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Abstract: Fundamental solution of Dirichlet boundary value problem of axisym-
metric Helmholtz equation is constructed via modified Bessel function of the second
kind, which unified the formulas of fundamental solution of Helmholtz equation, el-
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space.
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1 Introduction

In this paper, we study fundamental solution of Dirichlet boundary value problem of ax-
isymmetric Helmholtz equation in the upper half space

Opu+ Dgut SO+ Nu=0 i R,
u(0, z) = d(x) in R", (L.1)

u(+00, x) is bounded,
where

R/ ={(t,z):t >0,z €R"},

and real-valued parameters o < 1 and A > 0.
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This problem is closely connected with the study of electromagnetic scattering (see [1]—
[2]). During considering the processes taking place in some inhomogeneous media with
fractal structure one also must take into account fluctuations of the parameter’s value. For
example, the parameter « in (1.1) has the sense of Hausdorff dimension when studying the
probability density function in the capacity of unknown (see [3]).

For the case &« = 0 and A = 0, (1.1) is the classic Laplace equation. When o = 0 and
A > 0, (1.1) becomes the classic Helmholtz equation, this is the reason that it is called
axisymmetric Helmholtz equation.

The method of fundamental solutions plays an important role in study of partial differen-
tial equations. In [4], the potentials were constructed via fundamental solutions of Helmholtz
equation. Analogously to the potential theory for Helmholtz equation, one can construct
a potential for axisymmetric Helmholtz equation whose kernels are written via fundamen-
tal solutions of axisymmetric Helmholtz equation. Various regularization approaches for
the study of the method of fundamental solutions were studied in [5]. In this scope, the
method of fundamental solutions generated by classic Helmholtz operator and axisymmetric
Helmholtz equation with @ > 0 in different dimensional space were also investigated, see
[6]-[10] and the references therein. Thus, the case of & < 0 and A > 0 might become an
object of a new research.

When A = 0, (1.1) is elliptic type generalized Euler-Poisson-Darboux equation whose
fundamental solutions was established by similarity method in [11]. Motivated by this, we

construct fundamental solution
(ix) T 0K 1nma (A2 + [2]2)

1 . _ . 14n—a
»=pr(100) (VERP)T

and then solves (1.1) in general sense in the upper half space. In particular, the explicit

P(t, x, a, \) = (1.2)

formula of P(t, x, a, \) is not restricted by dimensional numbers.

2 Construction of Fundamental Solution

In [11], the fundamental solution P(x, y, a, 0) of (1.1) was constructed by use of similarity
method
(=)
P(t7 xz, o, 0) = — Tin—a
ﬁ%r(l O (2 +laP)

where I'(z) is Gamma function. In this section, we seek a fundamental solution in the same

tl—a

(2.1)

form

P(z,y, o, A) = Cla, Nt'=p(t* + [a]?)

for the case A > 0, where the constant C'(«, A) will be determined in the following.
Set

r =z, s =1t 412 u(t, ) =t %u(s).



NO. 1 ZHANG K. Q. SOLUTION OF DIRICHLET BOUNDARY VALUE PROBLEM 23

Then (1.1) is changed into
450" (5) + (6 + 2n — 22)v'(s) + ANv(s) = 0.
Let

Then we derive

422

W (2) + %w’(z) - (1 + (”””‘)2) w(z) =0,

This is a special Bessel equation (see [10]) which has a solutions K, (modified Bessel function
of the second kind) with
_1+n—-a
= 5 )
In order to derive the fundamental solution of (1.1), we recite some results of Bessel

functions given in [12] as our Lemmas 2.1 and 2.2.

Lemma 2.1  For v > 0, the asymptotic behavior for a small z,

To(2) ~ ﬁ (%)V 20, (2.2)
K, (2) ~ %r(u) (%)_ 20, (2.3)

where J, is a Bessel function of the first kind.

Lemma 2.2  Forv >0 and —7 < Argz <, the asymptotic behavior for large z satisfies

. (4v? — 1 (4% — (2r - 3)?)
\/> 721 (r— 1) (8z)r—1 '

1+n—«

Lemma 2.3 Forv = — s there exists
n—2 n
K,((MWE+72) o 2= T *)
/ 1 tr ) ( 71)+1d7" = TQEKV i(l)\t)
t2+r2) (1)\)2t”_2 2

Proof. The integral given in page 416 of [13]
oo K, (aVEE + 12
/ Ju(br)—(a Ftr )r“+1d7“
(VT2
wf aE\P !
= (b) <a+b> Koeps (t a2+b2) (2.4)

a t

is uniformly convergent for p = g —1,b> 0 and a = iA. Then, in terms of (2.2), we divide
by b2 ! in integral (2.4) and make b tending to zero, we obtain Lemma 2.3.

According to Lemma 2.2, K, (z) tends to zero at infinity. Then
K, (IM /12 + |2]?)

(V2 + |=[?)

u(t, ) = Cla, A)
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is bounded at infinity and satisfies (1.1), where C(«, A) is a constant. In order to determine
C(a, N), integrate u(t, x) in spherical coordinates, then take the value equal to one when ¢

tends to zero, we arrive at

dr

1= C(a, \)op—1 lim

t—0

i /00 UK, (IWE 4 72)
0 ( [£2 |r|2)y

21\?  ia .
= C(a, A) (1)\) tlgr(l)t 2 K, _n (iMt). (2.5)
In the second equality we have used Lemma 2.3. Furthermore, by use of (2.5) and the
asymptotic behavior of K, (z) given in (2.3), we obtain

14n—o

(in) 2
n—a—1 n 1-— (0%
P *r( )
2 T2 5

(i)\)m% tlfo‘Km%(j)\ 21 z?)
Q%HW%F(FO‘) V&1 )
2

Cla, \) =

This yields

(2.6)

Then, we conclude
Theorem 2.1  For a <1 and A > 0, u(t, z) defined by (2.6) is the fundamental solution
P(t, x, a, \) of Dirichlet boundary value problem (1.1) which satisfies

lim/ P(t, z, a, N)dz = 1.
t—=0 Jrn

Proof. For any infinitely differentiable finite function ¢(z) from the space D(R"),
6(0) < Plt.z, 0, N) = [ o@)P(t g, a0
R’Vl

oz —y)P(t, y, o, \)dy — é(z) / P(t, y, a, /\)dy’

n

’ R»

< [ Jota =)= o)t v, 0. Ny
< / |6z — ) — 6(@)||P(t, v, @, N)|dy
|z| <&
+/ |6z — ) — 6(2)|| P(t, 3, 0, N)|dy
B

€

<= [ |P(t,y, o, N)|dy+ M |P(t, y, ., A)|dy (2.7)
M R |s|>6

for some positive constant M and sufficiently small §, where “x” is denoting a convolution.

In terms of the analyticity of K, (z) on the whole plane except the origin and the asymptotic

behavior in Lemma 2.2, P(z, y, «, A) is absolutely integrable on € R™. Then, we obtain
/ ’P(t, s, @, /\)’ds <M
R’VL

and for sufficiently small ¢,

€
/|326 }P(t, s, a, )\)}ds < e
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Substituting above two inequalities into (2.7), then for sufficiently small ¢, we obtain

o(x) x P(t, x, a, \) — ¢($)‘ < 2e. (2.8)
This implies
lim ¢(z) * P(t, 2, o, A) = ¢(x) = - P(y)d(z — y)dy. (2.9)
which means that P(t, z, , A) converges to the §-function when ¢ — 0 in a space of gener-
alized functions ©'(R")
Hence, we complete the proof of Theorem 2.1.

3 Applications

The elliptic type Euler-Poisson-Darboux equation is obtained from axisymmetric Helmhotz
equation for A = 0 and the fundamental solution (1.3) of the corresponding Dirichlet bound-
ary value problem is consistent with the formula derived by (1.2) when A tends to zero.

The fundamental solution of Dirichlet boundary value problem of Helmhotz equation is
obtained by passing here to the limit when « tends to zero

(N5 K (iA/t2 + |z|?)
27;;17{_71;1 ( t2 + |x‘2)# .

Furthermore, passing here to the limit when o and A tend to zero, we obtain the Poisson

F(n—i—l) ,
2
n+

P(t, z,0, \) =

kernel

1 ! ntl ’
2

™ (2 + [z[?)

which is the fundamental solution of Dirichlet boundary value problem of Laplace equation.

P(t, z,0,0) =

Last, considering Dirichlet boundary value problem
O2u + Ayu + %atu +X2u=0 in R
u(0, 7) = ¢(a) in R,
u(+o00, ) is bounded

with @ < 1 and A > 0, by use the fundamental solution given in Theorem 2.1, we have the
exact solution

u(t, r) = e(y)dy

N / Kin—a (A + [z — y[?)
— ltn—oa
zfr(lTa) (WP —yP)

if p(z) is a generalized function and the convolution exists.
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