µSFn : FndX

≤ 1
2

∫
ΩS

0

ρS
0

∣∣∣VS,0
∣∣∣2 dX+

1
2

∫
ΩS

0

µSF0 : F0dX, (5.1)

if the right hand side of (4.9) is zero, where
∣∣VS,n

∣∣2=(
VS,n

1

)2
+
(

VS,n
2

)2
.

Proof. We put ŵS = (∆t)v̂S,n+1 in (4.9). From the first term of (4.9), using v̂S,n+1(x̂) =
VS,n+1(X), we get∫

Ω̂S

ρS
0

Jn
v̂S,n+1−vS,n

∆t
·(∆t)v̂S,n+1 dx̂=

∫
ΩS

0

ρS
0

(
VS,n+1−VS,n

)
·VS,n+1dX.

Applying the inequality
a2

2
− b2

2
≤ (a−b)a, ∀a,b∈R, (5.2)

we obtain
1
2

∫
ΩS

0

ρS
0

(
VS,n+1

)2
dX− 1

2

∫
ΩS

0

ρS
0

(
VS,n

)2
dX

≤
∫

ΩS
0

ρS
0

(
VS,n+1−VS,n

)
·VS,n+1dX.
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From the second term of (4.9), using (4.7) we obtain

L̂1

(
v̂S,n+1, p̂S,n+1

)
: (∆t)∇x̂v̂S,n+1=− 1

Jn p̂S,n+1(∆t)
(
∇x̂ ·v̂S,n+1

)
+

µS

Jn

((
I+∆t∇x̂v̂S,n+1

)
Fn (Fn)T

)
: (∆t)∇x̂v̂S,n+1− µS

Jn (∆t)
(
∇x̂ ·v̂S,n+1

)
=

µS

Jn

((
I+∆t∇x̂v̂S,n+1

)
Fn (Fn)T

)
: (∆t)∇x̂v̂S,n+1.

Now, we change the domain of integration, from Ω̂S = ΩS
n to ΩS

n+1 using ∇x̂ŵ(x̂) =
(∇w(x))F̂(x̂) and from ΩS

n+1 to ΩS
0 using (∇w(x))Fn+1(X)=∇XW(X). We get∫

Ω̂S
L̂1

(
v̂S,n+1, p̂S,n+1

)
: (∆t)∇x̂v̂S,n+1 dx̂

=
∫

Ω̂S

µS

Jn

((
I+∆t∇x̂v̂S,n+1

)
Fn (Fn)T

)
: (∆t)∇x̂v̂S,n+1 dx̂

=
∫

Ω̂S

µS

Jn

(
F̂Fn (Fn)T

)
: (∆t)∇vS,n+1F̂dx̂

=
∫

Ω̂S

µS

Jn

(
F̂Fn (Fn)T F̂T

)
: (∆t)∇vS,n+1dx̂

∫
ΩS

n+1

µS

Ĵ Jn
Fn+1

(
Fn+1

)T
: (∆t)∇vS,n+1dx

=
∫

ΩS
n+1

µS

Jn+1 Fn+1 : (∆t)
(
∇vS,n+1

)
Fn+1dx

∫
ΩS

n+1

µS

Jn+1 Fn+1 : (∆t)∇XVS,n+1dx

=
∫

ΩS
0

µSFn+1 : (∆t)∇XVS,n+1dX=
∫

ΩS
0

µSFn+1 :
(

Fn+1−Fn
)

dX.

Using once again (5.2), we get

1
2

∫
ΩS

0

µSFn+1 : Fn+1dX− 1
2

∫
ΩS

0

µSFn : FndX≤
∫

ΩS
0

µSFn+1 :
(

Fn+1−Fn
)

dX.

It follows
1
2

∫
ΩS

0

ρS
0

∣∣∣VS,n+1
∣∣∣2 dX− 1

2

∫
ΩS

0

ρS
0

∣∣∣VS,n
∣∣∣2 dX

+
1
2

∫
ΩS

0

µSFn+1 : Fn+1dX− 1
2

∫
ΩS

0

µSFn : FndX≤0,

which is the first inequality of (5.1). If we write the above inequality for n=0,1,.. ., we get
also the second inequality of (5.1).

Remark 5.1. The proof of the structure stability exploits the incompressible neo-hookean
model. A hyperelastic material is characterized by a positive energy density Ψ(F) such
that ∂Ψ(F)

∂F =FΣ. The convexity of the energy density as function of F can be used to prove
the stability, as in [2]. More complicated incompressible materials as in [13] could be
considered, but the energy density is convex as function of E= 1

2

(
FTF−I

)
, not of F.
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Remark 5.2. The midpoint scheme is of great interest in structure approximation because
it is conservative. For quadratic energy density, a stability result for midpoint scheme is
presented in [8]. For the incompressible neo-hookean material, the midpoint algorithm
in the Updated Lagrangian framework will be studied in a future work.

6 Stability of an Arbitrary Lagrangian Eulerian scheme for fluid
equations

The Arbitrary Eulerian Lagrangian (ALE) is a method for solving Navier-Stokes equa-
tions in a moving domain (see [21]).

We denote by ΩF
n , vF,n, pF,n approximations for the fluid domain, velocity and pres-

sure at time instant tn. We follow the framework from [17] where the computational
domain is Ω̂F =ΩF

n . We introduce the ALE map An+1 : ΩF
n →R2 by

An+1(x̂)= x̂+∆tϑ̂
n+1

(x̂),

where ϑ̂
n+1

is so called mesh velocity. The boundary of ΩF
n is composed by the fixed

boundary
∪5

i=1 Σi and the moving boundary Γn which is the fluid-structure interface. We

shall construct ϑ̂
n+1

: ΩF
n →R2 by harmonic extension such that the mesh velocity is zero

on the fixed boundary and the mesh velocity is equal to the fluid velocity on the fluid-
structure interface. The Jacobian of the ALE map is

Ĵn+1(x̂)=det(∇x̂An+1(x̂))=1+∆t∇x̂ ·ϑ̂
n+1

(x̂)+(∆t)2det(∇x̂ϑ̂
n+1

(x̂)). (6.1)

We note ΩF
n+1 =An+1(ΩF

n), Γn+1 =An+1(Γn) and we have An+1(x̂) = x̂ on
∪5

i=1 Σi. For
wF : ΩF

n+1 →R2 and qF : ΩF
n+1 →R, we define ŵF : ΩF

n →R2 and q̂F : ΩF
n →R by ŵF(x̂)=

wF (An+1(x̂)) and q̂F(x̂)=qF (An+1(x̂)) respectively. We use the notation x=An+1(x̂).
The time advancing scheme for fluid equations is: find v̂F,n+1 : ΩF

n →R2, v̂F,n+1=0 on

Σ2∪Σ4∪Σ5, p̂F,n+1 : ΩF
n →R, ϑ̂

n+1
: ΩF

n →R2, such that

∫
ΩF

n

ρF v̂F,n+1

∆t
·ŵFdx̂+

∫
ΩF

n

ρF
(((

v̂F,n+1−ϑ̂
n+1)·∇x̂

)
v̂F,n+1

)
·ŵFdx̂

+
(∆t)

2

∫
ΩF

n

ρF det
(
∇x̂ϑ̂

n+1)
v̂F,n+1 ·ŵFdx̂+

∫
ΩF

n

2µFϵx̂

(
v̂F,n+1

)
: ϵx̂

(
ŵF

)
dx̂

−
∫

ΩF
n

p̂F,n+1(∇x̂ ·ŵF)dx̂=LF(ŵF)+
∫

Γn

(
σF(v̂F,n+1, p̂F,n+1)nF

)
·ŵFds, (6.2)

−
∫

ΩF
n

q̂F(∇x̂ ·v̂F,n+1)dx̂=0, (6.3)

∆ϑ̂
n+1

=0 in ΩF
n , ϑ̂

n+1
= v̂F,n+1 on Γn, ϑ̂

n+1
=0 on ∂ΩF

n\Γn (6.4)
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for all ŵF : ΩF
n →R2 such that ŵF =0 on Σ2∪Σ4∪Σ5 and for all q̂F : ΩF

n →R, where

LF(ŵF)=
∫

ΩF
n

ρF v̂F,n

∆t
·ŵFdx̂+

∫
ΩF

n

ρFg·ŵFdx̂+
∫

Σ1

hn+1
in ·ŵFds+

∫
Σ3

hn+1
out ·ŵFds

and ϵx̂
(
ŵF)= 1

2

(
∇x̂ŵF+

(
∇x̂ŵF)T

)
.

The term (∆t)
2

∫
ΩF

n
ρF det

(
∇x̂ϑ̂

n+1
)

v̂F,n+1 ·ŵFdx̂ in (6.2) was added to obtain the stabil-
ity. This technique was introduced in [23] and also used in [17], Chapters 3 and 6.

Remark 6.1. The advantage of system (6.2)–(6.4) over to equations written over ΩF
n+1

which is unknown, is that we solve the system in the known domain ΩF
n . This system is

non-linear, but it can be easily linearized. We work with ϑ̂
n+1

for compatibility with the

time advancing backward Euler scheme for the structure mesh. By replacing ϑ̂
n+1

with

ϑ̂
n

in (6.2), we can decouple the equation (6.4) for solving ϑ̂
n+1

, from the system (6.2) and
(6.3) for solving v̂F,n+1, p̂F,n+1.

Theorem 6.1. The time advancing scheme for the fluid (6.2)–(6.4) verifies

1
2

∫
ΩF

n+1

ρF
∣∣∣vF,n+1

∣∣∣2 dx+(∆t)
n

∑
k=0

∫
ΩF

k

2µFϵx̂(v̂F,k+1) : ϵx̂(v̂F,k+1)dx̂

≤ 1
2

∫
ΩF

0

ρF
∣∣∣vF,0

∣∣∣2 dX, (6.5)

if g, hin, hout and the forces acting on Γn are zero in the right-hand side of (6.2) and∫
Σ1∪Σ3

(v̂F,n+1 ·nF)|v̂F,n+1|2≥0,

where |v̂F,n+1|2=(v̂F,n+1
1 )2+(v̂F,n+1

2 )2.

Proof. We put ŵF=(∆t)v̂F,n+1 in (6.2) and the terme containg p̂F,n+1 will disappear, using
(6.3). We obtain ∫

ΩF
n

ρF
(

v̂F,n+1−vF,n
)
·v̂F,n+1dx̂

+(∆t)
∫

ΩF
n

ρF
(((

v̂F,n+1−ϑ̂
n+1

)
·∇x̂

)
v̂F,n+1

)
·v̂F,n+1dx̂

+
(∆t)2

2

∫
ΩF

n

ρF det
(
∇x̂ϑ̂

n+1)
v̂F,n+1 ·v̂F,n+1dx̂

+(∆t)
∫

ΩF
n

2µFϵx̂

(
v̂F,n+1

)
: ϵx̂

(
v̂F,n+1

)
dx̂=0.
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By using [(ŵ·∇x̂v̂]·v̂= 1
2 ŵ·(∇x̂|v̂|2), we get∫

ΩF
n

[((v̂F,n+1−ϑ̂
n+1

)·∇x̂)v̂F,n+1]·v̂F,n+1 dx̂

=
1
2

∫
ΩF

n

(v̂F,n+1−ϑ̂
n+1

)·(∇x̂|v̂F,n+1|2)dx̂

=
1
2

∫
∂ΩF

n

(v̂F,n+1−ϑ̂
n+1

)·nF|v̂F,n+1|2ds− 1
2

∫
ΩF

n

∇x̂ ·(v̂F,n+1−ϑ̂
n+1

)|v̂F,n+1|2dx̂

=
1
2

∫
Σ1∪Σ3

v̂F,n+1 ·nF|v̂F,n+1|2ds+
1
2

∫
ΩF

n

(∇x̂ ·ϑ̂
n+1

)|v̂F,n+1|2dx̂.

For the last equality, we have used the fact that ∇x̂ ·v̂F,n+1 = 0 in ΩF
n , and the boundary

conditions: v̂F,n+1=0 on Σ2∪Σ4∪Σ5, v̂F,n+1=ϑn+1 on Γn and ϑn+1=0 on Σ1∪Σ3.
Using the assumption

∫
Σ1∪Σ3

(v̂F,n+1 ·nF)|v̂F,n+1|2≥0, it follows∫
ΩF

n

ρF
(

v̂F,n+1−vF,n
)
·v̂F,n+1dx̂+

∆t
2

∫
ΩF

n

ρF(∇x̂ ·ϑ̂
n+1

)|v̂F,n+1|2dx̂

+
(∆t)2

2

∫
ΩF

n

ρF det
(
∇x̂ϑ̂

n+1
)
|v̂F,n+1|2dx̂

+(∆t)
∫

ΩF
n

2µFϵx̂

(
v̂F,n+1

)
: ϵx̂

(
v̂F,n+1

)
dx̂≤0.

Using (5.2), we obtain

1
2

∫
ΩF

n

ρF
∣∣∣v̂F,n+1

∣∣∣2 dx̂− 1
2

∫
ΩF

n

ρF
∣∣∣vF,n

∣∣∣2 dx̂≤
∫

ΩF
n

ρF
(

v̂F,n+1−vF,n
)
·v̂F,n+1dx̂.

Consequently,

1
2

∫
ΩF

n

ρF
∣∣∣v̂F,n+1

∣∣∣2 dx̂+
∆t
2

∫
ΩF

n

ρF(∇x̂ ·ϑ̂
n+1

)|v̂F,n+1|2dx̂

+
(∆t)2

2

∫
ΩF

n

ρF det
(
∇x̂ϑ̂

n+1)|v̂F,n+1|2dx̂

+(∆t)
∫

ΩF
n

2µFϵx̂

(
v̂F,n+1

)
: ϵx̂

(
v̂F,n+1

)
dx̂≤ 1

2

∫
ΩF

n

ρF
∣∣∣vF,n

∣∣∣2 dx̂.

From (6.1), we have that

1
2

∫
ΩF

n

ρF
∣∣∣v̂F,n+1

∣∣∣2 dx̂+
∆t
2

∫
ΩF

n

ρF(∇x̂ ·ϑ̂
n+1

)|v̂F,n+1|2dx̂

+
(∆t)2

2

∫
ΩF

n

ρF det
(
∇x̂ϑ̂

n+1
)
|v̂F,n+1|2dx̂

=
1
2

∫
ΩF

n

ρF
∣∣∣v̂F,n+1

∣∣∣2 Ĵn+1 dx̂=
1
2

∫
ΩF

n+1

ρF
∣∣∣vF,n+1

∣∣∣2 dx.
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Finally, we obtain

1
2

∫
ΩF

n+1

ρF
∣∣∣vF,n+1

∣∣∣2 dx+(∆t)
∫

ΩF
n

2µFϵx̂

(
v̂F,n+1

)
: ϵx̂

(
v̂F,n+1

)
dx̂

≤ 1
2

∫
ΩF

n

ρF
∣∣∣vF,n

∣∣∣2 dx̂.

We replace in the above inequality n by k and summing for 0≤k≤n, we get (6.5).

7 Stable monolithic algorithm for fluid-structure interaction

We follow the approach as in [16, 18, 24] and we introduce globally fields defined in the
whole fluid-structure domain. The global mesh is compatible with the fluid-structure
interface.

At time instant tn, we have ∂ΩS
n = ΓD∪Γn, where Γn is the fluid-structure interface

and ∂ΩF
n =

(∪5
i=1 Σi

)
∪Γn. We introduce Ωn =ΩS

n∪Γn∪ΩF
n . Let us introduce the global

velocity, pressure and test function v̂n+1 : Ωn →R2, p̂n+1 : Ωn →R, ŵ : Ωn →R2 as follow

v̂n+1=

{
v̂F,n+1 in ΩF

n
v̂S,n+1 in ΩS

n
, p̂n+1=

{
p̂F,n+1 in ΩF

n
p̂S,n+1 in ΩS

n
, ŵ=

{
ŵF in ΩF

n
ŵS in ΩS

n
.

For the velocity and the test function, we impose to be from
(

H1(Ωn)
)2, then

v̂F,n+1= v̂S,n+1 on Γn, ŵF = ŵS on Γn.

For the pressure, we can use L2(Ωn).
Combining the equations (4.9), (4.7) with (6.2)–(6.4), we obtain the monolithic system

for the fluid-structure interaction problem: find

1) the velocity v̂n+1∈
(

H1(Ωn)
)2, v̂n+1=0 on Σ2∪Σ4∪Σ5,

2) the pressure p̂n+1∈L2(Ωn),

3) the fluid mesh velocity ϑ̂
n+1∈

(
H1(ΩF

n
))2, ϑ̂

n+1
= v̂F,n+1 on Γn, ϑ̂

n+1
=0 on

∪5
i=1 Σi,

such that:∫
ΩF

n

ρF v̂n+1

∆t
·ŵdx̂+

∫
ΩF

n

ρF
(((

v̂n+1−ϑ̂
n+1)·∇x̂

)
v̂n+1

)
·ŵdx̂

+
(∆t)

2

∫
ΩF

n

ρF det
(
∇x̂ϑ̂

n+1)
v̂n+1 ·ŵdx̂+

∫
ΩF

n

2µFϵx̂

(
v̂n+1

)
: ϵx̂ (ŵ)dx̂

−
∫

Ωn

(∇x̂ ·ŵ) p̂n+1dx̂+
∫

ΩS
n

ρS
0

Jn
v̂n+1

∆t
·ŵdx̂+

∫
ΩS

n

L̂3

(
v̂n+1

)
:∇x̂ŵdx̂
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=
∫

ΩF
n

ρF vn

∆t
·ŵdx̂+

∫
ΩF

n

ρFg·ŵdx̂+
∫

Σ1

hn+1
in ·ŵdx̂+

∫
Σ3

hn+1
out ·ŵdx̂

+
∫

ΩS
n

ρS
0

Jn
vn

∆t
·ŵdx̂+

∫
ΩS

n

ρS
0

Jn g·ŵdx̂, (7.1)

−
∫

Ωn

(∇x̂ ·v̂n+1)q̂dx̂=0, (7.2)∫
ΩF

n

(∇x̂ϑ̂
n+1

)·(∇x̂ψ̂)dx̂=0, (7.3)

for all ŵ∈
(

H1(Ωn)
)2, ŵ=0 on Σ2∪Σ4∪Σ5, for all q̂∈L2(Ωn) and for all ψ̂∈

(
H1

0
(
ΩF

n
))2,

where L̂3 is obtained from L̂1 by deleting the term with the pressure, i.e.

L̂3

(
v̂n+1

)
=

µS

Jn

((
I+∆t∇x̂v̂S,n+1

)
Fn (Fn)T−I

)
.

The equation (7.1) was obtained by adding (4.9) with (6.2). Using the boundary con-
dition (2.9), the sum of the integrals over the fluid-structure interface in the right-hand
side of (4.9) and (6.2) vanishes. The sum of the terms containing pressure in (4.9) and
(6.2) is

−
∫

ΩS
n

(
∇x̂ ·ŵS

) 1
Jn p̂S,n+1dx̂−

∫
ΩF

n

(
∇x̂ ·ŵF

)
p̂F,n+1dx̂.

Only in the first term, we replace Jn by 1, to obtain −
∫

Ωn
(∇x̂ ·ŵ) p̂n+1dx̂. For the other

terms concerning the structure, we keep Jn in order to apply Theorem 5.1. The equation
(7.2) combines (4.7) and (6.3). The equation (7.3) is the weak version of (6.4).

Algorithm 7.1.

Time advancing scheme from n to n+1.
We assume that we know Ωn, Γn, vn.

Step 1: Solve the non-linear system (7.1)-(7.3) written in Ωn and get the velocity

v̂n+1, the pressure p̂n+1 and the fluid mesh velocity ϑ̂
n+1

.

Step 2: Define the map Tn : Ωn →R2 by:

Tn(x̂)= x̂+(∆t)ϑ̂
n+1

(x̂)χΩF
n
(x̂)+(∆t)v̂n+1(x̂)χΩS

n
(x̂),

where χΩF
n

and χΩS
n

are the characteristic functions of fluid and structure domains.
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Step 3: We set Ωn+1 =Tn(Ωn), Γn+1 =Tn(Γn). We define vn+1 : Ωn+1 →R2, pn+1 :
Ωn+1→R by:

vn+1(x)= v̂n+1(x̂), pn+1(x)= p̂n+1(x̂), ∀x̂∈Ωn and x=Tn(x̂)

and ϑn+1 : ΩF
n+1→R2 by

ϑn+1(x)= ϑ̂
n+1

(x̂), ∀x̂∈ΩF
n and x=Tn(x̂).

The Lagrangian structure displacement and velocity are defined by

US,n+1(X)=US,n (X)+∆tv̂n+1(x̂), VS,n+1(X)= v̂n+1(x̂)

for all X∈ΩS
0 and x̂=X+US,n (X).

Theorem 7.1. The Algorithm 7.1 verifies

1
2

∫
ΩF

n+1

ρF
∣∣∣vF,n+1

∣∣∣2 dx+(∆t)
n

∑
k=0

∫
ΩF

k

2µFϵx̂(v̂F,k+1) : ϵx̂(v̂F,k+1)dx̂

+
1
2

∫
ΩS

0

ρS
0

∣∣∣VS,n+1
∣∣∣2 dX+

1
2

∫
ΩS

0

µSFn+1 : Fn+1dX

≤ 1
2

∫
ΩF

0

ρF
∣∣∣vF,0

∣∣∣2 dX+
1
2

∫
ΩS

0

ρS
0

∣∣∣VS,0
∣∣∣2 dX+

1
2

∫
ΩS

0

µSF0 : F0dX (7.4)

if g, hin, hout are zero and
∫

Σ1∪Σ3
(v̂F,n+1 ·nF)|v̂F,n+1|2≥0.

Proof. We put ŵ=(∆t)v̂n+1 in (7.1) and we follow the proofs of Theorems 5.1 and 6.1. We
obtain

1
2

∫
ΩF

n+1

ρF
∣∣∣vF,n+1

∣∣∣2 dx+(∆t)
∫

ΩF
n

2µFϵx̂(v̂F,n+1) : ϵx̂(v̂F,n+1)dx̂

+
1
2

∫
ΩS

0

ρS
0

∣∣∣VS,n+1
∣∣∣2 dX+

1
2

∫
ΩS

0

µSFn+1 : Fn+1dX

≤ 1
2

∫
ΩF

n

ρF
∣∣∣vF,n

∣∣∣2 dx̂+
1
2

∫
ΩS

0

ρS
0

∣∣∣VS,n
∣∣∣2 dX+

1
2

∫
ΩS

0

µSFn : FndX.

As before, by replacing in the above inequality n by k and summing for 0≤ k≤n, we get
(7.4).

Remark 7.1. For arbitrary g, hin, hout, the conclusion of the before Theorem keeps true.
We can adapt the proofs from [17], Chapter 6, for example.
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Compared to the explicit methods [4], here there is no specific condition on the time
step.

The system (7.1)–(7.3) is non-linear. In the following, we introduce a linear approx-

imation of this system. Also, we shall decouple the equation for solving ϑ̂
n+1

, from the
system for solving v̂n+1, p̂n+1. The incompressibility in the structure domain will be
treated by penalization.

Algorithm 7.2.

We assume that we know Ωn, Γn, vn, ϑn.

Step 1-1: Find the velocity v̂n+1 ∈
(

H1(Ωn)
)2, v̂n+1 = 0 on Σ2∪Σ4∪Σ5, the pressure

p̂F,n+1∈L2(ΩF
n), such that:∫

ΩF
n

ρF v̂n+1

∆t
·ŵdx̂+

∫
ΩF

n

ρF
(
((vn−ϑn)·∇x̂)v̂n+1

)
·ŵdx̂

+
∫

ΩF
n

2µFϵx̂

(
v̂n+1

)
: ϵx̂ (ŵ)dx̂

−
∫

ΩF
n

(∇x̂ ·ŵ) p̂F,n+1dx̂+
∫

ΩS
n

1
ε

(
∇x̂ ·v̂n+1

)
(∇x̂ ·ŵ)dx̂

+
∫

ΩS
n

ρS
0

v̂n+1

∆t
·ŵdx̂+

∫
ΩS

n

L̂4

(
v̂n+1

)
:∇x̂ŵdx̂

=
∫

ΩF
n

ρF vn

∆t
·ŵdx̂+

∫
ΩF

n

ρFg·ŵdx̂+
∫

Σ1

hn+1
in ·ŵdx̂+

∫
Σ3

hn+1
out ·ŵdx̂

+
∫

ΩS
n

ρS
0

vn

∆t
·ŵdx̂+

∫
ΩS

n

ρS
0 g·ŵdx̂, (7.5)

−
∫

ΩF
n

(∇x̂ ·v̂n+1)q̂F dx̂=0, (7.6)

for all ŵ∈
(

H1(Ωn)
)2, ŵ=0 on Σ2∪Σ4∪Σ5, for all q̂F ∈ L2(ΩF

n), where L̂4 is obtained
from L̂2 by deleting the penalization term, i.e.

L̂4

(
v̂n+1

)
=µS

((
I+∆t∇x̂v̂S,n+1

)
Fn (Fn)T−cof

(
I+∆t∇x̂v̂S,n+1

))
.

Step 1-2: Find the fluid mesh velocity ϑ̂
n+1∈

(
H1(ΩF

n
))2, ϑ̂

n+1
= v̂F,n+1 on Γn, ϑ̂

n+1
=0

on
∪5

i=1 Σi such that ∫
ΩF

n

(∇x̂ϑ̂
n+1

)·(∇x̂ψ̂)dx̂=0

for all ψ̂∈
(

H1
0
(
ΩF

n
))2.

The Steps 2, 3 are the same as in Algorithm 7.1.
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Remark 7.2. Starting from the non-linear system (7.1)-(7.3), we have obtained the linear
system (7.5)-(7.6), just by treated the convection term semi-implicitly and by deleting the

term containing det
(
∇x̂ϑ̂

n+1
)

.

8 A numerical test

The numerical tests have been produced using FreeFem++ (see [10]). We have tested the
benchmark FSI3 from [25], the geometric configuration is presented in Figure 1.

The fluid domain has the length L=2.5m and the width H=0.41m. The fluid dynamic
viscosity is µF =1Kg/(ms) and the mass density is ρF =1000Kg/m3.

The rectangular flexible structure is of length ℓ= 0.35m, thickness h = 0.02m, mass
density ρS =1000Kg/m3 and µS =2×106Kg/(ms2). It is attached to the fixed cylinder of
center (xC,yC)=(0.2,0.2)m and radius r=0.5m. The point A is at the middle of the right
side of the flexible structure.

The boundary condition at the inflow Σ1 is v=vin, with

vin(x1,x2,t)=


(

1.5U x2(H−x2)
(H/2)2

(1−cos(πt/2))
2 , 0

)
, (x1,x2)∈Σ1,0≤ t≤2(

1.5U x2(H−x2)
(H/2)2 , 0

)
, (x1,x2)∈Σ1,2≤ t≤T=12

and U=1.8. We have imposed the no-slip boundary condition v=0 at Σ2, Σ4, Σ5. At the
outflow Σ3, we set the traction free σF (v,p)nF =0. The fluid and the structure are at rest,
initially.

Figure 2: Details of the fluid-structure mesh at time instant t=9.05.

We use a mesh of 2604 vertices and 4964 triangles, we can see a zoom in Figure 2. For
the time step ∆t, we have employed 0.005, 0.002 and 0.001. We have used the Algorithm
7.2, the structure is written in the updated Lagrangian formulation and the imcompress-
ibility condition is treated by penalization, where ε=10−4. We have employed the trian-
gular finite element P1+bubble for the approximation of the fluid-structure velocity and
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Figure 3: Time history of the vertical displacement of the point A for ∆t=0.005, 0.002, 0.001 (left) and a detail
in the time interval [9,12] (right).

Vec Value
0
0.213093
0.426186
0.63928
0.852373
1.06547
1.27856
1.49165
1.70475
1.91784
2.13093
2.34402
2.55712
2.77021
2.9833
3.1964
3.40949
3.62258
3.83568
4.04877

IsoValue
-4908.49
-4107
-3572.67
-3038.34
-2504.02
-1969.69
-1435.36
-901.031
-366.703
167.625
701.954
1236.28
1770.61
2304.94
2839.27
3373.6
3907.92
4442.25
4976.58
6312.4

Figure 4: Fluid-structure velocity (left) and fluid pressure (right) at t=9.05.

P1 for the pressure. We point out that, we have to use for the solid part the same finite
element as for the fluid part.

After a transient period, the structure oscillates periodically, see Figure 3. For ∆t =
0.005, the amplitude is 0.022 m, the frequency 4.72 Hz, for ∆t = 0.002, the amplitude is
0.025 m, the frequency 4.77 Hz, for ∆t = 0.001, the amplitude is 0.027 m, the frequency
5 Hz. We observe that for smaller time step, the oscillations start before. In [16], for
∆t = 0.002, the amplitude is 0.03 m, the frequency 5 Hz in the case of a compressible
neo-hookean structure.

For the boundary condition at the inflow Σ1, we have used U = 1.8 which is smaller
that U = 2 employed in [6, 11]. The reason is that for U = 2, in the zone of the right end
of the structure, some triangles of the ALE mesh became flat. To avoid this, it is possible
to use ALE framework with remeshing as in [15], but we shall treat this in a forcoming
paper.

For ∆t= 0.005, in [6] the amplitude is 0.016 m, the frequency 6.86 Hz and in [11] the
amplitude is 0.03 m, the frequency 5.4 Hz. In [6], the Eulerian mesh is adapted at each
time step to the structure position and in [11], the fluid mesh is generated at each time
step in order to fit to the fluid-structure interface.
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In Figure 4, we can see the velocity field for the fluid-structure and the fluid pressure.
We observe that, there is no pressure field in the structure domain. If we want, we can
interpret − 1

ε

(
∇·vn+1) as the structure pressure.

Algorithm 7.2 is fast, about 3000 iterations by hour on a PC.
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