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1 Introduction and the Main Result

This paper considers the reducibility of the following system
dx

dt
= [A+ εQ(t)]x , (1.1)

where A is an r × r constant matrix, Q(t) is an r × r almost periodic matrix with respect

to t, and ε is a small perturbation parameter.

We say that a function f is a quasiperiodic function of time t with basic frequencies

ωωω = (ω1, ω2, · · · , ωd), if f(t) = F (θ1, θ2, · · · , θd), where F is 2π periodic in all its arguments

and θn = ωnt for n = 1, 2, · · · , d. f is called analytic quasiperiodic in a strip of width ρ if F

is analytical on

Dρ = {θθθ | |ℑθm| ≤ ρ, m = 1, 2, · · · , r}.

In this case we denote the norm by

∥f∥ρ =
∑
k∈Zd

|Fk|eρ|k|.

A function f is almost periodic, if f(t) =
∞∑

n=1
fn(t), where fn(t) are all quasiperiodic for

n = 1, 2, · · · .
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A change of variables x = P(t)y is a Lyapunov-Perron (LP) transform if P is non-

singular, and P , P−1 and Ṗ are bounded. Moreover, if P , P−1 and Ṗ are almost periodic,

the change x = P(t)y is called almost periodic LP transformation. If there is an almost

periodic LP transformation changing the equation (1.1) into ẏ = By , the equation (1.1) is

called reducible.

If Q = (qmn) is periodic the reducibility in all cases is given by the classical Floquet

theory. IfQ = (qmn) is quasiperiodic and the eigenvalues ofA are all different, Jorba-Simó[1]

proved that if the eigenvalues of A and the frequencies of Q = (qmn) satisfy some non-

resonant conditions and non-degeneracy conditions, there is a positive measure Cantor set E

such that for ε ∈ E the equation (1.1) is reducible. Xu[2] proved the similar result when Q =

(qmn) is quasiperiodic and the eigenvalues ofA are multiple. IfQ = (qmn) is almost periodic,

the reducible problem seems difficult to study. The difficulty comes from the description

of related “non-resonant condition” for the infinitely many frequencies. Xu and You[3],

under the “ spacial structure” described in [4] and some non-resonant conditions, obtained

reducible result for (1.1) by KAM method when the eigenvalues of A are all different. In

this paper, we are going to study the reducibility for the system (1.1) when Q = (qmn) is

almost periodic and the eigenvalues of A are multiple.

Now let us introduce the “space structure” and “approximation function” and some

related definitions.

Definition 1.1 [4] Let τ consist of the subsets of natural numbers set N. (τ, [ · ]) is called

finite spacial structure in N, if τ satisfies

(1) ∅ ∈ τ ;

(2) if Λ1, Λ2 ∈ τ, then [Λ1 ∪ Λ2] ≤ [τ ];

(3)
∪

Λ∈τ

Λ = N.

And [ · ] is a weight function, i.e., [∅] = 0, [Λ1 ∪ Λ2] ≤ [Λ1] + [Λ2].

Definition 1.2 Let k ∈ ZN. Denote the support set of k by

suppk = {(n1, n2, · · · , nl) | km ̸= 0, m = n1, n2, · · · , nl, km = 0, m = other number}.
Denote the weight value by

[k] = inf
suppk⊂Λ,Λ∈τ

[Λ].

Write |k| =
∞∑
i=1

|ki|.

Assume that Q(t) = (qmn(t)) is a quasiperiodic r×r matrix. If for all m,n = 1, 2, · · · , r,
qmn(t) are analytic on

Dρ = {θθθ | |ℑθm| ≤ ρ, m = 1, 2, · · · , r},
then Q(t) is called analytic on the strip Dρ. Denote the norm by

∥Q(t)∥ρ = r × max
1≤m,n≤r

∥qmn(t)∥ρ.

If Q(t) =
∑
Λ∈τ

QΛ(t), where QΛ(t) are quasiperiodic matrices with basic frequencies ωωωΛ =

{ωi | i ∈ Λ}, then Q(t) is called almost periodic matrix with spatial structure (τ, [ · ]) and
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basic frequencies ωωω, which is the maximum subset of
∪
ωωωΛ in the sense of integer modular.

Denote the average of Q(t) by Q̄ = (q̄mn), where

q̄mn = lim
T→∞

1

2T

∫ T

−T

qmn(t)dt.

Definition 1.3 Let Q(t) =
∑
Λ∈τ

QΛ(t). For z > 0, ρ > 0,

|∥Q(t)∥|z,ρ =
∑
Λ∈τ

ez[Λ]∥QΛ(t)∥ρ

is called weight norm with finite spatial structure (τ, [ · ]).

Definition 1.4 [5] ∆ is called an approximation function, if

(1) ∆ : [0,∞) → [1, ∞) is an increasing function and satisfies ∆(0) = 1;

(2)
log∆(t)

t
is decreasing on [0, ∞);

(3)

∫ ∞

0

log∆(t)

t2
dt < ∞.

Remark 1.1 If ∆ is an approximation function, then so is ∆4.

The non-resonant conditions that we use are

|λm − λn − i⟨k , ωωω⟩| ≥ α

∆4(|k |)∆4([k ])
,

for all 1 ≤ m ̸= n ≤ r and k ∈ ZN\{0}, where λ1, λ2, · · · , λr are the eigenvalues of A, ωωω is

the basic frequencies of Q(t), ∆(t) is an approximation function satisfying∑
k∈ZN

1

∆(|k |)∆([k ])
< ∞,

and α is a small positive constant. From [3] and [4], we can choose the weight function

[Λ] = 1 +
∑
i∈Λ

logp(1 + |i|), p > 2

and ∆(t) such that there exist λ1, λ2, · · · , λr and ωωω = (ω1, ω2, · · · , ωd, · · · ) satisfying the

small divisor conditions.

Here the main theorem is given.

Theorem 1.1 Assume that A has r eigenvalues, i.e., λ1, λ2, · · · , λr, where λm ≤ λn

for 1 ≤ m < n ≤ r−2, and λr−1 = λr. Assume also that Q(t) is an analytic almost periodic

matrix on Dρ with frequencies ωωω = (ω1, ω2, · · · , ωd, · · · ) and depends continuously on the

perturbation parameter ε. If

(1) there exists z0 such that |∥Q(t)∥|z0,ρo < ∞;

(2) (non-resonant conditions)

|λm − λn − i⟨k, ωωω⟩| ≥ α

∆(|k|)∆([k])

for all m, n = 1, 2, · · · , r and k ∈ ZN\{0};
(3) (non-degeneracy conditions)

am = q̄mm
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for 1 ≤ m ≤ r − 2 and the matrix (
q̄r−1,r−1 q̄r−1,r

q̄r,r−1 q̄r,r

)
has two different eigenvalues qr−1 and qr such that

am = qm,

for m = r − 1, r and

|am − an| ≥ 2δ,

for all 1 ≤ m < n ≤ r, then there exists a ε0 > 0 and Cantor subset E ⊂ (0, ε0) with positive

Lebesgue measure, such that (1.1) is reducible for ε ∈ E.

Moreover, the almost periodic LP transformation has the same basic frequencies and

spatial structure as Q(t), and if ε is sufficiently small, the relative measure of E is close to

1.

In Section 2, we give some notations and some lemmas to make the iteration efficient.

In Section 3, we give the iteration lemma to ensure the iteration continuing and prove the

Theorem 1.1.

2 Notations and Auxiliary Lemma

Let Q(t) = Q̃(t) +R, Ā = A+ εR, where the matrix is

R =



q̄11 0 0 · · · 0 0 0

0 q̄22 0 · · · 0 0 0

...
...

...
. . .

...
...

...

0 0 0 · · · q̄r−2,r−2 0 0

0 0 0 · · · 0 q̄r−1,r−1 q̄r−1,r

0 0 0 · · · 0 q̄r,r−1 q̄r,r


.

Due to the non-degeneracy conditions of the Theorem 1.1, the matrix Ā has r different

eigenvalues. So we can find a matrix B such that

B−1ĀB = A∗,

where A∗ is a diagonal matrix. The eigenvalues of A∗ are λ∗
1, λ∗

2, · · · , λ∗
r , where λ∗

m =

λm + εq̄mm for m = 1, 2, · · · , r − 2, λ∗
r−1 = λr−1 + εqr−1 and λ∗

r = λr + εqr.

Let x = Bz , and then the equation (1.1) can be written as

ż =
[
A∗ + εQ ′(t)

]
z ,

where

Q ′(t) = B−1Q̃(t)B .

Let

z = (I + εP(t))y ,

where I is the identity matrix. The equation is changed into

ẏ =
[
(I + εP)−1(A∗ + ε(A∗P − Ṗ +Q ′(t))) + ε2(I + εP)−1Q ′(t)P

]
y .
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We hope to obtain the form of the equation like

ẏ =
[
A∗ + ε2Q ′′(t)

]
y ,

where

Q ′′(t) = (I + εP)−1B−1Q ′(t)BP .

So we have to ensure that

(I + εP)−1
[
A∗ + ε(A∗P − Ṗ +Q ′(t))

]
= A∗,

i.e., the equation

Ṗ = A∗P −PA∗ +Q ′′ (2.1)

has a solution P(t).

Write Q ′′(t) = (q′′mn(t)), and the average of Q ′′(t) is denoted by Q̄
′′
(t) = (q̄′′mn(t)), where

q̄′′mn(t) is the average value of q′′mn(t). Due to the above calculation, there are

q̄′′mm = 0, for m = 1, 2, · · · , r, q̄r−1,r = q̄r,r−1 = 0.

Let

Q ′′
Λ = (q′′Λmn), (q′′kΛmn) =

∑
suppk⊂Λ

q′′kΛmne
i⟨k , θθθ⟩.

PΛ = (pΛmn), (pkΛmn) =
∑

suppk⊂Λ

pkΛmne
i⟨k , θθθ⟩.

Substituting to the equation (2.1), one can see

pkΛmn =
q′′kΛmn

i⟨k , θθθ⟩+ λ∗
m − λ∗

n

, k ̸= 0,

p0Λmn =


q′′0Λmn

λ∗
m − λ∗

n

, m < r − 1 or n < r − 1;

0, m = n or m,n = r − 1, r.

Assume that

|λ∗
m − λ∗

n − i⟨k , ωωω⟩| ≥ α

∆4(|k |)∆4([k ])
,

for k ∈ ZN\{0}, and
|λ∗

m − λ∗
n| ≥ δ,

for m ̸= n and m ≤ r − 1 or n ≤ r − 1. Then for 0 < ρ < ρ

∥pΛmn∥ρ−ρ̄ ≤
∑

suppk⊂Λ

|pkΛmn|e(ρ−ρ̄)|k | +
|q′′0Λ |
δ

≤
∑

suppk⊂Λ

∆4(|k |)e−ρ̄|k |

α
∆4([k ])|qkΛmn|eρ|k | +

|q′′0Λ |
δ

≤ c
Γ (ρ̄)∆4([Λ])

α
∥qΛmn∥ρ,

where Γ (ρ) = sup
t≥0

[∆4(t)e−ρt] and c > 1. Thus

∥PΛ∥ρ−ρ̄ ≤ c
Γ (ρ̄)∆4([Λ])

α
∥QΛ∥ρ.
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Let P =
∑
Λ∈τ

PΛ. From the definition of weight norm, we have

|∥P∥|z−z̄,ρ−ρ̄ =
∑
Λ∈τ

∥PΛ∥ρ−ρ̄e
(z−z̄)[Λ]

≤ c
∑
Λ∈τ

Γ (ρ̄)∆4([Λ])

α
∥QΛ∥ρez[Λ]−z̄[Λ]

≤ c
Γ (ρ̄)Γ (z̄)

α
|∥Q∥|z,ρ.

So the equation (2.1) has a solution

P =
∑
Λ∈τ

PΛ.

The later steps are given in the Section 3, and the next lemma ensures that the equations

(2.1) in the later steps have solutions.

Lemma 2.1 [3] Assume that

(1) A = diag(λ1, λ2, · · · , λr);

(2) Q(t) =
∑
Λ∈τ

QΛ(t) is an almost periodic matrix and has finite spacial structure (τ, [ · ])

and |∥Q(t)∥|z,ρ < ∞, z > 0, ρ > 0, Q̄ = 0.

If for all m, n = 1, 2, · · · , r, and k ∈ ZN\{0},
|λm − λn − i⟨k, ωωω⟩| ≥ α

∆4(|k|)∆4([k])
,

where ωωω = (ω1, ω2, · · · , ωd, · · · ) are the basic frequencies of Q(t) and ∆(t) is approximation

function, then there exists almost periodic matrix P(t) has the same spatial structure and

basic frequencies as Q(t) such that

Ṗ(t) = AP(t)−P(t)A+Q(t).

Furthermore, for 0 < z̄ < z, 0 < ρ̄ < ρ,

|∥P(t)∥|z−z̄,ρ−ρ̄ ≤ c
Γ (z̄)Γ (ρ̄)

α
|∥Q(t)∥|z,ρ,

where c > 1 and Γ (ρ) = sup
t≥0

[∆4(t)e−ρt].

According to the definitions of A∗, Q ′′ and Lemma 3.2, we can see that the conditions

in the above lemma are satisfied to obtain a solution to the equation (2.1).

3 Iteration and Proof of the Main Result

In this section, our goal is to repeat the process in Section 2 for several times to obtain a

series of transformations P l and equations like

ẏ =
[
Al+1 + ε2

l+1

Q l+1(t)
]
y ,

and to prove that P l → P , ε2
l+1

Q l(t) → 0, Al → B , where P is an almost periodic matrix

and B is a constant matrix, when l → ∞.

Now, we start to build the iteration. Let z̄ν ↓ 0 and ρ̄ν ↓ 0 satisfy
∞∑
ν=0

z̄ν =
1

2
z0,

∞∑
ν=0

ρ̄ν =
1

2
ρ0.
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And set zl = z0 −
l∑

ν=1
z̄ν , ρl = ρ0 −

l∑
ν=1

ρ̄ν and |∥ · ∥|l = |∥ · ∥|zl,ρl
.

Assume that

φ(ρ) = inf
ρ1+ρ2+···<ρ

∞∏
ν=1

[Γ (ρν)]
2−ν−1

,

then

φ

(
1

2
z0

)
=

∞∏
ν=1

[Γ (z̄ν)]
2−ν−1

and

φ

(
1

2
ρ0

)
=

∞∏
ν=1

[Γ (ρ̄ν)]
2−ν−1

.

Let

ẋ l =
[
Al + ε2

l

Q l(t)
]
x l, (3.1)

where Al = diag(λ1, λ2, · · · , λr) and |∥Q l(t)∥|n < ∞. Let

Āl = Al + ε2
l

Q̄ l, Q l(t) = Q̄ l + Q̃ l(t),

where Q̄ l is the average of Q l, the basic frequencies of Q l(t) are ωωω, and the eigenvalues of

Āl are λl+1
1 , λl+1

2 , · · · , λl+1
r . So there exists a matrix B l such that

B−1
l ĀlB l = Al+1 = diag(λl+1

1 , λl+1
2 , · · · , λl+1

r ).

Let x l = B lz l. Then the equation (3.1) is changed into

ż l =
[
Al+1 + ε2

l

Q ′′
l (t)

]
z l.

Assume that

|λl+1
m − λl+1

n − i⟨k , ωωω⟩| ≥ αl

2∆4(|k |)∆4([k ])
,

where αl =
α

(l + 1)2
, for all k ∈ ZN\{0} and m, n = 1, 2, · · · , r. Due to Lemma 2.1, there

exists transformation z l = (I + ε2
l

P l(t))x l+1 which changes the above equation into

ẋ l+1 =
[
Al+1 + ε2

l+1

Q l+1(t)
]
x l+1, (3.2)

where

Q l+1(t) = (I + ε2
l

P l(t))
−1B−1

l Q̃ l(t)B lPl(t),

P l(t) =
∑
Λ∈τ

P lΛ(t) satisfies

|∥P l(t)∥|l+1 ≤ 2cΓ (z̄l+1)Γ (ρ̄l+1)

αl
|∥B−1

l Q̃ l(t)B l∥|l, (3.3)

Set

c1 = max

{
c,

16c

α

}
, cl =

[
(l + 1)2

−(l+1)

l2
−l

· · · 22
−2

· 12
−1
]2
,

Φl(z) =

l+1∏
ν=1

[Γ (z̄ν)]
2−ν

, Φl(ρ) =

l+1∏
ν=1

[Γ (ρ̄ν)]
2−ν

.

From [4], cl, Φl(z), Φl(ρ) are all convergent when l goes to infinity. Let

M = max

{
1, sup

l
{c1clΦl(z)Φl(ρ)}

}
|∥Q(t)∥|z0,ρ0 .
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Lemma 3.1 [3] There exists a ε3 > 0 such that when ε ∈ (0, ε3), if

(1) min
m̸=n

|λl
m − λl

n| >
1

2
λ;

(2) |∥Ql(t)∥|l ≤ M2l ,

then there exist Bl, Pl(t) such that the transformation

xl = Tl(t)xl+1,

where

Tl(t) = (I+ ε2
l

Pl)Bl

can change the equation (3.1) into (3.2).

Moreover, the following conclusions hold:

(1) min
m̸=n

|λl+1
m − λl+1

n | > min
m̸=n

|λl
m − λl

n| − 2(εM)2
l

;

(2) |∥B−1
l ∥||∥Bl∥| ≤ 2 and |∥(I+ ε2

l

Pl)
−1∥| ≤ 2;

(3) Ql+1 = (I + ε2
l

Pl)
−1B−1

l Q̃l(t)BlPl and |∥Ql+1∥|l+1 ≤ M2l+1

.

Remark 3.1 There exists a ε3 such that if ε ∈ (0, ε3) the above iteration can keep going.

Before proving Theorem 1.1, an important lemma is introduced. It is the restatement of

Theorem B in [3].

Lemma 3.2 [3] Assume that the eigenvalues λ0
m(ε)(m = 1, 2, · · · , r) of

Ā = A+ εQ̄

satisfy ∣∣∣∣ ddε (λ0
m(ε)− λ0

n(ε))|ε=0

∣∣∣∣ ≥ 2δ > 0, 1 ≤ m < n ≤ r.

Let

ϕl
mn = λl

m − λl
n = λ0

m(ε)− λ0
n(ε) + δlmn(ε)ε

2.

If there exists a ε1 > 0 and an M > 0 such that the condition (2) of Theorem 1.1 holds and

|δlmn(ε)| ≤ M, for ε ∈ (0, ε1), then there exists ε2 ≤ ε1 and non-empty subset E ⊂ (0, ε2)

such that

|ϕl
mn(ε)− i⟨k, ωωω⟩| ≥ αl

2∆4(|k|)∆4([k])
,

for all ε ∈ E, m, n = 1, 2, · · · , r, k ∈ ZN\{0} and l ≥ 1, where

αl =
α

(l + 1)2
.

Furthermore, if ε2 is sufficiently small, the relative measure of E ∈ (0, ε2) is close to 1.

Proof of Theorem 1.1 Set

ε0 = min{ε2, ε3}, ϕl
mn(ε) = λl

m(ε)− λl
n(ε).

Due to Lemma 3.2, there exists non-empty Cantor subset E ⊂ (0, ε0) such that

|ϕl
mn(ε)− i⟨k , ωωω⟩| ≥ αl

2∆4(|k |)∆4([k ])
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for all ε ∈ E, m, n = 1, 2, · · · , r, k ∈ ZN\{0} and l ≥ 1, where

αl =
α

(l + 1)2
.

So there exists a sequence of matrices

T l = (I + ε2
l

P l)B l, l ≥ 1.

One goal is to prove that the composition of all the transformations T l is convergent. From

(3.3) and a direct calculation,

|∥ε2
l

P l∥|l+1 ≤ (εc2M)2
l

.

Due to Lemma 7 in [1],

∥T l∥l ≤
[
1 + (εc2M)2

l
] [

1 +
(r − 1)∥ε2lQ̄ l∥
λ− 2∥ε2lQ̄ l∥

]
≤ (1 + al)(1 + bl).

It is obvious that al and bl go to zero when l goes to infinity and that the series
∞∑
l=0

al,
∞∑
l=0

bl

are convergent in the sense of norm ∥ · ∥ 1
2 z0,

1
2ρ0

if ε < ε0. Thus, the limit

lim
l→∞

P l = lim
l→∞

T lT l−1 · · ·T 0

exists. Suppose that the limit is P , then it is to see that P is almost periodic matrix.

From the definition of ml, the following inequalities hold:

|∥ε2
l+1

Q l+1(t)∥| 12 z0, 12ρ0
≤ |∥ε2

l+1

Q l+1(t)∥|l+1 ≤ (εM)2
l+1

→ 0,

when l goes to ∞.

So Theorem 1.1 is proved.
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