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Abstract: We study in this article the compressible heat-conducting Navier-Stokes
equations in periodic domain driven by a time-periodic external force. The existence
of the strong time-periodic solution is established by a new approach. First, we
reformulate the system and consider some decay estimates of the linearized system.
Under some smallness and symmetry assumptions on the external force, the existence
of the time-periodic solution of the linearized system is then identified as the fixed
point of a Poincaré map which is obtained by the Tychonoff fixed point theorem.
Although the Tychonoff fixed point theorem cannot directly ensure the uniqueness,
but we could construct a set-valued function, the fixed point of which is the time-
periodic solution of the original system. At last, the existence of the fixed point is
obtained by the Kakutani fixed point theorem. In addition, the uniqueness of time-
periodic solution is also studied.
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1 Introduction

In this paper, we prove the existence and uniqueness of the strong time-periodic solution to
the Navier-Stokes equations for compressible heat-conducting fluids:

pt + div(pu) =0, (1.1)
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p(us + (u-V)u) + VP(p, 0) = uAu+ (u+ N\ Vdivu + pf(z, t), (1.2)

pCL (0 +u-VO) + 0Py (p, 0)divu = kA0 + &(u), (1.3)
when the external force is time-periodic with T-period

fE+T, )= f(t, x)
for all ¢,x. Here, p(z, t), u(z, t) = (u1, -, up)(x, t), 6(x, t) represent the fluid density,
velocity and temperature, respectively. ¢ € R is the time and z is the spatial variable
confined to 2 C R™ with n > 3. P(p, 0) is the pressure which is a smooth function of p, 6.
1, A are the viscosity coefficients which are assumed to satisfy the physical restrictions
1> 0, g/\ +u>0.

The constants C,, and k are the heat capacity at constant volume and the coefficient of heat
conductivity. The classical dissipation function @(u) is given by

u n n
Pu) =5 Z_;l(az‘uj + djui)® + A;(ajuj)Q-
Throughout the paper, we consider {2 := [—L, L]". Let the density and the temperature
satisfy the obvious physical requirements

/ pdz = p > 0, 0lon =0, (1.4)
2

where p and @ are given constants. Assume that the external force

f(l‘, t) = (f17 R fn)(iE, t)

is spacial periodic with period 2L and satisfies

filYi(z), t) = = fi(z, t),  [fiY;(2), 1) = filz, t), Vi, (1.5)
foralli=1,---,nand t € R, where
}/72[3717 oy Ty v 7$n]:[$1, ter oy, — Xy, 7.'L'n]

These conditions are to ensure that the Poincaré inequality holds. In fact, we can consider
the following no-stick boundary conditions for the velocity:
u(t, ) -n(z) =0, [Du(t,z) -n(x)], =0  on 92, (1.6)
where n(z) denotes the outer normal vector and [w(z, t)], is the projection of a vector w(t, x)
on the tangent plane to 9f2’ at the point z. In the n-dimensional case and the boundary
is flat, (1.6) means that the vorticity is perpendicular to the boundary. For the physical
background as well as further properties of flows on domains with frictionless boundary, we
refer to [1]. To simplify the presentation, we restrict our attention to a particular class of
spatial domains, specifically, we assume that {2’ is an n-dimensional cube:
Q' =10, L]".
Then, the boundary conditions (1.6) read as
u; =0
on the opposite faces
{xi =0, z; = [Ov L]a i #]}U{xz =L, z;= [07 L]’ i 7&.7};
Ju,;
61:2 =0




NO. 1 CHENG M. PERIODIC SOLUTION OF FULL N-S EQUATIONS 37

for ¢ # j on the opposite faces

{mi =0,z = [07 L]vZ#J}U{xl =L,z = [07 L]7Z7é.7}
foralli =1, ---, n. Thus, a suitable function space framework is provided by the spatially
periodic functions, i.e., the unknown functions are prolonged on the periodic domain 2 with
the following geometrical conditions:

p(Yi(z), t) = p(z, 1), 0(Yi(z), t) = 0(x, t), (1.7)
uwi(Yi(z), t) = —u;(z, t), w;i(Y;(2), t) =ui(x, t), Vi#£gj, i=1,---,n, (1.8)
where
Yvi[-Tla R TR ’xn] — [xl’ e =g, e 7-Tn]~

Therefore, it is worth to consider the external force with some structural condition (1.5).
Now, we are able to state the main result of this paper.

Theorem 1.1  Let m > [g} +1, n > 3. Assume that P(p, 0) is a smooth function near

(p, 0) satisfying

P,(p, 8) >0, Py(p, 0) > 0.

If the T-periodic external force f € L(0, T; H™ (")) satisfies the geometric condition (1.5)
with

T
/ 113t <,
0

n appropriately small, then the problem (1.1)—(1.4) admits a unique T-periodic solution
(p, u, 0) satisfying (1.7)~(1.8) and (p — p, u, 0 — ) € X5, where X; is defined in Section 2,
§=mni.

As is known, time-periodic flow is one of the interesting phenomena in fluid mechanics.
In the recent years, there has been lots of interest in the study of the time-periodic problems
for fluid dynamical equations. A number of existence results on time-periodic solutions
have been established in different ways. For the case of the incompressible Navier-Stokes
equations, we only refer to [2]-[7] and reference cited therein.

For the case of the compressible Navier-Stokes equations, Feireisl et al. considered the
Navier-Stokes equations for isentropic flows, and studied the no-stick boundary condition
and the spatially flat boundary case (1.6) in three dimension (see [8]-][9]). By using the
Faedo-Galerkin method and the vanishing viscosity method, they obtained the existence of
weak time-periodic solutions. In [10], Cai et al. improved the result of [9] by extending the
class of pressure functions. With similar ideas and techniques in [9], Yan!'!] constructed a
weak time-periodic solution of ferrofluids driven by time-periodic external forces.

On the other hand, we mention the work on the strong time-periodic solution of the
compressible Navier-Stokes equations in a bounded domain. In [12], Valli established the
existence of a strong time-periodic solution in a bounded domain with non-slip bound-
ary condition by using Serrin’s method. He also proved the stability of the time-periodic
solution. For a spatially periodic domain, Jin et al. obtained the existence of a strong time-
periodic solution to the three dimensional compressible Navier-Stokes system by employing
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the topological degree theory and energy method in [13]. Also, Cai et al. considered the
compressible magnetohydrodynamic equations in [14]. For three dimensional compressible

[15] have proved the existence and

damped Euler equations in a periodic domain, Tan et al.
uniqueness of a time periodic solution by adapting a regularized approximation scheme and
applying the topological degree theory.

While for the whole space, Ma et al. showed that a strong time-periodic solution exists
when the space dimension n > 5 under some smallness assumption in [16]. They proved the
existence and uniqueness of the time-periodic solution by applying the energy method and
the spectral analysis of the optimal decay estimates together with the contraction mapping
theorem. In the past few years, Jin et al.l!”) have investigated the compressible Navier-Stokes
equations in R?® when external force satisfies the oddness condition. They have established
the existence of a strong time-periodic solution by using the topological degree theory.
Without symmetry of the external force, Jin'®l also showed the existence and uniqueness of
the time-periodic solution of the non-isentropic Navier-Stokes equations in R*. Meanwhile,

~[21] obtained a time-periodic solution for the

by the spectral properties, Tsuda et al.l'!
small time-periodic external force when the spatial dimension is greater than or equal to 3.
Moreover, they obtained the asymptotically stability of the time-periodic solution.

To our best knowledge, there are only a few works on time-periodic solutions of the
non-isentropic Navier-Stokes equations. In this paper, our goal is to seek a strong time-
periodic solution around the constant state (p, 0, ) to the problem (1.1)-(1.4) by adopting
a different approach. First, we reformulate the problem and give some energy estimates
of the linearized system. Then, we construct a Poincaré map from an initial value @ to
the state U(T, @), where U(t, ®) is the solution of the linearized system corresponding to
the initial data @. Under some smallness and symmetry assumptions on the external force,
the existence of the time-periodic solution of the linearized system is identified as a fixed
point of this Poincaré map by using the Tychonoff fixed point theorem. From the details of
the proof, we can see the solution with some special initial data in a convex hull is exactly
the time-periodic solution of the linearized system. Although the Tychonoff fixed point
theorem cannot directly ensure the uniqueness of the time-periodic solution of the linearized
system, we could construct a set-valued function, the fixed point of which is the time-periodic
solution of the original system. The existence of the fixed point of the set-valued function
is obtained by the Kakutani fixed point theorem. At last, we prove the uniqueness of the
time-periodic solution.

Comparing with the previous result in [13], the regularity of the external force needed
in our paper is lower. This difference is caused by the method. The authors in [10]-[13]
first reformulated the problem and add a regularized term. They obtain the existence of the
time-periodic solution by using a mild form. To obtain the existence of the time-periodic
solution of the linearized system, we study a bounded solution with trivial initial data. This
idea is from the Massera type criteria for linear periodic evolution equations [22]-[23].

The rest of this paper is organized as follows. We reformulate the problem and give some
preliminaries in Section 2. In Section 3, we prove some energy estimates for later use. And
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the proof of Theorem 1.1 is given in Sections 4 and 5.

Notations  Throughout this paper, we will omit the variables ¢, x of a function if it
does not cause any confusion. We denote the spatial integral on 2 by / dx for simplicity.

Moreover, C' denotes a generic positive constant which may vary in different estimates.

Ca,p,... > 0 is also a generic constant which depends on a, b, ---. For a multi-index o =
(a1, -+, ), it is standard that
n
oo =omom o0, o= au
i=1

The norm of Hilbert space H*({2) is denoted by || - ||zz=. And we use LP(£2), 1 < p < o0 to
denote the Sobolev space with norm || - ||,.

2 Preliminaries

We reformulate the equations (1.1)-(1.3) as follows. Let ¢ = p — p, v = 6 — §. The system
(1.1)—(1.3) can be rewritten as

ot + pdivu + uVo = Gy (o, u), (2.1)
ug — (AAu + (i + N\ Vdivu) +11pVeo + v2pVo = Go(o,u,v) + f, (2.2)
vy — RAV + y3y2pdive = G3(o, u, v), (2.3)
where
Gi(o,u) = —odivu,
Ga(o,u,v) = —u - Vu — g1(0,v)Vo — ga(0,v)Vo — h(o)(pAu + (i + N) Vdivu),
_ O(u) h(o)d(u)
= _—u-Vv— Av — _
G3(o,u,v) u- Vv — kh(c)Av — g3(o,v)Vu + 5C, 2C,
and
o
ho) = —2—,
(o) =~ 5
P, ] 9 P,(p,0
gi(o,v) = oo tpvth) p(€’9)7
o+p p
_ Pyoc+pv+0)  Py(p,0)
alov) = L 22
g5(0,v) = (v+0)Py(c+ pY +0) 9Pg(pﬁ,6’)7
Cu(o+p) Cup
on <A P,(p,0) Py (p,0) 6 K
= — )\ = — = = = — = .
M ,57 57 Y1 ,62 B 2 [32 5 3 Oy 3 R ﬁcy
Obviously, G1, G2, G3 have the following properties:
Gi(o,u) = —odivu, (2.4)
Gao(o,u,v) ~ (u-V)u+ oVo +vVo + oVu+ vV + cAu + oVdivu, (2.5)
Gs(o,u,v) ~u-Vo+oAv+oV-u+oV-u+ ¥(u) +o¥(u). (2.6)

Here ~ means that two sides are of the same order.
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For m > [g} +1, we define the following suitable function space to deal with the problem:

X = {(0, u, v) | (0, u, v) is spatially periodic with 2L, o € L>(0, T; H™TH(0)),
(u, v) € L=(0, T; H™T(2)) N L*(0, T; H™ (1)),
o(Yi(x), t) = o(x, 1), v(Yi(2), t) = v(z,t), wi(Yi(2), t) = —ui(z, 1),
wi(Y(x), t) =wi(z, t), Vi#j i=1,---,n,

where }/;[xla oy Ty xn] = [1'1, ity TGy xn]},

T
Xs = {00 € X0 w0l = sup 1o v s+ [ D 0 inae < 02,
0

telo,T]
And the space X_; is defined by

X_1={(0, u, v) | (0, u, v) is spatially periodic with 2L, o € L*(0, T; H™({2)),
(u, v) € L>=(0, T; H™(2)) N L*(0, T; H™ (),
o(Vila), £) = o(o,8), o(Yilw), 8) = v(a, 1), w(Yi(), £) = —uilz, 1),
w(Yy(@), ) =wsla, £),  Vi#j i=1--n,
where Yi[w1, -+, @, -+ 0] = (w1, 5 —2iy -+, @]}
equipped with the norm
T
o w0l = sup [0+ | o) a

s

For convenience, we state some lemmas and fixed point theorem for later use.

Lemma 2.1  Assume that m > [%} + 1. Then ||u|lp= < Cllu|gm.

Lemma 2.224  [f|3| + || = k, then
1021 @)z < CIF1c0llglze + I e llglloc).

Remark 2.1 From Lemmas 2.1 and 2.2, we have the algebra property:

[ fgllzm < Clfllzm gl zrm
for m > [g} + 1.

Lemma 2.32%  Assume that X and Y are Banach spaces with X —— Y. If f, €
L>(0, T; X), fo — f in C°([0, T], X -weak), then f, — f in C°([0, T), V).

Lemma 2.4 (Tychonoff fixed point theorem) Let V be a locally convex topological
vector space. For any nonempty compact convex set X in V, any continuous function f :
X — X has a fized point.

Lemma 2.527] (Kakutani fixed point theorem) FEwvery correspondence that maps a com-
pact convexr subset of a locally convex space into itself with a closed graph and convex

nonempty images has a fized point.
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3 Energy Estimates

Firstly, we consider the following linearized system:

oy + pdivu + u'Vo = Gy (o/, u'), (3.1)
ug — (AU + (i + N)Vdivu) +71pVo + 72pVo = Ga(o’, v/, V') + f, (3.2)
vy — KAV + y3y2pdivu = Gs(o’, v/, v'), x €N (3.3)

for any given T-periodic function (¢/, v/, v') € Xj.
In what follows, we assume that
o’ (2, 1)] <

NN

for all (x, t) € £2 x [0, T since that

sup [|0']lco < sup 0’| gmer <t
te[0, 77 tel0, T]
for n small enough. The energy estimates of lower order derivatives and high order derivatives

is obtained respectively.

Lemma 3.1 Let m > {g} + 1. Then there exists a constant C' > 0, a suitably small

constant € > 0 and a constant C. depending on € such that
1d
2 dt
<O(|dive [l + ) Vo3 + el Vullzm- + el VU Fms + Cell fIIF + Cel Vo' |13 ]| dive|[3
+ Ce([u]l2 VW [l2 + 1ol Ve [l2 + [0 Vo' |2 + [lo” 12 Vo' [l2 + ([0 ]|2[[ Vol
o2V | 51)? + Ce(ld 20V [l + [0 21V a1 + [lo” (2] V|12
+ [V |2V |2 + [V 13 + [V | [V [13)?

and

(717302 + y3u® + v?)dz + /ﬂfyg|Vu|2 + (@ + Nys|divul? + &| Vo> dz

d 71/3/ 2
” uVodz + 5 |Vo|*dz

< plldivull3 + Ce(1 + VW' |[3m-)[VullZy + €| Vol
+ CelIlF T+ IVll3 + IV I3 dive'[3) + Ce(llu'l|2[| Va2 + [l [12][ Vo2
+ V21V |2 + 1o 21V l|2 + 'l Voll2 + [lo || Ve 1)

Proof. Multiplying the equations (3.1)—(3.3) by 7130, y3u, v respectively, integrating them

over {2, and summing them up, we have

1d ~
5&/('}/1’7302 +’Y3u2 +U2)d$+/ﬂ73|Vu\2 + (/2+/\)73|divu|2 +R|VU|2dx

:%/UQdiV“/dx +7173/0'G1(0'7 u')dz + ’YS/GQ(O”, o', v udz
+ /Gg(a', o, v’)vderfyg/fudx,
Due to (2.4)—(2.6), there holds

1G1 (0, w)lly < [lo”[[2]|dive]l,-

1Ga(e”, ', )]l < CI 2V [l2 + o[l Vo [l + 1012 Vo' ll2 + llo”[l2] Vo'l
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+ W2 Vollz + [lo’[[2I V| ). (34)
1G3(o”, u', )[ly < CIW 21V ll2 + [0 12 VY [0 + o[l V|12
+ [ l2IVe |2 + [V 13 + [0 [ [V 13)-
Then, by Poincaré inequality and Lemma 2.1, we get
1d < . _
o /(717302 + y3u? +v?)de + /ﬂ'yg|Vu|2 + (& + Nys|divu]? + &|Vou|*dz
Y173 . .
< - lollesllolizldive’llz +vvsliolloo o2 lidivellz + sl fll [ wfloo

+95lGa (0, o/, ) lulle + 1Gs (0, o) ol
< O (L Vo3 [diva o + 11795]| V0l s [ V0 fal|ived 2 + 7511 11 Va1
381G’ ' ) 4|Vl s + 1G04 )Vl s )
< O(ldivd 2 + OVl s + el Vallys + el Vol3s + Cl £ + Cell Vo [3diver |3

+ Celw12IVe'll2 + o[Vl + [0l Vo'llz2 + o 2V [l2 + [Vl Vll2

+ o 211V [ 1)
+ Ce([[w 121V |2 + ([0 |21V |1 + 0" [l2] Ve |2+ [[0'[|2[ Ve |2 + (| V|13
+ Vo' || -1 [V [13)%.
Multiplying the equations (3.2) by Vo and then integrating them over {2, we have

% uVde+71ﬁ/|V0|2dx

= / (ﬁAu + (i 4+ M) Vdivu — v2pVv + Go(o’, v/, v') + f) Vodz

+ /divu(ﬁdivu +u'Vo — Gy(o', u'))dx
< plidivull3 + €| Vol Fm- + Idive 5] Vo' |7
+ Ce(IIVullZ + 11T+ IV0ll3 + [divul 3 Ve [ Fm + [Ga(o”,u',0)]7).-
From (3.4), there holds
q _
g/uVUdm+%/|VU|2dx
< plldivull3 + Ce(1 + [V [ ) [ Vullip + el Vol Fm-
+ Ce(If 1T+ IV0ll3 + V0 s dive|5)
+ Celw'2IVe'llz2 + o[l Voll2 + [[0"[l2 Vo]l
+ o2V ll2 + 10|21 Voll2 + ol Ve' | ).

This completes the proof.
Next, we give the energy estimates on the high order derivatives of (o, u,v).

Lemma 3.2 Let m > [g} + 1 and multi-index « with |a| = 1,--- ,m + 1. Then, there
exists a constant C' > 0, a suitably small constant € > 0 and a constant C¢ depending on €
such that

1d B .
5&/“”3|5?0|2+73|3§UI2+Iaﬁvlz)dxﬂg/(magw?+(ﬁ+A)\agdwu|2)dx
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—|—E:/\8§‘Vv|2dx
<OVl FnlIVU [ mm + e(105 013 + [ Vuul Fonsn)
+ Ce(IVo' 3 IV s + 11 + (VU 7 + [V [ + [V [
IV N 1A [F)? + IV 7 + [V [ + V0 e
0! 198 + 196 51 [V 1))

Proof. For each multi-index « with |a| =1,---,m+ 1, by applying 9% to equations (3.1)—
(3.3), multiplying them by v1v30%0, v30%u, 0%v respectively and then integrating them, we
have
1d
2dt
+ R‘/ 109Vo|*dx

/(’ng|6§a|2 + v3]0%ul? + [0%v]*)dx + ’Yg/ (m@;’“VMQ + (B + X)\@;’“divuﬁ)dm

=— 7173/8§(u’ -Vo)dSodr — v173 /8§(U’divu')3§0dx
Jr’yg/a‘;f@g‘udz+73/8;‘G2(0’,u',v/)8;‘udx+/3§‘G3(0/,u/,v/)8§‘vdx. (3.5)

Now, we estimate the right hand terms in the above equation one by one. From Lemmas

2.1 and 2.2, we can get
— 7173 / % (u' - Vo)doda

= 71273 /|3?U|2divu/d$*’7173 Z ( la )/%u/@g‘l(vfr)@gadx
ll|=1

a—1

=N /|8§‘0|2divu’dx—71’yg Z

2
lI—1]=0
C(lldive' [l |05 0I5 + 105 o ll2 (Voo [Vt || a1 + VO || a1 [V ]| o0))
< O|IValtm VU || .

( l‘“ ) / A0, 99 =) (Vo) 9% o da

IN

Using Young’s inequality, there exists a suitably small constant € > 0 such that
— 7173 / 0% (o'divu’)0% odx

Cllog (o'divu’)|[2]|0; ]l

€022 + C.||0% (o' dive')||2

ellozall; + Cell(e’divas) [Fm s

e 0|3 + Cello” [ Fpmer | dive |7 mes

VAN VAN

IN A

Moreover, we have

s / 02 f0%udz < C| fll |Vl s

||8§71(0/divu/)||§ < C||0'divu/||§1m < C||0/||%{m divu/||§{m.
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Using Remark 2.1 and Poincaré inequality, it concludes that
f’yg/ag‘Gg(a',u',v/)@g‘udx
< Cllog T Ga(o! ', ") ||2]105 Va2
< ClogVulla([u' | VU [l + 0" 5 [V ([ + V0| 1 [V e
+ 10 1 V0 [+ 1[0 (L [ V0 [ Fpoe + [0 |1 || A || 1y
+ o IV dive || )
< ClOgVullo (V0 [ Fm + IV 7 + VO 7 + VO [ | AU || )
and
/6§‘G3(J’,u',vl)6g‘vdx
< Cllog~ Gy ', ") 2105 Va2
< Cllogvul2 (14 L= NV |z + 1o L [| AV [ + |07 | e[| dived || 2
10 g vl g + 90 + 10 e liver )
< Clo2Vull2 (V0 [ + IV [Frm + 1V [ + o[ |V | e
S 2 P
Hence, substituting the above estimates into (3.5), we have
3o [ Crelzal? +iozul? + 02e + 5o [ (1102 + (3 + oz dival)as
+E/|8§‘V1}|2dx
< IV 190 11 + 02013+ Cel V0 g |92 s + L
10 ullo (194 g + 10" g + [0 g + 10 3| 1)
102l (170 By + 190 o + 19 s + g [V i
IV i [V 1)
< CII0 3 199 10 + (051 + V)
+ C(IV0 Py IV By + 1 B + (170 P + 190 i + 9
190 s A )2+ (190 g + 19 g + 19 s
10 L I g + 9 1[99 1 )?)-
It completes the proof.

V’U,HHm+1

Lemma 3.3  Let m > [g} + 1 and multi-index 8 with |8] = 1,--- ,m. Then there exists

a constant C' > 0 and a constant C., 5 depending on v1, p such that
d _
—/afu-afVde—i- M/wﬁva\?dx
dt 2
< (P4 Cop+ O)llulfpmra

+ Oy ([0l Frmen + 1 I7m + (0" 0 0 g+ [l g [ Fss

ol 10 [ pmer + 10" Fpmen |2 [ Fpmsn ) -
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Proof. For each multi-index 8 with |3| = 1,---,m, by applying 02 to equation (3.2),
multiplying them by 9?Vo and then integrating them, it obtains that

d
&/@fu - OPVodx + 71,5/ 108V o|?dx
= /85 (u' - Vo)d?divudz + /85 (o' divu') 02 divudz + 5|02 divul|? + 7 / P AudPVodx

+(n+A) / PV divudlVodr —vp / PVl Vodr + / BCy(o’ u' 00V oda

+/a§vaa§jfd:c
< 2210293 + pllo2divull + C, 5102 Aul + Cs, 02 Veivul 3
+ |07 divul|2[|8 (o' dive’) |12 + Cr, |07 VU3 + Cy 5l 07 Ga (0" ', ) |3
+ Oy 5|07 FII3 + 107 dival2 |07 (u” - Vo) 2
Note that
107 divull2]|0 (u' - Vo)|lz < C(||07divall3 + [[u/|[7 Vo Frm)
and

107 divul2|07 (o' diva) |2 < C(|07 divul3 + [|Vu'|[7m |0 [[Frm)-
Therefore, with a similar argument in Lemma 3.2, we have
%/8fu-85Vodx+ %ﬁ/|8fV0|2dm
< P+ Cop+ O)ullfpmse
+ Cop g (l0llzpmen + 1 Fm + 10" s 0 ) N agmen + 0 10 W e

om0 Frmer + o [ 0 [ 3msn)-

This completes the proof.

Proposition 3.1  Assume that m > [g} + 1 and (o, u, v) is the solution of linearized

system (3.1)—(3.3) with initial data (og, ug, vg). Then there exist two positive constants C
and C1 such that

o1l + el Fpmr + [0l

< C(lloollFm+s + luolzrmer + lvollFm+)

[

t
+/0 IO (0" [ pmer + 0 W power + 10 Vg + 1 1o + N0 e

A0 e 1 sz + 0 [ Frmsn [0 [ Fpmsz)dr, £ € [0, 400).

Proof. By Lemmas 3.1, 3.2 and 3.3, summing up about || and |«|, taking M > 1 large

enough, we have

M d
ga(vmllollimﬂ + [l Fpmir + HUH?{mH)

W R . ME _
4 335 (29U + 3 D)divul s ) + 2E [T s + 07V
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+ Z /8ﬁ 8ﬁVadx

Ao 4
< M(e+ [/ | g )lol|Zmer + MC (10" [|zmss + 6/ Fmrr + 10" [[ Fmsr)
+ 1 U Frm A+ N0 e 16 zpmsr + 07 Wpmees 2 [ Frms2 + 110" [Frmsa [0 | Fmere]
+ C(divulls + (1 + [V |- VullF + [[V0)13 + ullFmsz + [0l Fme)-

Then, choosing ||u'|| gm+1, € appropriately small, we have

d 1
0 B+ el + 0l + 2l s + 2 WZO / O7ud;Voda

< C(lo" W zgmr + Nt Wepmer + 10 [ pmsr + 1 Wrm + Nl Wgm s

+ o e [/ gz + 0" [ 10 32 - (3.6)

2
There exists a constant 0 < C; < W such that

/ 85 u@ﬁ Vadx)

+ Ca (Il + ol + ol + 52 3 [ 0002V )
|B|=0

Clo pmer + 0 Wggmer + 10 Wgpmsr + 1N Fm + 0" [

d
(G
|5\ 0

' |[pmes

0 W 16 (s + 0 (s [0 |2 (3.7)

Multiplying the equation (3.7) by e“**, we have

d
dt( (o Fonss + s + 03 + 27 3 /aﬁ aﬁvgdx))
\ﬁ\ 0

< O (10" gmer + I [ zgmss + 10 I zmsr + U W + N0 W 0 s
0 W [/ [z + 0 [ 10 g2

Integrating from 0 to t, we have
t

/ OPudPvVo(x, T)dx)

o© (nanHmH s + o lBs +

|m 0 0

t
< /O ¢TC(llo” Ngpmer + 10 [ ggmr + [0 Wggmsr + 1 Wrm + 0" [ Nl

0 | Fmsa [ sz + 10" [ Fpma [0 Gz ) A
Thus, there exist two positive constants C; and C3 such that

Cy(lo)|Fpmin + [l Fmr + [0 Fpmen)

< Cs(lloollFrmer + lluollFmer + l[vollFpmsr)
t
+/O ¢TC (|0 Ngpmer + 10 ggms + [0 W + 1 Wi + 0" [ N1’ s

+ o W /g + 0" [ 10 7 )

where we have used M appropriately large.
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One can obtain the result by some simple calculations.

4 Existence

Here, we first state the framework of the proof to the existence of the periodic solution.
Due to Proposition 3.1 and smallness assumptions, the solution of the linearized system
(3.1)—(3.3) with trivial initial data will be estimated. Then, we will construct a convex hull.
By Tychonoff fixed point theorem, one can see that the T-periodic solution of the linearized
system (3.1)—(3.3) at t = 0 belongs to this set. Note that Tychonoff theorem cannot ensure
the uniqueness of the fixed point. But we can define a set-valued function. The fixed point
of this function is the T-periodic solution of the system (2.1)-(2.3) by using Kakutani fixed
point theorem.
We rewrite the linearized system (3.1)—(3.3) in vector sense:
U =AU +G(W) + F,

where
—u'V —pdiv 0
A=| —mpV pA+ (E+NVdiv —7pV |,
0 —9y3pdiv RA
GW) = (G1(d', u'), Go(o, ', V'), Gs(a’, u', v'))*
and

U=(o,u v, W=( o, o), F=(0,f0"
Let U(z, t) be the solution of (3.1)—(3.3) with trivial initial data (0, 0, 0). Then, for any
given t > 0, there exists n € Z* such that ¢ € [nT, (n + 1)T'). From Proposition 3.1 and
T-periodic function (¢, v/, v') € X5, we have

(Lo

IN

t
eI W+ I s+ 10 s + e+ o g

o s [/ [z + 0" [z 10 3z ) A

t
< /TG’CI“’”C(HU’II%H A [ (s A 10 s+ 1 e+ 0" | [ 5msa
n
F 10 s 0 sz + 0" 1 Fpea [0 Fpma ) AT
n—1 .(i4+1)T
+> /T Cllo"zmer + 14/ gpmer + 10" Wagmen + 1F W Frm + N0 [ Frm 1 [ pmn
i=0 7"

0 g 0 g A 0 g [ s J e~ " dr

IN

t
/T e~ O (|0 [ Fpmer + 0 [ + 10 W pmes + 1m0 Vg 0 g
n

0 e [ [z + 0" [ 10 7z ) A

(i+1)T
+y [/T C(ll0” [[zpms + 1 [ gpmr + 10 N ggmss + L1 Fm + 0" [ |0 [ e
: %
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N0 e [ [ Fse + [0 [ Fpen 10" s ) A - @7 G EHDT)

|| fmsa

t
< /TC(IIG’H%mH + 1 Wagmer + 10 g + [ 7m0 7
n

H 1o e [ [ Fpmen + 07 [ Fpmen [ | Tz ) dT
n—1 T
+> [ / Cllo Wgmes + It s+ 10 W+ 1 Wm0 s
=0

o sl gm0 gm0 s ) A7 6_01“_““”)]

< C(ts[lépT] (o gpmn + 1 g+ 10 W gm0 W i)
€10,

T T
+ sup ”O—/H%Ierl/ (Hu/H%Ierz + H’()/H%IWJrz)dT‘f'/ ||f|%{md7—>7
te[0,T] 0 0

where we have used

n—1 n—1
Z efc‘l(tf(ijtl)T) < efCIt Z eC1(i+1)T
i=0 i=0
S e—ClteClnTl — :_ClT
b
Tl—e T

The last inequality holds by ¢ > nT.

Note that T-periodic function (¢/, u’, v') € X5 and 6* = 1 < 1. It obtains that

[T || gmer < C8%, Vit € [0, +00).

Let Sy = {U(KT), k = 0,1,---}. Obviously S; is nonempty and bounded in H™+1(2).

Thus, CoS; is compact in H™(f2). Set
P(®)=U(T, ), e CoSi,
where U(T, @) is the solution of linearized system (3.1)—(3.3) with the initial data @ at time
T. From the uniqueness, we have P(z) € S; for x € S;. Then,
P:CoS;— CoS;

is continuous.

In fact, for any given y € Co{U(KT), k = 0,1,---}, there exists § € [0, 1] and 21, 22 €
{U(kT), k=0,1,---} such that y = 6z; + (1 — 0)z2. Hence,

P(y) =Pz, + (1 — 0)x2)

= AT (0zy + (1 - O)2) + / LA GOw) + )y
0

T
— (e AT ey + / ATV GOW) + F)dr)
0

+(1—0)(e Ty + / ' ATD(Q(W) + F)dr)
0

=0P(z1) + (1 — 0)P(x2).
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The continuity of P is from the continuous dependence of initial data.
From Tychonoff fixed point theorem, there exists a fixed point U* € CoS; satisfying

||U* HHmﬁ»l S 052

such that P(U*) = U*, i.e., U(t, U*) is a periodic solution of the linearized system (3.1)—
(3.3). Thus, with a similar argument above, there holds

Ut U Frmer
t
<e” U Fpen +/ IO (o [pmer + 0 [ pmer + 10 Ve + 11
0

H om0/ [zmer + o W 1 [ + 10" [ Fpmen 10772 ) AT

n—1 L(i+1)T
<e U [ Fma +Z/T e TIC(|l0” | fmas + 1/ [ pmrs + [0 pmss + 1 Frm
i=0 7?

o o 0 [ pmer + 0" I Fpmes [ [mea + 10" g [V Fromsa ) dr
t
+ /TGCI(T*”C(HJ’II%H H pmen 10 g + 1 Vi + o [ 1 [
n
Ao a1 W Frmsn A 0 (s [0 |2 ) A
T

< U [ + (C 1)/0 (o Wgpmsn + 1 g + 10 W gpmar + UF Wz + N Vo [ e

+ 1o IFrmsr | Fmre + 07 [ Fpmen 1V || Fmse ) AT
<C6%.
Note that U(t, U*) := (o, u, v) satisfies (3.6). Integrating it from 0 to T', we have

T
1
[ (1B + B + gl Ja
0

T
SC/O (o [ zmss 116 [pmer + 10 [ pmer + I W + Nl gl | 2
F 10 s 0 sz + 107 [ Fpomsa [0 [ Frona ) dt.
Therefore,
T
/0 (Nl Frmse + N0l Frmse + lallfpmer)dr < C3° (4.1)

From above argument, we can see that the set
Sa,w = {(c, u, v) is the T-periodic solution of (3.1)-(3.3)
with T-periodic function W € X5}
is nonempty. And the T-periodic solution (g, u,v) of (3.1)—(3.3) satisfies
(e, w, v)I% < C5* < 62

for § = 77i small enough. It obtains that S y is a subset of Xs.

Lemma 4.1  Assume that m > [%} + 1 and (o, u, v) is the T-periodic solution of the

linearized system (3.1)—(3.3) with T-periodic function W € Xs. Then, for each multi-index
B with |B| =0,--- ,m, we have
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T
/0 1080, 12 + 102w, 2 + 1020, |24t < O3,

Proof. For each multi-index 3 with |3| =0, --- ,m, applying 8 to (3.1)-(3.3), multiplying
02y, 0Puy, 0Pv; respectively and integrating them over 2 x [0, T, we have

T T T
/ / |00, |2dxdt + / / pdivoPudlo,dxdt + / / P (u' - Va)dPo,dxdt
0 0 0

T T
_ /0 / (A u + (i + N Vdivd®w) 0P u,dadadt + /0 / (1Y 0 + 12V 0P 0) 00, dudt

T T
+/ /|6§yt|2dxdt - / /RA&fQ@fytdxdt—l—vgvgﬁ/divafgafytdxdt
0 0

T
+//|8§gt|2dxdt
0

T T
= / /8EG1(0',U’)8fgtdxdt+/ /ang(a/,u’,v’)afgtdxdt
0 0

T T
+/ /@ffafgtdx—!—/ /85G3(U’,u’,v')8fytdxdt.
0 0

Then,
T T T
//|8fgt|2dxdt+//|8f@t|2dxdt+//|8fyt\2dxdt
0 0 0
T T T
gc(//divaﬂu2dxdt+//af(u’~va)|2dxdt+//|Aa§u|2dxdt
0 0 0
T T T
+ / / IVOPv|?dzdt + / / |ADPv|?dzdt + / / |divdPu|>dzdt
0 0 0
T T T
+//\8§G1(0'7u')|2dmdt+//|8§G2(0’,u’,v’)|2dxdt+//|8§f|2dm
0 0 0

T T
+//35G3(0’,u’,v’)|2dxdt+//|V8£a|2dxdt>.
0 0

From the assumptions, (4.1) and the arguments in Lemma 3.2, there holds
T
| 10818 + 10213 + o, ot < ¢,

which completes the proof.

Therefore, by Lemma C.1 in [28], Lions-Aubin lemmal?’! and Lemma 2.3, S is pre-
compact in X_;. Moreover, Sy is convex and closed because of the system (3.1)—(3.3) is
linear.

Define

Sy = U{Sew, W% <6},

and
Sy = CoSs.

Proposition 4.1 Sy is nonempty, compact and convez in X_1.
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Proof. The result is obtained by Mazur’s theorem. Here, we omit the details of the proof.
Define a set-valued function:
Per(W) = Sy w.

We can see for any given & € Sy C X, Per(®) C Sy. Moreover, the fixed point of
Per : Sy v 254 is the T-periodic solution of system (2.1)—(2.3).
Next, we prove Per : Sy — 254 is a set-valued function which has a closed graph.

Proposition 4.2  Per : Sy — 2% has a closed graph. That is to say {(W,U) | W €
S4, U € Per(W)} is closed subset in X_1 x X_;.

Proof. Assume that
Wy, — Win X_q, as k — oo,
Uy —Uin X_4, as k — oo,
where Uy, € Per(Wy).
Since Sy is compact, one has W € S;. We only need to prove U € Per(W).
Let
Uk = (o, uk, vi), Wi = (O, U, Uk).
Since oy € L>(0, T; H™1(2)), we have oy, € C*(£2) with a € (0, 1) for any fixed ¢.
Assume that 0 < t < t;. Taking a ball B, of radius 7 = [t; — t2|® centered at  with

(>0,¢=

, we have
n+ 2a

ox(y, t1) —or(y, t dy:/
[ oty 1) = ot iy = [ | [

ty 2 %
<c(// a”’“(y“‘ dtdy) ity — ta]
St 8t

S C|t1 —t2|%7”%.

h aO'k; (yv t)

dt‘dy

n
2

N|=

r

By the mean value theorem, there exists =* such that
1—n¢

ok (@%, 1) — op(@*, t2)| S Clts — ta]2r7 % < Clty —to] 2.

Then,
lok(z, t1) — o (x, t2)]

<l|ok(, t1) — (2", t1)| + o (2", t1) — o (2", t2)| + o (2", t2) — ok (z, t2)]
<C(lz — 2" + |t — ta] 172"4)

1—n¢

=)

<C(Jtr — ta]™ + [t1 — t2
<Oty — to| 2=
Similarly, we have
lu (21, t1) — up(z2, t2)| < C(|z1 — 2| + [t1 — 22/,
ok (21, t1) — vk (22, t2)| < O(|1 — 22|® + [t1 — t2]?),

where 8 € (0, 1).



52 COMM. MATH. RES. VOL. 35

Then, by Arzela-Ascoli theorem, we get

(ok, uk, vi) — (0, u, v) uniformly, as k — oo.
By Lemma 4.1, there holds
(Okt, Ukt, Vkt) — (04, Uz, v) In L2(07 T; H™), as k — oo,
(0%, ug, vi) = (0, u, v) weakly star in L°>°(0, T; H™), as k — oo,
(0%, Uk, vi) — (0, u, v) in L?(0, T; H™*?), as k — oo.

It implies that U = (o, u, v) € Xs.

Note that Uy € Per(Wy), i.e., Uy is a T-periodic solution of system (3.1)—(3.3) with
T-periodic function Wy. Let k — oo. It obtains that U = (o, u, v) is a T-periodic solution
of system (3.1)-(3.3) with W, i.e., U € Per(W).

From Propositions 4.1 and 4.2, Per : Sy — 2% satisfies the hypotheses of the Kakutani
fixed point theorem. By Lemma 2.5, there exists a fixed point Up,, of Per. It means that
Uper is a T-periodic solution of the system (2.1)—(2.3).

5 Uniqueness

In this section, we prove the uniqueness of the T-periodic solution.
Let Uy = (01, u1, v1) and Uy = (09, us, v) are T-periodic solutions of the system (2.1)—
(2.3). Denote 0 = 01 — 09, 4 = w3 — u2, v = v1 — va. Then, (o, u, v) satisfies
oy + pdivu + u1 Vo + uVoy = Gy (01, u1) — Gi (02, uz), (5.1)
Ut — ([LA'LL + (ﬂ + S\)leVU) + 71/3V0 + 'ygﬁVv = GQ(O’l, uy, ’Ul) — GQ(JQ, Uz, ’02), (52)
vy — RAU + y3yapdive = Gs(o1, ur, v1) — Gs(o2, us, v2). (5.3)
For each multi-index a with |a| =0,--- ,m + 1, applying 9% to (5.1)—(5.3), multiplying
v1v3050, v305u, 0%v respectively and integrating them over (2, we have
1d
2dt
+ R/ 109 Vv|?da

/(7173|8§‘U|2 + v3]0%ul? + |0%v|?)dx + 73/ (ﬂ\@;‘VuP +(gp+ ;\)\Qﬁdivuﬁ)dm

= *’71’73/5";@1 Vo +u-Voy)dsodr 77173/03((771(01, uy) — Gy(02, u2))05cdx
—Wg/aﬁ(Gg(Ul,ul,vl) — Ga(09,uz,v2))05udx
+ /6§(G3(01, uy, v1) — G3(o2, Uz, v2))05vdx
SC{/laﬁ(ul~Vcr—|—u-V02)|2dx—|—/|3§(G1(01, u1) — Gi1(03, up))|*da
+ / 10971 (G0, w1, v1) — Ga(0s, ug, vs))|*da

+ / |8§71(G3(0’17 uy, v1) — Gs(02, uz, U2)>|2dx]
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+e/yaga|2dx+%/|agvu|2dx+g/}a;vu;2dx. (5.4)
From Lemma 2.1 and 2.2, we have

/ f@fg(ul -Vo+u- V02)|2dx

2
<C(urlloollVallzm + l[urllzm [Volloo + l[ulloo [ Vool mm + lull zm [ Voa o)
2
<CO(llurllzm IVoll zom + lull zm |V oo || zrm )
and
o 2
/|3x (G1(o1, u1) = Gi(o2, ug)*dz < C([lov|lgm | Vull e + o] mm | Vug | gm)"
With a similar argument in Lemma 3.2, we have

/|8§71(G2(01, Uy, ’Ul) - GQ(O’Q, Uz, 1)2))’2(31.%

<CIVullam (IVur || am + [[Vuzllzm) + Vol am (Vo am + Voo am)
+ IVl e (VUL e + (Vo[ ) + ([ VO] rm
+ IVl A || + [V e | Aul| ]
+ Vol am||Autl[gm + ([ Voo | mm | Aul| gm

Voullsn + Vool aim

VO'”Hm

and
/|3§_1(G3(017 uy, v1) — Gs(02, uz, v2))[da
< Cllullam Vol + el g Vool zm + oyl mn |Av]zm + o/l || Ave
FllolamVullam + ol aml[Vuz | mm + lorll e [Vl mm + (o]l zm [Vl e
+ IVl g ([Vur [ zm + Vugl am) + o] g [Vl g (V[ 27+ (Vg )
2
+[Vuz|Fmllo] ]
Integrating (5.4) from 0 to T, it obtains that
T A
I\ aaq: R o
v [ (Blosvul + (n+ Djogdival)ae+ 5 [ o5volar
0 0

SCH(U’ U, U)H%((H(alﬁ Uut, Ul)”%( + ”(02’ U2, UQ)Hg(

T
+ /0 ||01||31mdtt sup ](IIVMII?{m + [V |Em)

3

T
+/ [Vuo||3mdt sup |[[Vus|/3m) +e/‘8§0}2dx
0 t€(0, T

< C8|(o, u, v)||% +e/|aga|2dx. (5.5)

For each multi-index 3 with |3| = 1,--- ,m, by applying 92 to equations (5.2), multiply-
ing them by 9V and then integrating them, it obtains that

%/@fu-%?VUdm—i—’ylﬁ/|85Va\2dx
= — /@fu(@ngiv(alul — aguz))dz

+ pl|08divul)3 + / P AudPVodx + (i + N) / PV divudlVodx
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- 'ygﬁ/@fVUafVde + /85(G2(01, uy, v1) — Ga(og, usg, vg))ﬁfVcrdx

_ . Y2p
< (lovllgmer [l g + ol gms [[uz|lzrmer) + (1 + p) |05 divul3 + - / 0V o|*dx

x5 (105 Aul|3 + (|08 Vdivul|3 + 1|02 Vol|3)
+ Co, 5 [IVUll g (| VUt [ + [[Vuzllgm) + Vol gm (Vo1 | am + ([Voallgm)
+IVullg= Vol gm + [Voallgm Vol gm + (Vo mm || Au || gm

+C,

2
+ Vool | Aul| ] (5.6)
Integrating (5.6) from 0 to T', we have
wp [T T T
B [ 102Vl < Cos s ([ Nulfesdt [ ol
0 0 0
+ OH(Ua u, U)HX(”(O'la Ui, UI)HX + ||(027 Uz, UQ)HX) (57)

From (5.5), (5.7), summing up about |«/|, | 3|, taking M’ appropriately large and letting
€ appropriately small, there holds

T T V1P T
M ([ lalBnnde [ olfpnndt) + 22 [ ol

< CM’,EL75\,/7712,7352||(‘7’ u, v)||%-
Then, there exists a t* € [0, T] such that
[u(@ ) gmsz + 0E) [Fpmsz + o (@) [Fmin < C8(0, u, v)|%-
Combining (5.4) and (5.6), integrating over [t*, ] with ¢ € [t*, t* + T, we have
[w@) | Fpmer + 0@ Frmrs + o (@)1
<C8|(o, u, 0)[Ix + lw(t) [ Frmer + N0 E ) e + o) Frme
<C&||(o, u, v)[%-
Since (o, u, v) is T-periodic, it obtains that

(o, uw, )% = sup ([lu(®) s> + [0 Frms2 + o)l

)

T
b [ (RulBisndt 4 ol mendt + oo )
0

C6°||(o, u, v)%

1
< Cnzll(o, u, v)|I%-

IN

Since 7 small enough, we have

(o, u, v)[I% =0.

It implies
U, =U,.

Remark 5.1 From the proof of uniqueness, it is not difficult to see that there is no
small non-trivial time periodic solution for the non-isentropic compressible Navier-Stokes

equations without external force.
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Remark 5.2 Assume that f is independent of ¢ and || f||g= < n with 5 appropriately
small. It means that f is periodic of any period T' > 0. By Theorem 1.1, there exists
a time periodic solution (pi, u1, 61) of period 1. On the other hand, there exists a time

periodic solution (pz, uz, 62) of period % By uniqueness, we must have p; = pa, u; = uo,
01 = 05. Going on this way, we can see (p1, ui, 61) is periodic of any rotational period.
It concludes that (p1, ui, 61) is independent of ¢ € Q. From a continuity argument, we
get (p1(x), ur(x), 01(x)) is independent of ¢. Therefore, (p1(z), ui(x), 61(x)) is a unique
stationary solution of the following system:

div(pu) =0,

pu-Viu+ VP(p, 0) = pAu+ (1 + \)Vdivu + pf(z),

pC(u-V0)+ 0Py (p, 0)divu = kAO + D(u).
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