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Abstract: A unitary right R-module Mg satisfies acc on d-annihilators if for every
sequence (an)n of elements of R the ascending chain Annas(a1) C Annas(araz) C
Annys(aiazas) C -- - of submodules of Mg stabilizes. In this paper we first investigate
some triangular matrix extensions of modules with acc on d-annihilators. Then we
show that under some additional conditions, the Ore extension module M [z]g[z;a,0)
over the Ore extension ring R[z; a,d] satisfies acc on d-annihilators if and only if
the module Mpg satisfies acc on d-annihilators. Consequently, several known results
regarding modules with acc on d-annihilators are extended to a more general setting.
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1 Introduction

Throughout this paper all rings R are associative with identity and all modules Mp are
unitary right R-modules. The set of all positive integers is denoted by N,. Let a be
an endomorphism and ¢ an a-derivation of a ring R. We denote by R[x; a, 0] the Ore
extension whose elements are the polynomials over R, the addition is defined as usual and the
multiplication is subject to the relation za = a(a)x+9(a) for any a € R. Clearly, polynomial
rings R[z], skew polynomial rings R[z; «| and differential polynomial rings R[x; ¢] are special
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Ore extension rings. Given a right R-module Mg, we can make M|[z] into a right R[z; «, d]-
module by allowing polynomials from R[z; «, d] to act on polynomials in M[z] in the obvious
way, and apply the above twist whenever necessary. The verification that this defines a valid
R[z; o, §]-module structure on M x] is almost identical to the verification that R[z; «,d] is
a ring and it is straightforward (see [1]).

For an element a € R, Annys(a) = {m € Mg | ma = 0} denotes the annihilator of a in
Mpg. Following Frohn[?| a module My is said to satisfy acc on d-annihilators if for every
sequence (ayp), of elements of R, the ascending chain Annps(a;) C Annps(ajag) C -+ of
submodules of My stabilizes. If Rp satisfies acc on d-annihilators, then we say that the ring
R is a ring satisfying acc on d-annihilators. Clearly, strongly Laskerian modules satisfy acc
on d-annihilators, and if Mg satisfies acc on d-annihilators, so is every submodule of Mg
(see [2]). Visweswaran[®l showed that the zero-dimension rings with acc on d-annihilators
are exactly the perfect rings. So in order to characterize the perfect rings R, it is impor-
tant to consider the modules Ry with acc on d-annihilators. Hence find more examples
of modules with acc on d-annihilators is meaningful in module theory. It is well known
that, in the module theory literature, many surprising examples and counterexamples have
been produced via the triangular matrix extensions. So in this paper we first investigate
the relationship between the acc on d-annihilators property of Mz and that of the various
triangular matrix extension modules over Mg, and then obtain more examples of modules
with acc on d-annihilators.

Polynomial extension of modules with acc on d-annihilators was studied by Frohn. He
proved in [2] that if R is reduced and satisfies acc on d-annihilators, then the polynomial
ring R[X] for any set X of indeterminates also has acc on d-annihilators. We generalize this
result. In Section 3, we consider the acc on d-annihilators property of the Ore extension
modules M[z]g[z;q,5) Over the Ore extension rings R[z; o, 6]. We show that if Mp is an
(@, §)-compatible reduced module, then the Ore extension module M [x]gs; 5] satisfies acc
on d-annihilators if and only if Mp satisfies acc on d-annihilators. So the Frohn’s recent
work (see [2], Corollary 2.4]) is extended to a more generally setting.

2 Triangular Matrix Extension Modules

Let R be a ring and Mg a right R-module. Let

ail a2 A1n
0 ax -+ ao
Un(R) = : . : | aij € R
0 0 Ann
and

mir M2 - Mip

0 moy -+ mo,

Un(M): . . . |mij€MR
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Then U, (M) is a right U, (R)-module under usual matrix operations.

Proposition 2.1  Let R be a ring and Mp a right R-module. Then the following state-
ments are equivalent:

(1) Mg satisfies acc on d-annihilators;

(2) Un(M)y, (r) satisfies acc on d-annihilators.

Proof. (1) = (2). Suppose that Mg satisfies acc on d-annihilators. We proceed by induc-
tion on n to show that the right U, (R)-module U, (M) also satisfies acc on d-annihilators.

Let n = 2. Put
a; b
Ai< >’ i=1,2,---
0 C;

be a sequence of elements of Uz(R). Since Mg, satisfies acc on d-annihilators, there exists a
k € N4 such that for any positive integer [ > k,

Annys(arag - - ar) = Annpyr(arag - - ag -+ - ap)
and

Annps(ereg -+ cp) = Annpr(ereg - cp - - ¢p).
Consider the sequence (¢g4m )m of elements of R. By the condition that My satisfies acc on
d-annihilators, we can find a positive integer p € N such that for any ¢ > p,

Annps(Crt1Chi2 - Chrp) = ANNps(Cry1Cht2** Chtp " Chiq)-
Now we show that for any positive integer v € N,
AHHU2(M) (A1A2 e Ak+p) = AnnUz(M)(AlAQ e Ak+p e Ak+p+v)'

Y
z

o [ =Y ar b az by \ f Gkipr1 Dripia
0 =z 0 C1 0 Co 0 Ck4p+1

( Ta103 - Ggtptl  TU+ YC1C2 - - Chtptl )
b

0 ZC1C2 * * - Chgp41

x
Forv=1ifw= ( 0 ) € Anny, (ar)(A1Asz - Agypi1), then

where
U= 0102 Ohqpbhipt1 + G102 -+ Qyp—1OkypChppt1 + -

+ @102 - - Qb4 1Cr42CK43 * ** Chgpt1 + - -+ a1baczcs - - Crypt1 + bicacs - Crgpya-

Hence
x € Annps(araz - Ggypy1) = Annpy(aras -+ - agyp) = -+ = Annps(aras - - - ag),
and
z € Annps(cica - Crgpr1) = Annpg(cico - - Chgp) = -+ = Annpr(erca - - - cg).
Then

0=zu+ycica - Cript1

:x(a1a2...ak+pbk+p+l+...+a1a2...akbk+1ck+2...ck+p+1+...
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+ blCQCg R Ck+p+1) + Yycica - Ce4p+1

(@12 - Ak—10kCly1 - Chgpt1 + G1G2 - - - Q—2bk_1CKCRp1 -+ Cligpt1 + - -
+bicacs -+ - Chgpt1) F YC1C2 - - - Chtpt1

= [x(alag s ak,lbk + -+ b1€203 s Ck) + ycico - - Ck]Ck+1 © Ch4p+1-
Thus

[z(a1a2 - ak—1bk + - -+ bicacs - - - cx) + yeica - - - ¢
S AnnM(Ck+1Ck+2 s Ck+p+1) = Annjy, (ck+1ck+2 s Ck+p).

Hence

[@(arag - ap—1bg + -+ -+ bicacs - cx) +ycica - - CplCrpiChya - Chgp = 0.

By a routine computations, we obtain

r Yy a1 b1 a9 b2 Qf+p bk+p -0
0 =z 0 ¢ 0 e 0 Chtp '

Anng, iy (A1As - Apyprr) = Anng, ) (A1 Az - Aggyp).

Hence

Similarly, we can show that for any positive integer v € N,
Anng,ar)(A1Az - Agyp) = Anng, () (A1As - Apipro)-
Therefore Us (M) satisfies acc on d-annihilators.

Next we assume that the result is true for n — 1, and let

a;p Qi 0 A1y
i i
. 0 ay - ay, )
K2
Bn = . . . 5 i=1,2,---
0 0 .- qat

nn

be a sequence of elements of U, (R). In the following we show that
Anny, (ar)(By,) € Anny, () (B, By) C -+

stabilizes. Put

aj; ajy - aly,
S0 e a, B, C
B, = ) . ) = i ;
: : : 0 ay,
0 0o - a,
where B!, isa (n—1)x (n—1) upper triangular matrix and C* = (al,,, ab,,, - , aén_l)n)T

By the induction hypothesis, we can find a positive integer m € N such that for any s > m,
AnnUnfl(M)(B’}L—le B, )= AnnUn,—l(M)(B’}L—lB’}L—l o ne1)s

MEPREE -B™
1 2 s _ 1 2 m
ADDM (a‘nna‘nn e ann) - AnnM(annann e a’nn)’

and a positive integer u € N such that for any v > u,

m+1_m+2
nn nn

m4+1
nn

m—+v
nn

m+2

a nn

. a a m—&-u)-

Annys(a m

) = AnnM(a e Q
Then by using the same way as above, we can show that for any positive integer w € N,

AnnUn(M) (B;Bi Tt Bnm+u+w) = AnnUn(M)(BqllBi Tt Bnm+u)~
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Hence
AHHU”(M) (B’}L C AnnUn(M) (B’}LBi) c---
stabilizes. Therefore U, (M )y, (r) satisfies acc on d-annihilators by induction.
(2) = (1). It is trivial.
The proof is completed.

Let L, (R) denote the lower triangular matrix ring over R, and let

my 0 - 0
mgr M2 - 0

Ln(M): . . . \mijEMR
Mp1 Mp2 - Mpn

Then L, (M) is a right L,,(R)-module under usual matrix operations.

Corollary 2.1  The following statements are equivalent:
(1) Mg satisfies acc on d-annihilators;

(2) Ln(M)r, (r) satisfies acc on d-annihilators.

Proof. Tt is similar to the proof as given in the Proposition 2.1.
Let R be a ring and Mg a right R-module. Let

a aiz -+ Qinp
0 a “e. Ao
Sn(R) = . a, a;; € R,
0 O a
mi2 Min
0 m Mo
Sp(M) = . m, my; € Mg p,
0 0 m
aq as ce. an,
0 aq PP a’r’L—l
Gn(R) = . |a; € R 3,
0 0 al
mi; Mo my
O mi “ee mn_l
Gn(M) = . . . ‘ m; € MR
0 o ... my

The following two corollaries give more examples of modules satisfying acc on d-annihilators.

Corollary 2.2  The following statements are equivalent:
(1) The right R-module Mg satisfies acc on d-annihilators;
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(2) The right S, (R)-module S, (M) satisfies acc on d-annihilators;
(3) The right G,,(R)-module G, (M) satisfies acc on d-annihilators.

Proof. Employing the same method in the proof of Proposition 2.1, we complete the proof.

Corollary 2.3  The following statements are equivalent:
(1) R satisfies acc on d-annihilators;

2) U,(R) satisfies acc on d-annihilators;

w

)
) Ln(R) satisfies acc on d-annihilators;
4) S, (R) satisfies acc on d-annihilators;
5) Gn(R) satisfies acc on d-annihilators;
6)
7)

The trivial extension R R of R by R satisfies acc on d-annihilators;

o~~~ o~ o~ o~

Rx]/(x™) satisfies acc on d-annihilators.

Proof. The equivalence (1) < (2) follows by Proposition 2.1. The equivalence (1) < (3)
follows by Corollary 2.1. The equivalence (1) < (4), (1) < (5) and (1) < (6) follow
by Corollary 2.2. The equivalence (1) < (7) follows by Corollary 2.2 and the fact that
R[x]/(2") = G (R).

Let R be a ring and Mg a right R-module. Let

a;; O 0
W(R) = as1 Q29 @23 |a;j €ER >,
0 0 ass
mi1 0 0
W(M) = ma1 Maoa  Mas | mi; € Mg
0 0 mss

Then W (M) is a right W(R)-module under usual matrix operations. In fact, W (M) pos-
sesses the similar form of both the lower triangular matrix module and the upper triangular
matrix module. A natural problem asks if the acc on d-annihilators property of such a
module coincides with that of Mpg. This inspire us to consider the acc on d-annihilators

property of W(M ) (g)-

Proposition 2.2  Let R be a ring and Mg a right R-module. Then the following state-
ments are equivalent:
(1) Mg satisfies acc on d-annihilators;

(2) W(M)w g satisfies acc on d-annihilators.

Proof. It suffices to show that (1) = (2). Let
a; 0 O
A= =z b v |, 1=1,2,---
0 0 ¢
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be a sequence of elements of W(R). Since Mg satisfies acc on d-annihilators, there exists
some k € N such that for all positive integer [ > k,
Annps(aras - -ag) = Annys(aras - - ag - - - ap),
Annps(bibg -+ -br) = Annpg(bibg - - by -+ - by),
Annps(ciea -+ e) = Annpy(ciea -k -+ ).
Consider the sequences (ag+n)ns (bk+n)n and (Cxin )n of elements of R, there exists a p € N4
such that for all ¢ > p,
Annpg (k4142 - Atp) = ADag(Qg410k42 * Qhotp *** Ahotg),
Annpg(bg1brt2 - brtp) = Annag(bp1brt2 - bkgp -+ bitq)s
Annag(Ch+1Ck+2** Chtp) = ANDN (Ch1Ck42 ** Chogp * ** Chirtq)-
Now we show that for any positive integer v € N,
AnnW(M)(AlAQ T Ak-i-p) = AnnW(M)(A1A2 o Apgp 'Ak+p+v)a
which implies that Annyy () (A1) € Annyy (A1 Az) C -+ - stabilizes. First, we show that
Annyy(a) (A1 Az - Apyp) = Annw ) (A1 As - Agyp Apgpra).

d 0 0
Suppose that X = | s e t € Annyy () (A1As - AppAgypi1). Then
00 f
0=XA1Ay  AppApipi
d 0 0 ai 0 0 Apiprr O 0
= | s et 1 bioyr || Traptr Dkaptl Yktpra
00 f 0 0 o 0 0 Chapsr
dajas - Qpypt1 0 0

= 50102 - - Qgypt1 + €U ebiby- - bpipi1 er+teicac - Crgpr1 |
0 0 f6162 c ot Chp+l
where

U= X123 Qgypt1 T 010203 Apypi1 + -+ 01bo b 1Tk Qpyprr o0
+ b1b2 b p—1ThtpAhtp+1 + 0102 bt pTtpi,
r=b1bpgpYktpr1 + 01 Orgp1Yk4pChaprr + - b1 D1 YkCha1 o Chgpyr + oo
+ b1yacscy - Chk4p+1 T Y1€2C3 * * - Chtp+1-
Hence
d € Annys(aras - - apqpr1) = Annps(aras - - ag),
e € Annps(bibe - - byppt1) = Annps(brbe - - - by),
feAnnpy(cica - crypr1) = Annpr(crea -« - cp).
By using the same way as the proof of Proposition 2.1, we also have
sajag - - a + e(xrrasas - - ap + biraaszay - ap + -+ biby - bp_1xp)

€ Annpy(ar41ar+2 *  Qhgpt1) = Annp(Qr1Qrt2 - Qrip)
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and
e(biby - - br—1yr + biba - - br—oyr—1ck + - - + biyacs - - - cp +yicacs - cp) +terca g
€ Annps(Cry1Cky2 - Chppt1) = ANNpr(Cry1Cht2 - -+ Chtp)-
Then by a routine computations, we can show that
XA Ay Apyp =0,
and so
Annyy (ar)(A1As - Apypi1) = Annyy ) (Ar1As - Apyp).
Similarly, we can show that
Annyy () (A1 Az -+ Apyy) = Annyy (i) (A1 Az Apyp Apgpyn)
= Anny(a)(A1Az - A p Ak pr1 Akypr2)

Therefore W (M) satisfies acc on d-annihilators.

Let R be a ring and Mg a right R-module. Then under usual matrix operations, we

M 0 0 R 0 O
obtain that W!(M) = 0 M 0 is a right W1(R) = 0 R O module,
M M M R R R
M 0 M R 0 R
W2(M) = 0 M M | isa right W*R) = 0 R R | module, W3(M) =
0o 0 M 0 0 R
0
0 module, and W?*(M) =
R

M
0

M

M
0
0

oo oRf o
S oK ZReo

is a right W3(R) = (
0
R
0

N oy WO

0
R
0
) module.

Proposition 2.3  Let R be a ring and Mg a right R-module. Then the following state-
ments are equivalent:

R
is a right W4(R) = | 0
0

(1) The right R-module Mg satisfies acc on d-annihilators;

(2) The right WY(R)-module W (M) satisfies acc on d-annihilators;
(3) The right W2(R)-module W?2(M) satisfies acc on d-annihilators;
(4) The right W3(R)-module W3(M) satisfies acc on d-annihilators;
(5) The right W*(R)-module W*(M) satisfies acc on d-annihilators.

Proof. By analogy with the proof of Proposition 2.2, we complete the proof.

Corollary 2.4  Let R be a ring. Then the following statements are equivalent:
(1) R satisfies acc on d-annihilators;
(2) W(R) satisfies acc on d-annihilators;
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(3) W(R) satisfies acc on d-annihilators;
(4) W?2(R) satisfies acc on d-annihilators;
(5) W3(R) satisfies acc on d-annihilators;
(6) W*(R) satisfies acc on d-annihilators.

Example 2.1 Let Z, = {0, 1, 2, 3} denote the ring of integers modulo 4. One directly
verifies that Z, is a commutative ring with acc on d-annihilators. According to Corollaries
2.3 and 2.4, the rings

Zi 0 0 Zi 0 0 Zi 0 0
Z, Za 0 |, 0 z, 0 |, Ty Zs Za
Ty T4 7 Zi 0 Zu 0 0 Z

are all rings satisfying acc on d-annihilators.

[ a ring R is right strongly Hopfian if the chain of right

Following Hamimou et al.
annihilators Anng(a) C Anng(a?) C --- stabilizes for each a € R. Based on Corollaries 2.3

and 2.4, we can derive the following:

Corollary 2.5 Let R be a ring. If R satisfies acc on d-annihilators, then the following
hold:
1

&

(R) is a right strongly Hopfian ring;
(

[\
t~

n(R) is a right strongly Hopfian ring;

I =

(R) is a right strongly Hopfian ring;
Y(R) (i =1,2,3,4) is a right strongly Hopfian ring;
w(R) is a right strongly Hopfian ring;

o Ot
NN AN N NN N NI
n

Q

n(R) is a right strongly Hopfian ring;
The trivial extension Rt<t R of R by R is a right strongly Hopfian ring;

AA/‘\A/’J&\/-\/-\/‘\

R[z]/(x™) is a right strongly Hopfian ring.

3 Ore Extension Modules
In the Ore extension R[z;«,d], we have
n
2"a = Z f(a)z’ (n>0),
i=0

where fI' € End(R,+) denote the map which is the sum of all possible words in «, ¢ built
with 4 letters o and n — i letters d (see [5]).
The following definition appears in [1].

Definition 3.1  Given a module Mg, an endomorphism a.: R — R and an a-derivation
0: R — R, we say that Mg is a-compatible if for each m € Mg and r € R, one has
mr = 0 < ma(r) = 0. Moreover, we say that Mg is §-compatible if for each m € Mg and
r € R, one has mr =0 = md(r) = 0. If Mg is both a-compatible and §-compatible, we say
that Mg is («, d)-compatible.
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Note that if My is a-compatible (resp. d-compatible), then Mg is a‘-compatible (resp.
§i-compatible) for all i > 1. It is clear that if Mp is a-compatible (resp. dJ-compatible),
then so is any submodule of Mpg. The following definition appears in [6].

Definition 3.2  Let Mg be a right R-module. We say that Mpg is reduced, if, for any
m € Mpr and any a € R, ma = 0 implies mRN Ma = 0.

Clearly, if Mg is reduced, then for all m € Mg and a € R, ma = 0 implies mRa = 0 and
ma? = 0 implies ma = 0.
As a immediate consequence of Definitions 3.1 and 3.2, we obtain the following lemma.

Lemma 3.1  Let Mg be an («,
(1) ma =0 if and only if ma™(a) = 0, where n is a positive integer;
(2) mab =0 implies mf!(a)fL(b) = 0;

(3) mab =0 implies mba =0 and mRaRb = 0.

8)-compatible reduced module. Then the following hold:
’I‘L(a

The next lemma is known and very useful, we leave the proof for the reader.

Lemma 3.2  Let Mg be a reduced module and X = {a1, a2, -+ ,a,} C R be a finite subset
of R. Then for any m € Mgr, mX = 0 if and only if m(Ra1R + RasR+ -+ + Ran,R) = 0,
where Ra1 R+ RasR + - - - 4+ Ra, R denotes the ideal of R generated by aq, as, -+ , Gp.

Lemma 3.3  Let R be a ring and Mpr a reduced module satisfying acc on d-annihilators.
Then for every sequence (An)n of finitely generated ideals of R, the ascending chain
Annps(Ar) C Anny (A1 As) C - -+ stabilizes.

Proof. Since Mp is reduced, for any m € Mg and any a, b € R, by Lemma 3.1, mab =0
implies mba = 0 and mRaRb = M RbRa = 0. Then similar to the proof of Theorem 2.3(b)

in [2], we complete the proof.

Proposition 3.1  Let a be an endomorphism and § an «-derivation of a ring R. If Mg
is an («, 0)-compatible reduced module, then the following statements are equivalent:

(1) Mg satisfies acc on d-annihilators;

(2) The right R[x;a, §]-module M|z] satisfies acc on d-annihilators.

Proof. (1) = (2). For any f(z) = Y a;2° € R[z;a, 6], we denote by Ay the ideal of R
i=0

generated by the coefficients of f(z). Suppose that f(z) = Y a;2* and g(z) = Y bja’ be
i=0 §=0

two polynomials in R[z; c,d]. We first show that Annp(ArA,) = Annps(Aysg). Note that

m n m+n m
fla)g(x) = (Zaw) (ZW) = ( ) (Zaif;wt)))x’“.

k=0 s+t=k 1=s
If € Annp(AfAy), then
ra;b; =0, 0<1<m, 0<5<n.
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Since Mg is («, §)-compatible, by Lemma 3.1, we have
raifi(b) =0, 0<i<m, 0<t<n, s<i,
and so .
( > (Zaifi(bt)» =0, 0<k<m+m

stt=k \ i=s
Hence by Lemma 3.2, we obtain 7 € Annp;(Ay,) and so Annp(ApAy) C Anny(Aypg). We
now turn our attention to proving Anny;(AyA,) O Annp(Ag,). Let r € Annp(Ay,). Then
we have the following system of equations:

7“< ) (iaifsi(bt)>>:0, k=0,1,2- ,m+n.

s+t=k 1=s
For k = m + n, we have

rama™ (b,) = 0.

Then by Lemma 3.1, we obtain

ramby, = 0.

For k =m +n — 1, we have
(™ (by—1) + @pm_10™ (b)) + am f7_ 1 (by)) = 0. (3.1)
Multiplying (3.1) on the right side by a,,, then by Lemma 3.1, we obtain
rama™ (bn—1)am =0,
and so

TG bp_1am = 0.

Since Mg is reduced, we have

Tambn—1 = 0.

Note that ra,,b, = 0 implies ra,, fi?_;(b,) = 0 and ra,,b,—1 = 0 implies ra,,a™ (b,—1) = 0.
Thus (3.1) becomes

P10 (by) = 0.

Then by Lemma 3.1, we have
T@pp—1b, = 0.

For k = m +n — 2, we have

m m

r(ama™(bn-2) + Y aifpo1(ba1) + Y aifr_a(ba)) =0. (3.2)
i=m—1 i=m—2

Multiplying (3.2) on the right side by a,, and using Lemma 3.1, we obtain
70 (bp—2)am = 0,
and so

T bp—2a, = 0.

Since My is reduced, we have

T@mbp_o = 0.
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Note that 7a,,by,—2 = 0 implies ra,, ™ (by,—2) = 0, ramb,—1 = 0 implies ra, 771 (bp—1) = 0,
ramb, = 0 implies ra,,a™(b,) = 0 and ra,,_1b, = 0 implies ra,;,_; :,?__21 (b,) = 0. Thus
(3.2) becomes

P(am—12™  (bp_1) + am_2a™ %(b,)) = 0. (3.3)

Multiplying (3.3) on the right side by a,,—1, then by Lemma 3.1, we can show that
TApm—_1bn_1 = 0.
Hence (3.3) becomes
T(megam72(bn) =0.

Thus

TQyy—2b, = 0.

Continuing this procedure yields that
razb; =0, 0<i1<m, 0<j5<n.

m n
Thus, for each ) ma;u; € Ay, Y sjbjv; € Ay, it is easy to see that
i=0 §=0

r(imaiui> (i:é’jijj> =0.
i=0 7=0

Hence r € Anny (AfA,) and so

Annpr(Arg) € Annp(ArAy).
Therefore Annps(Afy) = Annp(ApAy) is proved. So by Lemma 3.3, it suffices to prove that
Ann(f(z)) = Ann(f(x)g(x)) in M[z] whenever Ann(Ay) = Ann(Ay,) in Mp. Let f(z) =

n

Xilo a.z”, f(x)g(xz) = Y ¢ja7 € R[z;a,d] and m(z) = an: mixt € Annpyi,)(f(2)g(x)). Then

3=0 1=0
m n m+n m
0 =m(z)(f(z)g(z)) = (me> (chwj> = ( > (Zmifﬁ(ct)>>xk~
=0 7=0 k=0 s+t=k i=s

Thus we obtain a system of equations:

Z (imzf;(ct)>07 k:0317"'am+n'

s+t=k =8
By using the same way as above, we can show that

m;c; = 0, 0<t<m, 0<j5<n.
Then by Lemma 3.2, we obtain
m; € Annps(Agg) = Annpr(Ay), 0<i<m.
Hence
mia, = 0, 0<1<m, 0<r<np.

Then by a routine computations we can show that

m(x)f(z) =0.

Hence m(x) € Anny,(f(2)) and so
Ann () (f(2)) = Ann ) (f (2)g(2)).
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Therefore M [x] satisfies acc on d-annihilators.
(2) = (1). Note that for any a € R, Annys(a) = Annysp,y(a) N M. Hence the proof of
(2) = (1) is trivial.

Corollary 3.1  Let R be a ring and Mg a reduced right R-module. Then we have the
following results:

(1) Let a be an endomorphism of R. If Mg is a-compatible, then the skew polynomial
module M[x] over the skew polynomial ring R[x;a] satisfies acc on d-annihilators if and
only if Mg satisfies acc on d-annihilators;

(2) Let § be a derivation of R. If Mg is §-compatible, then the differential polynomial
module M|x] over the differential ring R[x;d] satisfies acc on d-annihilators if and only if
Mpg satisfies acc on d-annihilators.

Corollary 3.2  Let R be a ring. If R is an («,d)-compatible reduced ring, then the Ore
extension ring R[z;«,d] satisfies acc on d-annihilators if and only if R satisfies acc on
d-annihilators.

The following corollary is a generalization of Corollary 2.4(iii) in [2].

Corollary 3.3  Let R be a reduced ring. Then the polynomial ring R[z] satisfies acc on
d-annihilators if and only if R satisfies acc on d-annihilators.

We show that if My is («, d)-compatible and reduced, then the right R[z;«, §]-module
M x] satisfies acc on d-annihilators if and only if Mp satisfies acc on d-annihilators (see
Proposition 3.1). Let Mg be a module with acc on d-annihilators. If My does not be («, )-
compatible or not be reduced, can one provide a counterexample that the Ore extension
module M[z]g[z;q,5) does not has acc on d-annihilators? We do not know the answer and
thus conclude with the following open problem:

Question 3.1 Let Mg be a module with acc on d-annihilators. If Mg is not («,d)-
compatible or not reduced, does there exist an Ore extension module M|[z] over the Ore
extension ring R|[x; «, 0] that does not has acc on d-annihilators?
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