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Abstract: Fundamental solution of Dirichlet boundary value problem of axisym-

metric Helmholtz equation is constructed via modified Bessel function of the second
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space.
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1 Introduction

In this paper, we study fundamental solution of Dirichlet boundary value problem of ax-

isymmetric Helmholtz equation in the upper half space
∂2
t u+∆xu+

α

t
∂tu+ λ2u = 0 in Rn+1

+ ,

u(0, x) = δ(x) in Rn,

u(+∞, x) is bounded,

(1.1)

where

Rn+1
+ = {(t, x) : t > 0, x ∈ Rn},

and real-valued parameters α < 1 and λ > 0.
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This problem is closely connected with the study of electromagnetic scattering (see [1]–

[2]). During considering the processes taking place in some inhomogeneous media with

fractal structure one also must take into account fluctuations of the parameter’s value. For

example, the parameter α in (1.1) has the sense of Hausdorff dimension when studying the

probability density function in the capacity of unknown (see [3]).

For the case α = 0 and λ = 0, (1.1) is the classic Laplace equation. When α = 0 and

λ > 0, (1.1) becomes the classic Helmholtz equation, this is the reason that it is called

axisymmetric Helmholtz equation.

The method of fundamental solutions plays an important role in study of partial differen-

tial equations. In [4], the potentials were constructed via fundamental solutions of Helmholtz

equation. Analogously to the potential theory for Helmholtz equation, one can construct

a potential for axisymmetric Helmholtz equation whose kernels are written via fundamen-

tal solutions of axisymmetric Helmholtz equation. Various regularization approaches for

the study of the method of fundamental solutions were studied in [5]. In this scope, the

method of fundamental solutions generated by classic Helmholtz operator and axisymmetric

Helmholtz equation with α > 0 in different dimensional space were also investigated, see

[6]–[10] and the references therein. Thus, the case of α < 0 and λ > 0 might become an

object of a new research.

When λ = 0, (1.1) is elliptic type generalized Euler-Poisson-Darboux equation whose

fundamental solutions was established by similarity method in [11]. Motivated by this, we

construct fundamental solution

P (t, x, α, λ) =
(iλ)

1+n−α
2

2
n−α−1

2 π
n
2 Γ
(1− α

2

) ·
t1−αK 1+n−α

2
(iλ
√
t2 + |x|2)

(
√
t2 + |x|2) 1+n−α

2

(1.2)

and then solves (1.1) in general sense in the upper half space. In particular, the explicit

formula of P (t, x, α, λ) is not restricted by dimensional numbers.

2 Construction of Fundamental Solution

In [11], the fundamental solution P (x, y, α, 0) of (1.1) was constructed by use of similarity

method

P (t, x, α, 0) =
Γ
(1 + n− α

2

)
π

n
2 Γ
(1− α

2

) t1−α

(t2 + |x|2) 1+n−α
2

, (2.1)

where Γ(z) is Gamma function. In this section, we seek a fundamental solution in the same

form

P (x, y, α, λ) = C(α, λ)t1−αp(t2 + |x|2)

for the case λ > 0, where the constant C(α, λ) will be determined in the following.

Set

r = |x|, s = t2 + r2, u(t, x) = t1−αv(s).
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Then (1.1) is changed into

4sv′′(s) + (6 + 2n− 2α)v′(s) + λ2v(s) = 0.

Let

v(s) = s
α−1−n

4 w(z), z = iλs
1
2 .

Then we derive

w′′(z) +
1

z
w′(z)−

(
1 +

(1 + n− α)2

4z2

)
w(z) = 0.

This is a special Bessel equation (see [10]) which has a solutionsKν (modified Bessel function

of the second kind) with

ν =
1 + n− α

2
.

In order to derive the fundamental solution of (1.1), we recite some results of Bessel

functions given in [12] as our Lemmas 2.1 and 2.2.

Lemma 2.1 For ν > 0, the asymptotic behavior for a small z,

Jν(z) ∼
1

Γ(µ+ 1)

(z
2

)ν
, z → 0, (2.2)

Kν(z) ∼
1

2
Γ(µ)

(z
2

)−ν

, z → 0, (2.3)

where Jν is a Bessel function of the first kind.

Lemma 2.2 For ν > 0 and −π < Arg z ≤ π, the asymptotic behavior for large z satisfies

Kν(z) ∼
√

π

2z
e−z

∞∑
r=1

(4ν2 − 12) · · · (4ν2 − (2r − 3)2)

(r − 1)!(8z)r−1
.

Lemma 2.3 For ν =
1 + n− α

2
, there exists

∫ ∞

0

Kν(iλ
√
t2 + r2)

(
√
t2 + r2)ν

r2(
n
2 −1)+1dr =

2
n−2
2 Γ

(n
2

)
(iλ)

n
2 tν−

n
2
Kν−n

2
(iλt).

Proof. The integral given in page 416 of [13]∫ ∞

0

Jµ(br)
Kν(a

√
t2 + r2)

(
√
t2 + r2)ν

rµ+1dr

=

(
b

a

)µ
(√

a2 + b2

t

)µ−ν−1

Kν−µ−1

(
t
√
a2 + b2

)
(2.4)

is uniformly convergent for µ =
n

2
− 1, b > 0 and a = iλ. Then, in terms of (2.2), we divide

by b
n
2 −1 in integral (2.4) and make b tending to zero, we obtain Lemma 2.3.

According to Lemma 2.2, Kν(z) tends to zero at infinity. Then

u(t, x) = C(α, λ)
t1−αKν(iλ

√
t2 + |x|2)

(
√
t2 + |x|2)ν
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is bounded at infinity and satisfies (1.1), where C(α, λ) is a constant. In order to determine

C(α, λ), integrate u(t, x) in spherical coordinates, then take the value equal to one when t

tends to zero, we arrive at

1 = C(α, λ)σn−1 lim
t→0

t1−α

∫ ∞

0

rn−1Kν

(
iλ
√
t2 + r2

)(√
t2 + |r|2

)ν dr

= C(α, λ)

(
2π

iλ

)n
2

lim
t→0

t
1−α
2 Kν−n

2
(iλt) . (2.5)

In the second equality we have used Lemma 2.3. Furthermore, by use of (2.5) and the

asymptotic behavior of Kµ(z) given in (2.3), we obtain

C(α, λ) =
(iλ)

1+n−α
2

2
n−α−1

2 π
n
2 Γ
(1− α

2

) .
This yields

u(t, x) =
(iλ)

1+n−α
2

2
n−α−1

2 π
n
2 Γ
(1− α

2

) ·
t1−αK 1+n−α

2
(iλ
√
t2 + |x|2)

(
√
t2 + |x|2) 1+n−α

2

. (2.6)

Then, we conclude

Theorem 2.1 For α < 1 and λ > 0, u(t, x) defined by (2.6) is the fundamental solution

P (t, x, α, λ) of Dirichlet boundary value problem (1.1) which satisfies

lim
t→0

∫
Rn

P (t, x, α, λ)dx = 1.

Proof. For any infinitely differentiable finite function ϕ(x) from the space D(Rn),∣∣∣ϕ(x) ∗ P (t, x, α, λ)−
∫
Rn

ϕ(x)P (t, y, α, λ)dy
∣∣∣

=
∣∣∣ ∫

Rn

ϕ(x− y)P (t, y, α, λ)dy − ϕ(x)

∫
Rn

P (t, y, α, λ)dy
∣∣∣

≤
∫
Rn

∣∣ϕ(x− y)− ϕ(x)
∣∣∣∣P (t, y, α, λ)

∣∣dy
≤
∫
|x|<δ

∣∣ϕ(x− y)− ϕ(x)
∣∣∣∣P (t, y, α, λ)

∣∣dy
+

∫
|x|≥δ

∣∣ϕ(x− y)− ϕ(x)
∣∣∣∣P (t, y, α, λ)

∣∣dy
≤ ε

M

∫
Rn

∣∣P (t, y, α, λ)
∣∣dy +M

∫
|s|≥δ

∣∣P (t, y, α, λ)
∣∣dy (2.7)

for some positive constant M and sufficiently small δ, where “∗” is denoting a convolution.

In terms of the analyticity of Kν(z) on the whole plane except the origin and the asymptotic

behavior in Lemma 2.2, P (x, y, α, λ) is absolutely integrable on x ∈ Rn. Then, we obtain∫
Rn

∣∣P (t, s, α, λ)
∣∣ds < M

and for sufficiently small t, ∫
|s|≥δ

∣∣P (t, s, α, λ)
∣∣ds < ε

M
.
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Substituting above two inequalities into (2.7), then for sufficiently small t, we obtain∣∣∣ϕ(x) ∗ P (t, x, α, λ)− ϕ(x)
∣∣∣ < 2ε. (2.8)

This implies

lim
t→0

ϕ(x) ∗ P (t, x, α, λ) = ϕ(x) =

∫
Rn

ϕ(y)δ(x− y)dy. (2.9)

which means that P (t, x, α, λ) converges to the δ-function when t → 0 in a space of gener-

alized functions D′(Rn)

Hence, we complete the proof of Theorem 2.1.

3 Applications

The elliptic type Euler-Poisson-Darboux equation is obtained from axisymmetric Helmhotz

equation for λ = 0 and the fundamental solution (1.3) of the corresponding Dirichlet bound-

ary value problem is consistent with the formula derived by (1.2) when λ tends to zero.

The fundamental solution of Dirichlet boundary value problem of Helmhotz equation is

obtained by passing here to the limit when α tends to zero

P (t, x, 0, λ) =
(iλ)

1+n
2

2
n−1
2 π

n+1
2

·
tK 1+n

2
(iλ
√
t2 + |x|2)

(
√

t2 + |x|2) 1+n
2

.

Furthermore, passing here to the limit when α and λ tend to zero, we obtain the Poisson

kernel

P (t, x, 0, 0) =
Γ
(n+ 1

2

)
π

n+1
2

· t

(t2 + |x|2)n+1
2

,

which is the fundamental solution of Dirichlet boundary value problem of Laplace equation.

Last, considering Dirichlet boundary value problem
∂2
t u+∆xu+

α

t
∂tu+ λ2u = 0 in Rn+1

+ ,

u(0, x) = φ(x) in Rn,

u(+∞, x) is bounded

with α < 1 and λ > 0, by use the fundamental solution given in Theorem 2.1, we have the

exact solution

u(t, x) =
(iλ)

1+n−α
2

2
n−α−1

2 π
n
2 Γ
(1− α

2

) t1−α

∫
Rn

K 1+n−α
2

(iλ
√
t2 + |x− y|2)

(
√
t2 + |x− y|2) 1+n−α

2

φ(y)dy

if φ(x) is a generalized function and the convolution exists.
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