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1 Introduction

According to the Winternitz classification (see [1]), there are six kinds of 3-dimensional Lie
algebras up to isomorphism over the complex field C. That is,

g1: le1, ea] =0, [e1, e3] =0, [e2, e3] =0,

g2: le1, e2] =0, [e1, e3] = e3, [e2, e3] =0,

g3: [e1, ea] = es, [e1, es] =0, [ea, e3] =0,

ga: e1, ea] = 2ea, [e1, e3] = —2e3, [e2, e3] = €1,

g5 [e1, ea] = e1, [e1, e3] =0, [e2, e3] = e1 + e3,

ge: le1, ea] = e1, [e1, e3] =0, [ea, e3] = kez (0 < |k| < 1).
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We know that g4 is the famous 3-dimensional simple Lie algebra si(2, C). The others are
nonsimple. In [2], the authors gave all Rota-Baxter operators (of weight zero) on g4 and the
corresponding solutions of the classical Yang-Baxter equation. In [3], Rota-Baxter operators
on another 3-dimensional non-simple Lie algebra g5 were determined, the corresponding
solutions of the classical Yang-Baxter equation and some new structures of left symmetric
algebra are given. In [4], the authors determine the Rota-Baxter operators on go and gs.
For gq, it is clear that its Rota-Baxter operators are belong to its endomorphisms. Thus,
in order to determine the Rota-Baxter operators on 3-dimensional Lie algebras, we just
determine the Rota-Baxter operators on gg. The aim of this paper is to determine the Rota-
Baxter operators (of weight zero) on gg and the corresponding solutions of the Yang-Baxter
equation. After this, we completely determine all of the Rota-Baxter operators (of weight
zero) on all 3-dimensional Lie algebras. From now on, we denote gg as g.

A Rota-Baxter operator of weight zero on an associative algebra A is defined to be a
linear map P: A — A satisfying

P(z)P(y) = P(P(z)y + zP(y)), xz,y € A. (1.1)

Rota-Baxter operators on associative algebras were introduced by G. Baxter to solve an
analytic formula in probability (see [5]). It has been related to other areas in Mathematics
and Mathematical Physics (see [6]-]9]). A Rota-Baxter operator of weight zero on a Lie
algebra (g, [+, -]) is a linear operator P: g — g such that

[P(z), P(y)] = P([P(x), y] + [z, P(y)]),  zyey. (1.2)

In fact, a Rota-Baxter operator is also called the operator form of the classical Yang-
Baxter equation (see [10] and [11]). Let g be a Lie algebra and

T=Z£M®bi€9®9-
i

Then r is called a solution of the classical Yang-Baxter equation (CYBE) in g if
[r12, r13] + [r12, Te3] + [1r13, 723] = 0 (1.3)
in U(g), where U(g) is the universal enveloping algebra of g and
rlgzz:ai@bi@l, 7‘13=Zai®1®bi, 7’23221®a¢®bi.

Semenov-Tian-Shansky!™? proved that a Rota-Baxter operator of weight 0 on a Lie algebra
is exactly the operator form of the classical Yang-Baxter equation (1.3). On the one hand,
Rota-Baxter operators of weight 0 on a Lie algebra g give rise to solutions of CYBE on the
double Lie algebra g X g4« ¢* over the direct sum g€ g* of the Lie algebra g and its dual
space g* (see [2], [13]). Moreover, some solutions of CYBE in g x 44+ g* Lie algebras through
Rota-Baxter operators of any weight on g can be obtained (see [3], [14]). On the other hand,
some certain interesting algebraic structures, such as left-symmetric algebras, coming out
of the Rota-Baxter operators. In this paper, we determine the Rota-Baxter operators on
3-dimensional Lie algebra g and give a family of solutions of CYBE in g X4+ g*. Finally,
the induced left-symmetric algebraic structures from the Rota-Baxter operator of weight 0
on a Lie algebra g are obtained.
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This paper is organized as follows. In Section 2, we give the Rota-Baxter operators
(of weight zero) on g. In Section 3, according to Theorem 2.1, we give the corresponding
solutions of CYBE in g X44+ ¢*. In Section 4, we give the induced left-symmetric structure

from the Rota-Baxter operators of weight 0 on g.

2 The Rota-Baxter Operators on g (of Weight Zero)

The main result of this section is the complete classification of Rota-Baxter operators of
weight zero on g. As we will see, the problem of classification turns out to be solving a

system of quadratic equations.

2.1 Notations and the Classification Theorem

According to the Winternitz classification (see [1]), let g be the 3-dimensional Lie algebras
with a basis ej, ea, e3 over the field of complex numbers C and the following Lie brackets
[e1, e2] = €1, [e1, e3] =0, [ez, e3] = kes (0 < |kl <1).
Here we note that the condition 0 < |k| < 1 is not accurate. In fact, it is clear that any two
Lie algebras with different k& are not isomorphic over the real field, but might be isomorphic
over the complex field for some special values of k. For example, the first complex Lie
algebra L; has a basis {eq, eq, es} with the following brackets
[e1, ea] = e1, [e1, es] =0, [eg, es] = e'Pes, 0<o<m,

the second complex Lie algebra Lo has a basis {f1, f2, f3} with the following brackets
[f17f2]:f17 [flaf?)]:O? [f2) f3]:e_i0f3a OSQSW

Let ¢: L1 — Lo be a linear transformation determined by
e1 = f3, ey — —efy, es = fi.
It is easy to check that L is isomorphic to Ly as complex Lie algebras. The example shows
that the Winternitz classification condition for 3-dimensional Lie algebras is not accurate.
Thus, we modify the 3-dimensional Lie algebras g as follows:
[e1, ea] =e1, e1, €3] =0, [e2, e3] = kes (O<|kl<lork=¢e’ 0<0<n). (2.1)
Let P: g — ¢ be a linear operator determined by

P(er) aiy a2 a3 el
P(e2) | = | a1 a2z ass e |,
P(e3) a1 asz G33 €3

where a;; € C, 1 <4,5 < 3. The following is our main theorem.

Theorem 2.1  All Rota-Bazxter operators of weight zero on g are listed in their matrices
form with respect to the basis below when 8 = w, where a, b, ¢ are non-zero complex numbers:
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0 a 1b Ob a 1 0 a 1
Py =10 —b | Pig = - 0 0], Pyy=10 0 0],
0 ab b b 0 0 000
0 a1 1 0 1
b c
P40= - —Cc — 1, P41: 0 b C s P42= b 0 C s
a a
_a2 —a —(],2 —a
b ac c
0 a 0 1 0 1
P43 = b c 0 ; P44 = 0 0 b ; P45 = b 0 0 3
a2 0 —a —a? 0 —a —a? 0 —a
0 1 a 0 0 1
P46 = 0 b 0 y P47 = 0 0 0 s P48 = b Cc d y
—a? 0 —a —a®> 0 —a —a®> 0 —a
a b 1 a b 1
P49 = ac be c s P50 = 0 0 0
—a? —abe —ab—b*c —a—be —a® —ab —a

Theorem 2.2  All Rota-Bazxter operators of weight zero on g are listed in their matrices
form with respect to the basis below when 0 < |k| <1 ork =€, 0 # 7, a, b, ¢ are non-zero
complex numbers:

ka 0 ka? ka 0 ka? ka 0 ka?
Psi=1|b 0 0 |, Pio=|10 0 b |, Pss=10 0 0 |,
1 0 a 1 0 a 1 0 a
ka 0 ka? a 1 b
Psys=10b 0 ¢ |, Pys=|—-a®> —a —ab
1 0 a 0 0 0

2.2 Reduction to a System of Quadratic Equations

In fact, we can reduce the problem to be solving a system of quadratic equations. We first
need to check on g

It follows from (2.1) that
[P(e1), P(e3)] = [a11e1 + a12e2 + a13¢,, as1€1 + assea + agses]

= (a11a32 — a12as1)er + (kaisass — kasaais)es, (2.2)
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while
P([P(e1), es] + [ex, P(es)])
= P(kaizes + aszeq)
= (kai2a31 + asza11)e1 + (kaizase + asaaiz)es + (kaizass + asea13)es. (2.3)
Comparing the coefficients in (2.2) and (2.3), we have
(k 4+ 1)aizaz =0, (2.4)
(k + 1)arzazs = 0, (2.5
(k + 1)ajzaze = 0. (2.6)

Similarly, from
[P(e1), Ple2)] = P([P(e1), e2] + [ex, P(e2)]),

[P(e2), Ples)] = P([P(e2), es] + [ea, Pes)]),

we obtain the following six equations:
kaizazy — aizaz — ajiar; =0,
kaizazs — ajzazz — ajiaiz =0,
(k + 1)aizaze — kaizass — kaizazs + ayjaiz =0,
(k + 1)agzas1 + kagzasz; — asiaiy — aziasz =0,
kasaaszs + kagzasz — azraiz = 0,

kazzazz + kagzazz — azraiz = 0.

2.3 Solving the Quadratic Equation

In order to solve the quadratic equations (2.4)—(2.12), we consider two cases depending on

k.
Case 1. k= —1, that is, § = m.
In this case, there are two subcases: a13 = 0 and a3 # 0.
(A) a3 =0.
In this case, (2.9) implies

a12a23 = 0.

(A1) Assume aj3 = 0, ags = 0. It follows from (2.7) and (2.12) that a1; = agz = 0,

(2.10) implies agrazs = 0, (2.11) implies agzaze = 0.
(A11) If azy = 0, then we obtain

0 0 0
P = a21 Q22 0
asq 0 0

Taking as; = 0, ase = a and az; = 1. We obtain P;. Taking as; = a, ass = 0 and ag; = 1.

We obtain P,. Taking as; = a, ass = 1 and ag; = 0. We obtain Ps. Taking as; = 0, ase =0

and az; = 1. We obtain P;. Taking as; = 0, azs = 1 and az; = 0. We obtain P5;. Taking
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as1 = 1, a9o9 = 0 and asy = 0. We obtain PG. Taking as1 = 0, agy = 0 and asy = 0. We
obtain P7. Taking az1 = a, agy = b and asy = 1. We obtain Pg.
(A12) If ags # 0, taking aszs = 1, then (2.10) and (2.11) implies as; = age = 0. We

obtain
0

0 0
P=|0 0 0
az1r 1 0
Taking az; = 0, we obtain Py. Taking az; = a, we obtain Pyg.

(Az) If a;2 = 0, ags # 0, taking ass = 1, then (2.7) implies a1; = 0, (2.11) implies
(aza + aszs)azz = 0.

(A21) If azy = 0, then (2.12) implies ags = 0. We obtain

0 0 O
P=lan ax 1
aszi 0 0

Taking as; = a, ass = b, ag; = ¢. We obtain P;;. Taking as; = 0, ase = a, az; = b. We
obtain Pj5. Taking as; = a, ase = 0, az; = b. We obtain P;3. Taking as; = a, ags = b,
asz1 = 0. We obtain Pjy4. Taking as; = 0, age = 0, az; = a. We obtain Py5. Taking as; = 0,
asz = a, az; = 0. We obtain Pig. Taking as; = a, azs = 0, az; = 0. We obtain P;;. Taking
a1 =0, ags = 0, az; = 0. We obtain Pig.

(Ag2) If agy # 0, then azy = —ass, and (2.12) implies azgy = —a3; # 0. Taking asz = a.

Then (2.10) implies
—@33d31 431

ag) = —————— = .
asz2 a
We obtain
0 0 0
a
P = 8L —a 1
a
asl —a2 a

Taking a3y = 0, we obtain Pg. Taking ag; = b, we obtain Psg.
(As) If aj2 # 0, azs = 0, taking a1z = 1, then (2.12) implies agg = 0, (2.7) implies

az1 = —a?y, (2.8) implies ags = —ay1, (2.11) implies az; = ajjaze. We obtian
ail 1 0
P = —a%l —ai1 a23
ajnazz  aze 0

Taking a11 = 0, ass = a, azx = b. We obtain Py;. Taking a1; = a, ass = 0, aga = b. We
obtain Psy. Taking ay1 = a, asg = b, aga = 0. We obtain P»3. Taking a1; = 0, as3 = 0,
aszz = a. We obtain Psy. Taking a1 = 0, ass3 = a, ass = 0. We obtain Ps5. Taking a1 = a,
ass = 0, aga = 0. We obtain Psg. Taking a11 = 0, as3 = 0, azo = 0. We obtain Ps7. Taking
a11 = a, asg = b, azs = c¢. We obtain Psg.

(B) Assume aj3 # 0, taking a3 = 1.

(B1) If @11 = 0, then (2.7) implies as; = —aj2a91, (2.8) implies agy = —ajsass, (2.9)
implies az3 = —aj2a93.
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(Bll) If 12 = O, then asy = 0, asgy = 0, ass = 0. We obtain

0 0 1
P=la ax a
0 0 0

Taking as; = 0, ass = a, ass = b, we obtain Pag. Taking as; = a, ags = 0, ass = b, we
obtain Psg. Taking as; = a, ase = b, ass = 0, we obtain Ps;. Taking as; = a, azs = 0,
ass = 0, we obtain P3p. Taking as; = 0, ass = a, ass = 0, we obtain Ps3. Taking as; = 0,
asz = 0, as3 = a, we obtain Psy. Taking as; = 0, age = 0, asg = 0, we obtain Ps5. Taking

a1 = a, 22 = b, asg3 = C, We obtain P36.

(Bia) If a1o # 0, taking ais = a, then (2.7) implies az; = — 2L, (2.8) implies az =
a
—aﬁ, (2.9) implies as3 = —@, (2.12) implies az; = a3z a2, then (2.10) implies
a a a

asz(asz — ajpagzs)? = 0, (2.11) implies (asz — aagzs)? = 0, then azy = aazz. We obtain

0 a 1

asy as3
P=|—-— -—-az ——

a a

asi aass ass
Taking as; = 0, az3 = b. We obtain Ps7. Taking as; = b, ags = 0. We obtain Psg. Taking
az1 = 0, agz = 0. We obtain Psg. Taking az; = b, azz = c. We obtain Py.
(B2) If a11 # 0, taking ay; = a.

(B21) If ajo = 0, then (2.7) implies az; = —a?, (2.8) implies azz = 0, (2.9) implies
a33 = —a. We obtain
a 0 1
P=1ax a2 ax
—a®> 0 -—a

Taking as; = 0, age = b, ass3 = ¢. We obtain P;;. Taking as; = b, ase = 0, azz = ¢. We
obtain Pys. Taking asy = b, ass = ¢, asg = 0. We obtain Py3. Taking ag; = 0, ags = 0,
as3 = b. We obtain Pyy. Taking as; = b, ase = 0, asz = 0. We obtain Py5;. Taking as; = 0,
a2 = b, asg = 0. We obtain P,g. Taking as; = 0, age = 0, asg = 0. We obtain P,7. Taking
as1 = b7 a29 = C, A23 = d. We obtain P48.

(Ba2) Assume ajp # 0, taking aj2 = b. Then (2.12) implies ag; = a12a33+a11a23—a22a03,

(211) 1mphes (a22 — a12a23)2 = 0, (210) 1mphes a23(a22 - a12a23)2 = 0, then a9 = ba23,

az1 = aass, and so (2.7) implies a3; = —a? — abass, (2.8) implies azy = —ab — b2ass3, (2.9)
implies a3z = —a — bagz. We obtain
a b 1
P = aass bass Q23

—a® — abass —ab— b%as3 —a — bags
Taking ass = ¢, we obtain P,9. Taking as3 = 0, we obtain Psg.
Case 2. k # —1, that is, 6 # 7.
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According to (2.4), there are three subcases: (C) aj2 =0, agy # 0; (D) a12 =0, az; = 0;
(E) a12 #0, az; = 0.

(C) Assume a3 = 0, az; # 0, taking az; = 1. Then (2.6) implies aj3aze = 0.

(C1) If a1 =0, azz = 0, then (2.7) implies a;; = 0, (2.12) implies az3 = 0, and so (2.10)

implies aso = 0. We obtain

0O 0 O
P=1lax 0 a
1 0 O

Taking as1 = a, asz = 0. We obtain P,. Taking as; = 0, ass = a. We obtain Pj5. Taking
as1 = 0, asz = 0. We obtain P,. Taking as; = a, ass = b. We obtain Pi3.

(Co) If a13 = 0, ase # 0, taking age = a, then (2.7) implies a1 = 0, (2.11) implies
2

— —a
ase = —ass, (2.12) implies ag = 3 and as3 = 33 'We obtain
a
0 0 0
ass a§3
p=1_28 _ _ 933
a a
1 a ass

Taking agz = 0. We obtain Pjg. Taking ags = a. We obtain Psg.
(C3) If a13 # 0, aga = 0, then (2.12) implies a13 = ka3;. So we have a3 # 0. Taking

aszz = a. (2.10) implies asy = %, (2.9) implies a2;(a11 — kazz) = 0. And then
an = kags, aze = 0.
We obtain
ka 0 ka®
P=lax 0 a
1 0 a

Taking as1 = b, asg = 0. We obtain Ps;. Taking as; = 0, ags = b. We obtain Ps,. Taking
a1 = 0, ass = 0. We obtain Ps3. Taking as; = b, ass = ¢. We obtain Psy.

(D) If a12 =0, agy = 0, then (2.7) implies a;; = 0, (2.6) implies ajzaze = 0.

(D1) If azge = 0, ay3 # 0, taking a;3 = 1, then (2.12) implies agz = 0, (2.9) implies
az9 = 0. We obtain

0 0 O
P=lax 0 a
0 0 O

Taking ag; = a, asz = 0. We obtain Pss. Taking as; = 0, as3 = a. We obtain Ps4. Taking
as1 = 0, asz = 0. We obtain Ps5. Taking as; = a, as3 = b. We obtain Ps;.
(D2) If a13 =0, agy = 0, then (2.7) implies a;; = 0, (2.11) implies ag3 = 0. We obtain
0 0 0
P= a2 az ass
0 0 0
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Taking as1 = a, aze = 1, asg = 0. We obtain P3. Taking as; = 0, ass = a, asz = 1. We
obtain Pjg. Taking as; = a, azs = 0, agg3 = 1. We obtain Py7. Taking as; = 0, ass = 0,
as3 = 1. We obtain Pjg. Taking as; = 0, ass = 1, ass = 0. We obtain P5. Taking as; = 1,
asz = 0, asg = 0. We obtain Ps. Taking ao; = a, ass = b, ass = 1. We obtain Py4. Taking
as1 =0, ags =0, asg = 0. We obtain P;.

(D3) If ase # 0, taking ags = 1, a;g = 0, then (2.7) implies a;; = 0, (2.10) implies

az1 = 0, (2.11) implies azs = —agz, (2.12) implies az3 = —a3;. We obtain
0 0 0
P = 0 —ass —(1?)’3
0 a ass

Taking azz = 0. We obtain Py. Taking az3 = b. We obtain Pjg.
(E) If a;2 # 0, a3 = 0, taking a1 = 1, then (2.5) implies agy = 0, (2.7) implies

asy = —a?y, (2.8) implies ags = —ay1, (2.9) implies asz = —aj1a13. We obtain
a1 1 a13
P=|-d —a;1 —ana3
0 0 0

Taking a11 = a, a;3 = 0. We obtain Pys. Taking a;; = 0, a;3 = a. We obtain Psg. Taking
a1l = 0, a1z = 0. We obtain P27. Taking ail = a, a1z = b. We obtain P55.

3 Solutions of CYBE in g X4 g

In this section, we give some solutions of CYBE in g X 44+ ¢* from the previous section. Let
(g, []) be a Lie algebra and 8: g — gl(V') be a representation of g. On the vector space
g @V, there is, natural Lie algebra structure (denoted by g xg V') given by

[z1 +v1, T2 + vo] = [w1, T2] + B(z1)v2 — B(T2)V1, r1,22 € g, v1,02 € V. (3.1)
Let 5*: g — gl(V*) be the dual representation of 8. A linear map P: V — g can be identified
as an element P in g @ V* C (g Xge V*) @ (g xg= V*) as follows. Let {vq, va, ---, v} be
a basis of V, and {vf, v5 ---, v} } be the dual basis in V*, that is, v}(v;) = d;;. Let
{e1, ea, -+, en} be a basis of g. Set

Since as a vector space, Hom(V, g) & g ® V*, then

m n

n
P=> P)@v;=> > aije;@v; C(gxp- V*) @ (gxpe V7). (3.2)
=1

i=1 j=1

For any tensor element r = Z a; @b; € V®V, denote r2l = Z b; ® a;.

3

Lemma 3.1  Let L be a Lie algebra. A linear map P: L — L is a Rota-Bazter operator
weight 0 if and only if r = P — P?' is a skew-symmetric solution of the CYBE in L X 4q+ L*.
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Let L be an algebra equipped with a bilinear product, its formal characteristic matrix is
defined by

n n
k k
E anvk E A1nVk
k=1 k=1

n n
2 : k } : k
Ap1 V6 -0 ApnVk
k=1 k=1
where {v1, va, -+, v, } is a basis of L and the multiplication

n
_§ : k
Viv; = aijvk.
k=1

For 3-dimensional Lie algebras g, let ey, e2, ez be the basis of g and e], €3, e3 be the dual
basis of ej, es, e3. Now we consider the adjoint representation ad: g — ¢l(g) of g and its
dual adjoint representation ad*: g — gl(g*) defined by

ad*(X) = —(adX)*, Xeg
Then, by (3.1), the characteristic matrix of 6-dimensional Lie algebra g X 44+ g* with respect
to the basis {e, f, h, e*, f*, h*} is

0 e1 0 —e5 0 0
—e 0 kes ef 0 —kej
0 —kes 0 0 0 ke (3.3)
es  —e] 0 0 0 0
0 0 0 0 0 0
0 ke —kes 0 0 O

Using Lemma 3.1 and relation (3.2), we can obtain a family of solutions of CYBE in g X g+ g*

through the Rota-Baxter operators on ¢ given in Theorem 2.1.

Theorem 3.1  The following tensors are solutions of the classical Yang-Baxter equation

in g Xqq+ g%, where a, b, ¢ are non-zero compler numbers.
r1 = aex ® e; +bey ® e — €5 @ aex — e @ beq,
ro = ae; @ e; +ber R es —e; ® aeq — e3 ® beq,
r3 = (ae; + bea) ® e5 — e5 @ (ae1 + bea),
T4 = ae; @ e5 — e; ® aeq,
rs = aes ® €5 — e5 @ aea,
Te = ae1 @ e; — e ® aeq,
T = Oa
rg = (ae; +bes) ® e + ceq ® e — es ® (aeq + bea) — €5 @ ceq,
rg = ex®@e; —e; R ea,
r10 = (ae; + e3) ® e — e @ (aeq + ea),

r11 = (ae; +bes +e3) R el +cep Qe — e @ (ae; + bes + e3) — €3 @ cey,
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r12 = (aex +e3) ® e + be; @ e — €5 @ (aex + e3) — €5 ® beq,
r13 = (ae1 +e3) ®e5 +bey @ e — e5 ® (aeq + e3) — e @ beq,
(aer + bea + e3) ® e — €5 @ (aey + bea + e3),

T14
* * * *

T15 = 3@ €y +ae; Qes — ey ®ez — ez Qaeq,

r16 = (aez +e3) ® e5 — €5 @ (aez + e3),

ri7 = (ae; +e3) ® e5 — €5 @ (ae + e3),

T = e3®e; — €5 ® es,

r19 = (—aes +e3) @ e + (—a262 +aes) @ez —e5 ® (—aezs +e3) —e3 ® (—a262 + aes),
b * 2 * * b
rog = Eel—aeg—i—eg ® e5 + (be; —a‘es + aez) es —es ® Eel—aeg—i—eg

— e} @ (bey — a’ey + aes),

To1 = €2 @ €] +aez el +bex ®es —e] ®ex — e ®aeg — e5  beg,

roo = (aeq + ) ® e} — (a’e; + aey) ® eh + (abey + bey) @ e — €} @ (aeq + e2)
+ €3 ® (a%e; + aeg) — e @ (abey + bey),

ro3 = (aei +e) ® e} — (a%e; + aey — bes) ® e — ef @ (aeq + ez)
+ e} ® (a®ey + aey — bes),

Tog = e2 Q€] +aex ®e; —e] ®ea — e R aeo,

Tos = €2 R €] + aes ® ey —e] ®ea — €5 @ aes,

ros = (aeq +e) ® e — (a’e; + aex) @ el — €} @ (aeq + ea) + € @ (a’e; + aes),

Tor = €2 Q€] — €] ® ea,

rog = (aeq +e) @ e} — (a’eq + aey — bes) ® b + (ace; + cex) ® el — € @ (aeq + e2)
+ €3 ® (a%e; + aeg — beg) — e} @ (ace; + cey),

rog = €3 @ e] + (aea + bez) @ e — e] ® e3 — e ® (aez + bes),

r30 = ez Q@ e} + (aeq + beg) @ ey — e ®esz — e R (aey + bes),

r31 = ez @ e] + (ae1 + bes) @ e — e] ® e3 — e ® (aey + bea),

T3o = e3 R el +aeg ®ey —e] ®ez — e @ aey,

T33 = e3 Qe +aex ®e; —e] ®ez — e5 R ae,

r3a = ez Q€] +aes®ey —e] ®ez — e R aes,

T35 = e3 Qe —e] ®es,

r36 = ez Q€] + (aey + beg + cez) @ e — €] ® ez — e R (aey + bes + ces),

b
r37 = (ae2 +e3) @ el — (beg + a63> ® €5 + (abegy + bes) ® e3 — €] ® (aez + e3)
* b *
+e5® | beg + Jes) e ® (abes + bes),

b
r3g = (aes +e3) el — e ® €5+ bey ® e5 — €] ® (aez + €3)
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39

T40

41

T42

743

T44

T45

T46

47

748

T49

50

51

52

53

T'54

* b *
+e3® _e1—e3 ® beq,
= (aez +e3) ®e] — e] ® (aea + e3),

. b c « %
= (aes +e3)®@e] — e + ces + ~es ® e5 + (bey + aces + ce3) ® e

—ef®(aeat+e3)+es® [ —e1 +cea+ —e3 | —ei ® (bey + aces + ce3),
a a

= (ae; +e3) ® e + (beg + ce3) @ e — (aey + aez) ® €3
— €} @ (aey + e3) — b @ (beg + ce3) + e} @ (a’e; + aes),
= (ae; +e3) ® e} + (bey + ce3) @ e — (aey + aez) ® €3
— €} @ (ae; + e3) — e @ (bey + ce3) + e} @ (a’e; + aes),
= (ae; +e3) ® e} + (bey + cex) @ e — (aey + aez) ® €
— €} @ (aey +e3) — e @ (bey + cea) + e} ® (a’eq + aes),
= (ae; +e3) ® e} + bez @ e — (a’e; + ae3) @ e
— €} @ (ae; + e3) — e @ bes + e} ® (ae; + aes),
= (ae; +e3) ® e} + be; @ e — (a’e; + ae3) @ e
— e} @ (ae1 + e3) — ey @bey + e} @ (ae; + aes),
= (ae; +e3) @ e} +bey ®@ e — (a’e; + ae3) @ e} — e} @ (ae; + e3)
— e @ beg + € @ (a®e; + ae3),
= (ae; +e3) ® e} — (a’e; + ae3) @ e} — e} @ (aey + e3) + e @ (a’ey + aes),
= (ae1 +e3) @ e} + (bey + cep + des) @ el — (a’er + ae3) @ €
— e} @ (aey + e3) — €3 @ (bey + cep + des) + e @ (aey + aes),
= (ae1 + bes + e3) ® €] + (acey + bees + ce3) ® €3
— ((a® + abc)ey + (ab + b*c)es + (a + be)es) @ e — e @ (aey + bey + e3)
— e @ (acey + beey + ce3) + €5 @ ((a® + abe)ey + (ab + b2c)ey + (a + be)es),
= (ae; + bey + e3) @ e} — (a’ey + abey + ae3) @ e — et @ (aey + bey + e3)
+ €3 @ (a%e; + abeg + aes),
= (kae; + ka’e3) ® €} 4+ bey @ b + (e1 + ae3) @ e} — e} @ (kae; + ka’es) — e @ bey
— e ® (eq + aes),
= (kae; + ka’e3) ® €} + bez @ b + (e + aes) ® e} — e} @ (kaey + ka’es) — € ® bes
—e5 ® (eq + aes),
= (kae; + ka’e3) ® €} + (e1 + ae3) ® e} — e} @ (kaey + ka’es)
— el ® (eq + aes),
= (kae; + ka®e3) ® €} + (bey + ce3) @ €5 + (e1 + aes3) ® e — e} @ (kaey + ka’es)
—e3 @ (bey + ce3) — €5 & (e1 + aes),
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rs5 = (aey + ea + bes) @ € — (a’ey + aeq + abes) ® e — el @ (aeq + ey + bes)
+ e} ® (a®ey + aey + abes).

One can check that all of the tensor above are solutions of the classical Yang-Baxter equation

in g Xeg g*.

4 Induced Left-symmetric Algebras from the Rota-Baxter
Operators of Weight 0 on g

A left-symmetric algebra structure on g is a bilinear product -: ¢ ® g — ¢ satisfying the

condition:

v (y-2)—(zy)z=y-(z-2)-(y )2 zyzcy (4.1)
Given a Lie algebra g, it is a fundamental problem to decide whether g admits a left-
symmetric product and to give a classification of such products (see [15]). As an application

of the Rota-Baxter operators on g, we can obtain the induced left-symmetric algebras from
the Rota-Baxter operators of weight 0 on g. The next lemma comes from [15].

Lemma 4.1  Let g be a Lie algebra and P: g — g be a Rota-Baxter operator of weight 0.

Define a new operation on g by

zxy=[P),y, =wycy
Then (g, *) is a left-symmetric algebra.

The following two theorems can be proved easily by a direct computation.

Theorem 4.1  In the sense of Lemma 4.1, the Rota-Baxter operators of weight 0 on g

obtained in Theorem 2.1 give the following left-symmetric algebras.

(1) ea xe1 = —aeq, eg *x e3 = —aes, €3 * e = e1;

(2) ea x ea = aeyq, e3 x eg = eq;

(3) ex xe1 = —eq, €3 x €9 = aey, ey k €3 = —eg3;

(4) eg xea = eq;

(5) €g * €] = —€1, €2 X 3 = —€3;

(6) ex *x ea = eq;

(8) ex x €1 = —bey, es * ea = aeq, e * e3 = —bes;

(9) e3 xe; = —eq, e3 * e3 = —e3;

(10) e3 x e1 = —eq, €3 * €3 = aeq, e3 x €3 = —e3;

(11) eg x €1 = —bey, eg x ea = aey + e3, €2 * e3 = —bes, e3 * ea = ceq;
(12) ea x €1 = —aeq, eg * €2 = e3, €3 * €3 = —aes, e3 x eg = beq;
(13) eg % e9 = aey + e3, e3 * eg = bey;

(14) eg x €1 = —beq, €2 x ea = aey + e3, eg * e3 = —bes;

(15) eq % e9 = e3, e3 * e = aeq;

(16) ez * €1 = —aeq, ez * €3 = €3, €3 * €3 = —aea;
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(17) ea x e9 = aey + e3;

(18) €9 * €3 = €3,

(19) e xe1 = aeq, ex xea = €3, e % €3 = aes, €3 * €] = a’eq, €3 * €y = aes, €3 * €3 = a’es;

b

(20) ex xe1 = aeq, eakeg = —561 +e3, egke3 = aes, e3*e] = a’eq, eg * ey = bey + aes,
es % e3 = a’es;

(21) e1 xe1 = —eq, €1 x e3 = —e3, €2 % 9 = aes, €3 * e; = —bey, e3 x e3 = —bes;

(22) e1xe; = —eq, e1xeg = aey, e1%e3 = —e3, ea*e] = ae], eakey = —a’e], exxe3 = aes,
e3 x e1 = —bey, e3 x eg = abeq, e3 x e3 = —beg;

(23) €1 €1 = —e1, €1 x €y = aey, €1 *k €3 = —€3, €3 *x €] = ey, €2 * €y = —a261 + beg,
€9 * €3 = aes;

(24) ey xe1 = —eq, €1 x €3 = —e3, €3 % €1 = —ae€y, €3 * €3 = —aes;

(25) e1 xe1 = —eyq, €1 x €3 = —e3, €2 * €3 = aes;

(26) e1*e; — —€1, e1*€ey = aep, €1 *€3 — —€3, €2*€1 — aeq, €a*xey = 70,261, €g*xe3 — aes;

(27) e1 xe1 = —eq, €1 x e3 = —eg3;

(28) €1 €1 = —e1, €1 x €y = aey, €1 *k g3 = —€3, €3 *x €] = aey1, €2 * €y = —a2€1 +b63,
€9 * €3 = aes, €3 *x €] = —cCcep, €3 x €g = acey, €z *x €3 = —Ce3;

[\

(29) e1 x ex = e3, ez x €1 = —aey, e x €2 = beg, ez * e3 = —aes;
(30
(31
(32
(33
(
(
(
(

) e1 % e3 = e3, €2 * ea = aey + bes;
)
)
)
34) e1 * ea = e3, €3 x €5 = aes;
)
)
)

€1 % ey = e3, €3 k€1 = —bey, eg * €0 = aeq, e x e3 = —beg;
€1 * €g = €3, €2 *x €9 = A€y,

€1 k¥ €y = €3, €2 X €] = —A€1, €2 X €3 = —AEL3;

35) e1 * eg = e3;
36 €] €y = €3, €2 X €1 = —bel, €2 *x €9 = ae] + ce3, €2 * €3 — —beg;
b
37) ey xe; = —aeq, e1kes = e3, e1%xe3 = —aeg, eakey = bey, eaxey = ——eg3, egkeg = beg,
a
e3 x e1 = —abeq, e3 x eo = beg, e3 x e3 = —abes;
(38) e1 xe1 = —aeq, ey xeg = €3, €1 x €3 = —aes, €z ¥ €3 = ——e1, €3 x €2 = bey;
a
(39) e1 xe1 = —aeq, e1 xeg = €3, €1 x €3 = —aes;
b c
(40) ey x ey = —aey, €1 xeg = €3, €1 * €3 = —AL3, €3 x €] = C€1, €3 * €3 = ——€] — —e€3,
a a
€9 * €3 = Cce3, €3 x €] = —acey, €3 * €x = bel + Cez, €3 * €3 — —Aaces;
(41) e;xeg = aey +e3, exke; = —bey, e xeg = ce3, eaxe3 = —bes, ez xea = —a’e; — aes;
(42) ey *x eg = aey + e3, ex x €1 = —bey, €9 * e3 = —bes, e3 * ea = —a’e; — aes;
(43) e1 xeg = aey +e3, eaxe; = —ceq, eak ey = beq, e xe3 = ces, €3k eg = —a’e; — aes;
(44) ey x eo = aey + e, ea x ea = beg, ez k eg = —a’e; — aes;
(45) eq x ea = aey + ez, ea x ea = bey, ez keg = —a’e; — aes;
(46) ey x eo = aey + e3, ea x 1 = —bey, ex x e3 = —bes, e3 x ey = —a’e; — aes;
(47) ey x eg = aey + e3, e3 * ea = —a’e; — aes;
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(48) e1 x e = aey + e3, €9 x €1 = —ceq, es x ea = bey + des, ex x e3 = —ces, €3 * eg =
—a2€1 — aes;

(49) e1 xe; = —bey, e1xea = aey +e3, egxez = —bes, eakey = —beey, eaxes = acey +ces,
eaxez = —bces, e3xe; = (ab+b%c)er, ezxes = —(abe+a?)e; —(a+be)es, ez*xez = (ab+b%c)es;

(50) e1xe1 = —bey, e1xea = aey+es, e1¥e3 = —bes, egxe; = abey, ezxea = —a’e; —aes,

es3 * e3 = abes.

Theorem 4.2  In the sense of Lemma 4.1, the Rota-Baxter operators of weight 0 on g
obtained in Theorem 2.2 give the following left-symmetric algebras.

(51) e x eg = kaey; — k2a2es, es x eg = beq, e3 % e5 = e1 — kaes;

(52) ey x eg = kaey — k%a’e3, eg x ea = —kbes, ez x ea = e1 — kaes;

(53) e1 x eg = kaey — k%a’es3, e3 * e3 = €1 — kaes;

(54) e x eg = kae; — k2a2es, eg x eg = be; — kces, e3 x ea = e — kaes;

(55) e1xe1 = —eq, epkeq = aeq —kbes, e1xe3 = kes, eaxe; = aeq, eaxey = —a’ey +kabes,
es * e3 = —kaes.

References

[1] Patera J, Sharp R, Winternitz P, Zassenhaus H. Invariants of real low dimension Lie algebras.
J. Math. Phys., 1976, 1'7: 986—994.
[2] Pei J, Bai C M, Guo L. Roto-Baxter operators on sl(2, C) and solutions of the classical Yang-
Baxter equation. J. Math. Phys., 2014, 55(2): 021701, 17pp.
[3] Wu L L, Wang M P, Cheng Y S. Rota-Baxter operators on 3-dimensional Lie algebras and the
classical R-matrices. Adv. Math. Phys., 2017, 2017: 6128102. Tpp.
[4] Fan S, Liu D, Wu Y, Cui L. Rota-Baxter operators of Lie algebras. J. Hebe: Norm. Univ. (Nat.
Sei.), 2014, 38(6): 541-544.
[6] Guo L, Keigher W. Baxter algebras and shuffle products. Adv. Math., 2000, 150: 117-149.
[6] An H H, Bai C M. From Rota-Baxter algebras to Pre-Lie algebras. J. Phy. A., 2008, 41(1):
015201, 19pp.
[7] Bai C M, Guo L, Ni X. Generalizations of the classical Yang-Baxter equation and O-operators.
J. Math. Phys., 2011, 52(6): 063515, 17pp.
[8] Ebrahimi-Fard K. Loday-type algebras and the Rota-Baxter relation. Lett. Math. Phys., 2002,
61: 139-147.
[9] Etingof P, Schedler T, Soloviev A. Set-theoretical solutions to the quantum Yang-Baxter equa-
tion. Duke Math. J., 1999, 100: 169-209.
[10] Belavin A, Drinfeld V. Solutions of classical Yang-Baxter equationa for simple Lie algebra.
Funct. Anal. Appl., 1982, 16: 159-180.
[11] Cheng Y S, Shi'Y Q. Lie bialgebra structures on the g-analog Virasoro-like algebras. Commun.
Alg., 2009, 37(4): 1264-1274.
[12] Semenov-Tian-Shansky M. What is a classical R-matrix? Funct. Anal. Appl., 1983, 17: 259
272.
[13] Bai C M. A unified algebraic approach to the classical Yang-Baxter equation. J. Phy. A., 2007,
40: 11073-11082.
[14] Li X, Hou D P, Bai C M. Rota-Baxter operators on pre-Lie algebras. J. Nonlinear Math. Phys.,
2007, 14(2): 269-289.
[15] Baues O. Left-symmetry algebras for gl(n). Trans. Amer. Math. Soc., 1999, 351(7): 2979—
2996.



