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Abstract: A unitary right R-module MR satisfies acc on d-annihilators if for every

sequence (an)n of elements of R the ascending chain AnnM (a1) ⊆ AnnM (a1a2) ⊆
AnnM (a1a2a3) ⊆ · · · of submodules ofMR stabilizes. In this paper we first investigate

some triangular matrix extensions of modules with acc on d-annihilators. Then we

show that under some additional conditions, the Ore extension module M [x]R[x;α,δ]

over the Ore extension ring R[x; α, δ] satisfies acc on d-annihilators if and only if

the module MR satisfies acc on d-annihilators. Consequently, several known results

regarding modules with acc on d-annihilators are extended to a more general setting.
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1 Introduction

Throughout this paper all rings R are associative with identity and all modules MR are

unitary right R-modules. The set of all positive integers is denoted by N+. Let α be

an endomorphism and δ an α-derivation of a ring R. We denote by R[x; α, δ] the Ore

extension whose elements are the polynomials over R, the addition is defined as usual and the

multiplication is subject to the relation xa = α(a)x+δ(a) for any a ∈ R. Clearly, polynomial

rings R[x], skew polynomial rings R[x; α] and differential polynomial rings R[x; δ] are special
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Ore extension rings. Given a right R-module MR, we can make M [x] into a right R[x; α, δ]-

module by allowing polynomials from R[x; α, δ] to act on polynomials in M [x] in the obvious

way, and apply the above twist whenever necessary. The verification that this defines a valid

R[x; α, δ]-module structure on M [x] is almost identical to the verification that R[x; α, δ] is

a ring and it is straightforward (see [1]).

For an element a ∈ R, AnnM (a) = {m ∈ MR | ma = 0} denotes the annihilator of a in

MR. Following Frohn[2], a module MR is said to satisfy acc on d-annihilators if for every

sequence (an)n of elements of R, the ascending chain AnnM (a1) ⊆ AnnM (a1a2) ⊆ · · · of

submodules of MR stabilizes. If RR satisfies acc on d-annihilators, then we say that the ring

R is a ring satisfying acc on d-annihilators. Clearly, strongly Laskerian modules satisfy acc

on d-annihilators, and if MR satisfies acc on d-annihilators, so is every submodule of MR

(see [2]). Visweswaran[3] showed that the zero-dimension rings with acc on d-annihilators

are exactly the perfect rings. So in order to characterize the perfect rings R, it is impor-

tant to consider the modules RR with acc on d-annihilators. Hence find more examples

of modules with acc on d-annihilators is meaningful in module theory. It is well known

that, in the module theory literature, many surprising examples and counterexamples have

been produced via the triangular matrix extensions. So in this paper we first investigate

the relationship between the acc on d-annihilators property of MR and that of the various

triangular matrix extension modules over MR, and then obtain more examples of modules

with acc on d-annihilators.

Polynomial extension of modules with acc on d-annihilators was studied by Frohn. He

proved in [2] that if R is reduced and satisfies acc on d-annihilators, then the polynomial

ring R[X] for any set X of indeterminates also has acc on d-annihilators. We generalize this

result. In Section 3, we consider the acc on d-annihilators property of the Ore extension

modules M [x]R[x;α,δ] over the Ore extension rings R[x; α, δ]. We show that if MR is an

(α, δ)-compatible reduced module, then the Ore extension module M [x]R[x;α,δ] satisfies acc

on d-annihilators if and only if MR satisfies acc on d-annihilators. So the Frohn’s recent

work (see [2], Corollary 2.4]) is extended to a more generally setting.

2 Triangular Matrix Extension Modules

Let R be a ring and MR a right R-module. Let

Un(R) =




a11 a12 · · · a1n

0 a22 · · · a2n
...

...
...

0 0 · · · ann

 | aij ∈ R


and

Un(M) =




m11 m12 · · · m1n

0 m22 · · · m2n

...
...

...

0 0 · · · mnn

 | mij ∈ MR

 .
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Then Un(M) is a right Un(R)-module under usual matrix operations.

Proposition 2.1 Let R be a ring and MR a right R-module. Then the following state-

ments are equivalent:

(1) MR satisfies acc on d-annihilators;

(2) Un(M)Un(R) satisfies acc on d-annihilators.

Proof. (1) ⇒ (2). Suppose that MR satisfies acc on d-annihilators. We proceed by induc-

tion on n to show that the right Un(R)-module Un(M) also satisfies acc on d-annihilators.

Let n = 2. Put

Ai =

(
ai bi

0 ci

)
, i = 1, 2, · · ·

be a sequence of elements of U2(R). Since MR satisfies acc on d-annihilators, there exists a

k ∈ N+ such that for any positive integer l > k,

AnnM (a1a2 · · · ak) = AnnM (a1a2 · · · ak · · · al)
and

AnnM (c1c2 · · · ck) = AnnM (c1c2 · · · ck · · · cl).

Consider the sequence (ck+m)m of elements of R. By the condition that MR satisfies acc on

d-annihilators, we can find a positive integer p ∈ N+ such that for any q > p,

AnnM (ck+1ck+2 · · · ck+p) = AnnM (ck+1ck+2 · · · ck+p · · · ck+q).

Now we show that for any positive integer v ∈ N+,

AnnU2(M)(A1A2 · · ·Ak+p) = AnnU2(M)(A1A2 · · ·Ak+p · · ·Ak+p+v).

For v = 1, if w =

(
x y

0 z

)
∈ AnnU2(M)(A1A2 · · ·Ak+p+1), then

0 =

(
x y

0 z

)(
a1 b1

0 c1

)(
a2 b2

0 c2

)
· · ·

(
ak+p+1 bk+p+1

0 ck+p+1

)

=

(
xa1a2 · · · ak+p+1 xu+ yc1c2 · · · ck+p+1

0 zc1c2 · · · ck+p+1

)
,

where

u = a1a2 · · · ak+pbk+p+1 + a1a2 · · · ak+p−1bk+pck+p+1 + · · ·

+ a1a2 · · · akbk+1ck+2ck+3 · · · ck+p+1 + · · ·+ a1b2c3c4 · · · ck+p+1 + b1c2c3 · · · ck+p+1.

Hence

x ∈ AnnM (a1a2 · · · ak+p+1) = AnnM (a1a2 · · · ak+p) = · · · = AnnM (a1a2 · · · ak),
and

z ∈ AnnM (c1c2 · · · ck+p+1) = AnnM (c1c2 · · · ck+p) = · · · = AnnM (c1c2 · · · ck).
Then

0 = xu+ yc1c2 · · · ck+p+1

= x(a1a2 · · · ak+pbk+p+1 + · · ·+ a1a2 · · · akbk+1ck+2 · · · ck+p+1 + · · ·
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+ b1c2c3 · · · ck+p+1) + yc1c2 · · · ck+p+1

= x(a1a2 · · · ak−1bkck+1 · · · ck+p+1 + a1a2 · · · ak−2bk−1ckck+1 · · · ck+p+1 + · · ·

+ b1c2c3 · · · ck+p+1) + yc1c2 · · · ck+p+1

= [x(a1a2 · · · ak−1bk + · · ·+ b1c2c3 · · · ck) + yc1c2 · · · ck]ck+1 · · · ck+p+1.

Thus

[x(a1a2 · · · ak−1bk + · · ·+ b1c2c3 · · · ck) + yc1c2 · · · ck]

∈ AnnM (ck+1ck+2 · · · ck+p+1) = AnnM (ck+1ck+2 · · · ck+p).

Hence

[x(a1a2 · · · ak−1bk + · · ·+ b1c2c3 · · · ck) + yc1c2 · · · ck]ck+1ck+2 · · · ck+p = 0.

By a routine computations, we obtain(
x y

0 z

)(
a1 b1

0 c1

)(
a2 b2

0 c2

)
· · ·

(
ak+p bk+p

0 ck+p

)
= 0.

Hence

AnnU2(M)(A1A2 · · ·Ak+p+1) = AnnU2(M)(A1A2 · · ·Ak+p).

Similarly, we can show that for any positive integer v ∈ N+,

AnnU2(M)(A1A2 · · ·Ak+p) = AnnU2(M)(A1A2 · · ·Ak+p+v).

Therefore U2(M) satisfies acc on d-annihilators.

Next we assume that the result is true for n− 1, and let

Bi
n =


ai11 ai12 · · · ai1n
0 ai22 · · · ai2n
...

...
...

0 0 · · · ainn

 , i = 1, 2, · · ·

be a sequence of elements of Un(R). In the following we show that

AnnUn(M)(B
1
n) ⊆ AnnUn(M)(B

1
nB

2
n) ⊆ · · ·

stabilizes. Put

Bi
n =


ai11 ai12 · · · ai1n
0 ai22 · · · ai2n
...

...
...

0 0 · · · ainn

 =

(
Bi

n−1 Ci

0 ainn

)
,

whereBi
n−1 is a (n−1)×(n−1) upper triangular matrix andCi = (ai1n, a

i
2n, · · · , ai(n−1)n)

T.

By the induction hypothesis, we can find a positive integer m ∈ N+ such that for any s > m,

AnnUn−1(M)(B
1
n−1B

2
n−1 · · ·B

s
n−1) = AnnUn−1(M)(B

1
n−1B

1
n−1 · · ·B

m
n−1),

AnnM (a1nna
2
nn · · · asnn) = AnnM (a1nna

2
nn · · · amnn),

and a positive integer u ∈ N+ such that for any v > u,

AnnM (am+1
nn am+2

nn · · · am+v
nn ) = AnnM (am+1

nn am+2
nn · · · am+u

nn ).

Then by using the same way as above, we can show that for any positive integer w ∈ N+,

AnnUn(M)(B
1
nB

2
n · · ·B

m+u+w
n ) = AnnUn(M)(B

1
nB

2
n · · ·B

m+u
n ).
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Hence

AnnUn(M)(B
1
n ⊆ AnnUn(M)(B

1
nB

2
n) ⊆ · · ·

stabilizes. Therefore Un(M)Un(R) satisfies acc on d-annihilators by induction.

(2) ⇒ (1). It is trivial.

The proof is completed.

Let Ln(R) denote the lower triangular matrix ring over R, and let

Ln(M) =




m11 0 · · · 0

m21 m22 · · · 0
...

...
...

mn1 mn2 · · · mnn

 | mij ∈ MR

 .

Then Ln(M) is a right Ln(R)-module under usual matrix operations.

Corollary 2.1 The following statements are equivalent:

(1) MR satisfies acc on d-annihilators;

(2) Ln(M)Ln(R) satisfies acc on d-annihilators.

Proof. It is similar to the proof as given in the Proposition 2.1.

Let R be a ring and MR a right R-module. Let

Sn(R) =




a a12 · · · a1n

0 a · · · a2n
...

...
...

0 0 · · · a

 | a, aij ∈ R

 ,

Sn(M) =




m m12 · · · m1n

0 m · · · m2n

...
...

...

0 0 · · · m

 | m, mij ∈ MR

 ,

Gn(R) =




a1 a2 · · · an

0 a1 · · · an−1

...
...

...

0 0 · · · a1

 | ai ∈ R

 ,

Gn(M) =




m1 m2 · · · mn

0 m1 · · · mn−1

...
...

...

0 0 · · · m1

 | mi ∈ MR

 .

The following two corollaries give more examples of modules satisfying acc on d-annihilators.

Corollary 2.2 The following statements are equivalent:

(1) The right R-module MR satisfies acc on d-annihilators;
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(2) The right Sn(R)-module Sn(M) satisfies acc on d-annihilators;

(3) The right Gn(R)-module Gn(M) satisfies acc on d-annihilators.

Proof. Employing the same method in the proof of Proposition 2.1, we complete the proof.

Corollary 2.3 The following statements are equivalent:

(1) R satisfies acc on d-annihilators;

(2) Un(R) satisfies acc on d-annihilators;

(3) Ln(R) satisfies acc on d-annihilators;

(4) Sn(R) satisfies acc on d-annihilators;

(5) Gn(R) satisfies acc on d-annihilators;

(6) The trivial extension R ◃▹ R of R by R satisfies acc on d-annihilators;

(7) R[x]/(xn) satisfies acc on d-annihilators.

Proof. The equivalence (1) ⇔ (2) follows by Proposition 2.1. The equivalence (1) ⇔ (3)

follows by Corollary 2.1. The equivalence (1) ⇔ (4), (1) ⇔ (5) and (1) ⇔ (6) follow

by Corollary 2.2. The equivalence (1) ⇔ (7) follows by Corollary 2.2 and the fact that

R[x]/(xn) ∼= Gn(R).

Let R be a ring and MR a right R-module. Let

W (R) =


 a11 0 0

a21 a22 a23

0 0 a33

 | aij ∈ R

 ,

W (M) =


 m11 0 0

m21 m22 m23

0 0 m33

 | mij ∈ MR

 .

Then W (M) is a right W (R)-module under usual matrix operations. In fact, W (M) pos-

sesses the similar form of both the lower triangular matrix module and the upper triangular

matrix module. A natural problem asks if the acc on d-annihilators property of such a

module coincides with that of MR. This inspire us to consider the acc on d-annihilators

property of W (M)W (R).

Proposition 2.2 Let R be a ring and MR a right R-module. Then the following state-

ments are equivalent:

(1) MR satisfies acc on d-annihilators;

(2) W (M)W (R) satisfies acc on d-annihilators.

Proof. It suffices to show that (1) ⇒ (2). Let

Ai =

 ai 0 0

xi bi yi

0 0 ci

 , i = 1, 2, · · ·
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be a sequence of elements of W (R). Since MR satisfies acc on d-annihilators, there exists

some k ∈ N+ such that for all positive integer l > k,

AnnM (a1a2 · · · ak) = AnnM (a1a2 · · · ak · · · al),

AnnM (b1b2 · · · bk) = AnnM (b1b2 · · · bk · · · bl),

AnnM (c1c2 · · · ck) = AnnM (c1c2 · · · ck · · · cl).
Consider the sequences (ak+n)n, (bk+n)n and (ck+n)n of elements of R, there exists a p ∈ N+

such that for all q > p,

AnnM (ak+1ak+2 · · · ak+p) = AnnM (ak+1ak+2 · · · ak+p · · · ak+q),

AnnM (bk+1bk+2 · · · bk+p) = AnnM (bk+1bk+2 · · · bk+p · · · bk+q),

AnnM (ck+1ck+2 · · · ck+p) = AnnM (ck+1ck+2 · · · ck+p · · · ck+q).

Now we show that for any positive integer v ∈ N+,

AnnW (M)(A1A2 · · ·Ak+p) = AnnW (M)(A1A2 · · ·Ak+p · · ·Ak+p+v),

which implies that AnnW (M)(A1) ⊆ AnnW (M)(A1A2) ⊆ · · · stabilizes. First, we show that

AnnW (M)(A1A2 · · ·Ak+p) = AnnW (M)(A1A2 · · ·Ak+pAk+p+1).

Suppose that X =

 d 0 0

s e t

0 0 f

 ∈ AnnW (M)(A1A2 · · ·Ak+pAk+p+1). Then

0 = XA1A2 · · ·Ak+pAk+p+1

=

 d 0 0

s e t

0 0 f


 a1 0 0

x1 b1 y1

0 0 c1

 · · ·

 ak+p+1 0 0

xk+p+1 bk+p+1 yk+p+1

0 0 ck+p+1


=

 da1a2 · · · ak+p+1 0 0

sa1a2 · · · ak+p+1 + eu eb1b2 · · · bk+p+1 er + tc1c2 · · · ck+p+1

0 0 fc1c2 · · · ck+p+1

 ,

where

u = x1a2a3 · · · ak+p+1 + b1x2a3 · · · ak+p+1 + · · ·+ b1b2 · · · bk−1xkak+1 · · · ak+p+1 + · · ·

+ b1b2 · · · bk+p−1xk+pak+p+1 + b1b2 · · · bk+pxk+p+1,

r = b1 · · · bk+pyk+p+1 + b1 · · · bk+p−1yk+pck+p+1 + · · ·+ b1 · · · bk−1ykck+1 · · · ck+p+1 + · · ·

+ b1y2c3c4 · · · ck+p+1 + y1c2c3 · · · ck+p+1.

Hence

d ∈ AnnM (a1a2 · · · ak+p+1) = AnnM (a1a2 · · · ak),

e ∈ AnnM (b1b2 · · · bk+p+1) = AnnM (b1b2 · · · bk),

f ∈ AnnM (c1c2 · · · ck+p+1) = AnnM (c1c2 · · · ck).
By using the same way as the proof of Proposition 2.1, we also have

sa1a2 · · · ak + e(x1a2a3 · · · ak + b1x2a3a4 · · · ak + · · ·+ b1b2 · · · bk−1xk)

∈ AnnM (ak+1ak+2 · · · ak+p+1) = AnnM (ak+1ak+2 · · · ak+p)
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and

e(b1b2 · · · bk−1yk + b1b2 · · · bk−2yk−1ck + · · ·+ b1y2c3 · · · ck + y1c2c3 · · · ck) + tc1c2 · · · ck
∈ AnnM (ck+1ck+2 · · · ck+p+1) = AnnM (ck+1ck+2 · · · ck+p).

Then by a routine computations, we can show that

XA1A2 · · ·Ak+p = 0,

and so

AnnW (M)(A1A2 · · ·Ak+p+1) = AnnW (M)(A1A2 · · ·Ak+p).

Similarly, we can show that

AnnW (M)(A1A2 · · ·Ak+p) = AnnW (M)(A1A2 · · ·Ak+pAk+p+1)

= AnnW (M)(A1A2 · · ·Ak+pAk+p+1Ak+p+2)

= · · ·
Therefore W (M) satisfies acc on d-annihilators.

Let R be a ring and MR a right R-module. Then under usual matrix operations, we

obtain that W 1(M) =

 M 0 0

0 M 0

M M M

 is a right W 1(R) =

 R 0 0

0 R 0

R R R

 module,

W 2(M) =

 M 0 M

0 M M

0 0 M

 is a right W 2(R) =

 R 0 R

0 R R

0 0 R

 module, W 3(M) =

 M 0 0

0 M 0

M 0 M

 is a right W 3(R) =

 R 0 0

0 R 0

R 0 R

 module, and W 4(M) =

 M 0 M

0 M 0

0 0 M

 is a right W 4(R) =

 R 0 R

0 R 0

0 0 R

 module.

Proposition 2.3 Let R be a ring and MR a right R-module. Then the following state-

ments are equivalent:

(1) The right R-module MR satisfies acc on d-annihilators;

(2) The right W 1(R)-module W 1(M) satisfies acc on d-annihilators;

(3) The right W 2(R)-module W 2(M) satisfies acc on d-annihilators;

(4) The right W 3(R)-module W 3(M) satisfies acc on d-annihilators;

(5) The right W 4(R)-module W 4(M) satisfies acc on d-annihilators.

Proof. By analogy with the proof of Proposition 2.2, we complete the proof.

Corollary 2.4 Let R be a ring. Then the following statements are equivalent:

(1) R satisfies acc on d-annihilators;

(2) W (R) satisfies acc on d-annihilators;
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(3) W 1(R) satisfies acc on d-annihilators;

(4) W 2(R) satisfies acc on d-annihilators;

(5) W 3(R) satisfies acc on d-annihilators;

(6) W 4(R) satisfies acc on d-annihilators.

Example 2.1 Let Z4 = {0, 1, 2, 3} denote the ring of integers modulo 4. One directly

verifies that Z4 is a commutative ring with acc on d-annihilators. According to Corollaries

2.3 and 2.4, the rings Z4 0 0

Z4 Z4 0

Z4 Z4 Z4

 ,

 Z4 0 0

0 Z4 0

Z4 0 Z4

 ,

 Z4 0 0

Z4 Z4 Z4

0 0 Z4


are all rings satisfying acc on d-annihilators.

Following Hamimou et al.[4], a ring R is right strongly Hopfian if the chain of right

annihilators AnnR(a) ⊆ AnnR(a
2) ⊆ · · · stabilizes for each a ∈ R. Based on Corollaries 2.3

and 2.4, we can derive the following:

Corollary 2.5 Let R be a ring. If R satisfies acc on d-annihilators, then the following

hold:

(1) Un(R) is a right strongly Hopfian ring;

(2) Ln(R) is a right strongly Hopfian ring;

(3) W (R) is a right strongly Hopfian ring;

(4) W i(R) (i = 1, 2, 3, 4) is a right strongly Hopfian ring;

(5) Sn(R) is a right strongly Hopfian ring;

(6) Gn(R) is a right strongly Hopfian ring;

(7) The trivial extension R ◃▹ R of R by R is a right strongly Hopfian ring;

(8) R[x]/(xn) is a right strongly Hopfian ring.

3 Ore Extension Modules

In the Ore extension R[x;α, δ], we have

xna =
n∑

i=0

fn
i (a)x

i (n ≥ 0),

where fn
i ∈ End(R,+) denote the map which is the sum of all possible words in α, δ built

with i letters α and n− i letters δ (see [5]).

The following definition appears in [1].

Definition 3.1 Given a module MR, an endomorphism α : R −→ R and an α-derivation

δ : R −→ R, we say that MR is α-compatible if for each m ∈ MR and r ∈ R, one has

mr = 0 ⇔ mα(r) = 0. Moreover, we say that MR is δ-compatible if for each m ∈ MR and

r ∈ R, one has mr = 0 ⇒ mδ(r) = 0. If MR is both α-compatible and δ-compatible, we say

that MR is (α, δ)-compatible.
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Note that if MR is α-compatible (resp. δ-compatible), then MR is αi-compatible (resp.

δi-compatible) for all i ≥ 1. It is clear that if MR is α-compatible (resp. δ-compatible),

then so is any submodule of MR. The following definition appears in [6].

Definition 3.2 Let MR be a right R-module. We say that MR is reduced, if, for any

m ∈ MR and any a ∈ R, ma = 0 implies mR ∩Ma = 0.

Clearly, if MR is reduced, then for all m ∈ MR and a ∈ R, ma = 0 implies mRa = 0 and

ma2 = 0 implies ma = 0.

As a immediate consequence of Definitions 3.1 and 3.2, we obtain the following lemma.

Lemma 3.1 Let MR be an (α, δ)-compatible reduced module. Then the following hold:

(1) ma = 0 if and only if mαn(a) = 0, where n is a positive integer;

(2) mab = 0 implies mf j
i (a)f

t
s(b) = 0;

(3) mab = 0 implies mba = 0 and mRaRb = 0.

The next lemma is known and very useful, we leave the proof for the reader.

Lemma 3.2 Let MR be a reduced module and X = {a1, a2, · · · , an} ⊆ R be a finite subset

of R. Then for any m ∈ MR, mX = 0 if and only if m(Ra1R + Ra2R + · · · + RanR) = 0,

where Ra1R+Ra2R+ · · ·+RanR denotes the ideal of R generated by a1, a2, · · · , an.

Lemma 3.3 Let R be a ring and MR a reduced module satisfying acc on d-annihilators.

Then for every sequence (An)n of finitely generated ideals of R, the ascending chain

AnnM (A1) ⊆ AnnM (A1A2) ⊆ · · · stabilizes.

Proof. Since MR is reduced, for any m ∈ MR and any a, b ∈ R, by Lemma 3.1, mab = 0

implies mba = 0 and mRaRb = MRbRa = 0. Then similar to the proof of Theorem 2.3(b)

in [2], we complete the proof.

Proposition 3.1 Let α be an endomorphism and δ an α-derivation of a ring R. If MR

is an (α, δ)-compatible reduced module, then the following statements are equivalent:

(1) MR satisfies acc on d-annihilators;

(2) The right R[x;α, δ]-module M [x] satisfies acc on d-annihilators.

Proof. (1) ⇒ (2). For any f(x) =
n∑

i=0

aix
i ∈ R[x;α, δ], we denote by Af the ideal of R

generated by the coefficients of f(x). Suppose that f(x) =
m∑
i=0

aix
i and g(x) =

n∑
j=0

bjx
j be

two polynomials in R[x;α, δ]. We first show that AnnM (AfAg) = AnnM (Afg). Note that

f(x)g(x) =

(
m∑
i=0

aix
i

)(
n∑

j=0

bjx
j

)
=

m+n∑
k=0

( ∑
s+t=k

(
m∑
i=s

aif
i
s(bt)

))
xk.

If r ∈ AnnM (AfAg), then

raibj = 0, 0 ≤ i ≤ m, 0 ≤ j ≤ n.
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Since MR is (α, δ)-compatible, by Lemma 3.1, we have

raif
i
s(bt) = 0, 0 ≤ i ≤ m, 0 ≤ t ≤ n, s ≤ i,

and so

r

( ∑
s+t=k

(
m∑
i=s

aif
i
s(bt)

))
= 0, 0 ≤ k ≤ m+ n.

Hence by Lemma 3.2, we obtain r ∈ AnnM (Afg) and so AnnM (AfAg) ⊆ AnnM (Afg). We

now turn our attention to proving AnnM (AfAg) ⊇ AnnM (Afg). Let r ∈ AnnM (Afg). Then

we have the following system of equations:

r

( ∑
s+t=k

(
m∑
i=s

aif
i
s(bt)

))
= 0, k = 0, 1, 2, · · · ,m+ n.

For k = m+ n, we have

ramαm(bn) = 0.

Then by Lemma 3.1, we obtain

rambn = 0.

For k = m+ n− 1, we have

r(amαm(bn−1) + am−1α
m−1(bn) + amfm

m−1(bn)) = 0. (3.1)

Multiplying (3.1) on the right side by am, then by Lemma 3.1, we obtain

ramαm(bn−1)am = 0,

and so

rambn−1am = 0.

Since MR is reduced, we have

rambn−1 = 0.

Note that rambn = 0 implies ramfm
m−1(bn) = 0 and rambn−1 = 0 implies ramαm(bn−1) = 0.

Thus (3.1) becomes

ram−1α
m−1(bn) = 0.

Then by Lemma 3.1, we have

ram−1bn = 0.

For k = m+ n− 2, we have

r(amαm(bn−2) +
m∑

i=m−1

aif
i
m−1(bn−1) +

m∑
i=m−2

aif
i
m−2(bn)) = 0. (3.2)

Multiplying (3.2) on the right side by am and using Lemma 3.1, we obtain

ramαm(bn−2)am = 0,

and so

rambn−2am = 0.

Since MR is reduced, we have

rambn−2 = 0.
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Note that rambn−2 = 0 implies ramαm(bn−2) = 0, rambn−1 = 0 implies ramfm
m−1(bn−1) = 0,

rambn = 0 implies ramαm(bn) = 0 and ram−1bn = 0 implies ram−1f
m−1
m−2 (bn) = 0. Thus

(3.2) becomes

r(am−1α
m−1(bn−1) + am−2α

m−2(bn)) = 0. (3.3)

Multiplying (3.3) on the right side by am−1, then by Lemma 3.1, we can show that

ram−1bn−1 = 0.

Hence (3.3) becomes

ram−2α
m−2(bn) = 0.

Thus

ram−2bn = 0.

Continuing this procedure yields that

raibj = 0, 0 ≤ i ≤ m, 0 ≤ j ≤ n.

Thus, for each
m∑
i=0

riaiui ∈ Af ,
n∑

j=0

sjbjvj ∈ Ag, it is easy to see that

r

(
m∑
i=0

riaiui

)(
n∑

j=0

sjbjvj

)
= 0.

Hence r ∈ AnnM (AfAg) and so

AnnM (Afg) ⊆ AnnM (AfAg).

Therefore AnnM (Afg) = AnnM (AfAg) is proved. So by Lemma 3.3, it suffices to prove that

Ann(f(x)) = Ann(f(x)g(x)) in M [x] whenever Ann(Af ) = Ann(Afg) in MR. Let f(x) =
p∑

r=0
arx

r, f(x)g(x) =
n∑

j=0

cjx
j ∈ R[x;α, δ] and m(x) =

m∑
i=0

mix
i ∈ AnnM [x](f(x)g(x)). Then

0 = m(x)(f(x)g(x)) =

(
m∑
i=0

mix
i

)(
n∑

j=0

cjx
j

)
=

m+n∑
k=0

( ∑
s+t=k

(
m∑
i=s

mif
i
s(ct)

))
xk.

Thus we obtain a system of equations:∑
s+t=k

(
m∑
i=s

mif
i
s(ct)

)
= 0, k = 0, 1, · · · ,m+ n.

By using the same way as above, we can show that

micj = 0, 0 ≤ i ≤ m, 0 ≤ j ≤ n.

Then by Lemma 3.2, we obtain

mi ∈ AnnM (Afg) = AnnM (Af ), 0 ≤ i ≤ m.

Hence

miar = 0, 0 ≤ i ≤ m, 0 ≤ r ≤ p.

Then by a routine computations we can show that

m(x)f(x) = 0.

Hence m(x) ∈ AnnM [x](f(x)) and so

AnnM [x](f(x)) = AnnM [x](f(x)g(x)).
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Therefore M [x] satisfies acc on d-annihilators.

(2) ⇒ (1). Note that for any a ∈ R, AnnM (a) = AnnM [x](a) ∩M . Hence the proof of

(2) ⇒ (1) is trivial.

Corollary 3.1 Let R be a ring and MR a reduced right R-module. Then we have the

following results:

(1) Let α be an endomorphism of R. If MR is α-compatible, then the skew polynomial

module M [x] over the skew polynomial ring R[x;α] satisfies acc on d-annihilators if and

only if MR satisfies acc on d-annihilators;

(2) Let δ be a derivation of R. If MR is δ-compatible, then the differential polynomial

module M [x] over the differential ring R[x; δ] satisfies acc on d-annihilators if and only if

MR satisfies acc on d-annihilators.

Corollary 3.2 Let R be a ring. If R is an (α, δ)-compatible reduced ring, then the Ore

extension ring R[x;α, δ] satisfies acc on d-annihilators if and only if R satisfies acc on

d-annihilators.

The following corollary is a generalization of Corollary 2.4(iii) in [2].

Corollary 3.3 Let R be a reduced ring. Then the polynomial ring R[x] satisfies acc on

d-annihilators if and only if R satisfies acc on d-annihilators.

We show that if MR is (α, δ)-compatible and reduced, then the right R[x;α, δ]-module

M [x] satisfies acc on d-annihilators if and only if MR satisfies acc on d-annihilators (see

Proposition 3.1). Let MR be a module with acc on d-annihilators. If MR does not be (α, δ)-

compatible or not be reduced, can one provide a counterexample that the Ore extension

module M [x]R[x;α,δ] does not has acc on d-annihilators? We do not know the answer and

thus conclude with the following open problem:

Question 3.1 Let MR be a module with acc on d-annihilators. If MR is not (α, δ)-

compatible or not reduced, does there exist an Ore extension module M [x] over the Ore

extension ring R[x;α, δ] that does not has acc on d-annihilators?
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