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Abstract: Framed links in thickened torus are studied. We define the mod 2 Kauff-

man bracket skein module of thickened torus and give an expression of a framed link

in this module. From this expression we propose a new ambient isotopic invariant of

framed links.
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1 Introduction

We are concerned with framed links in thickened torus T 2×I by using skein theory. We will

extend the Kauffman bracket skein module to the mod 2 Kauffman bracket skein module

and obtain an expression of a framed link as a new ambient isotopic invariant.

Skein relations have their origin in an observation by Alexander[1], Conway found a way

to calculate the Alexander polynomial of a link using a so-called skein relation[2]. This is

an equation that relates the polynomial of a link to the polynomial of links obtained by

changing the crossings in a projection of the original link. Skein modules were introduced

by Przytycki in [3]. Skein modules are quotients of free modules over ambient isotopy classes

of framed links in a 3-manifold by properly chosen local skein relations. The skein module

based on Kauffman bracket skein relation is one of the most extensively studied object

of the algebraic topology based on framed links, which is also an important invariant of

3-manifolds. There have been extensive study and application of Kauffman bracket skein
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module (see [4]–[8]).

A convenient way of representing a framed link in an orientable 3-manifold M is in the

form of smoothly embedded closed bands (⊔k
j=1S

1
j × I ↪→ M), such that bands for different

components do not intersect. For a framed link, let ϕj be the linking number between the

knots S1
j × {0} ↪→ M and S1

j × {1} ↪→ M associated with each component of the framed

link, j = 1, · · · , k, we call (ϕ1, · · · , ϕk) the framing of the framed link.

If we work with regular projections of links, then the topology of links is reflected by

Reidemeister moves. Regular isotopy is the equivalent relation on link projections generated

by the Reidemeister moves of types II and III. The Reidemeister moves of types II and III

on the cores of bands extend to the bands themselves, while the type I move dose not extend

(it corresponds to a full twist on the band). Consequently, regular isotopy corresponds to

ambient isotopy of framed links.

Noted that torus knot is a kind of knot that had been investigated and used widely (see

[9]). We are concerned in this paper with the torus knot, which is defined below. Given two

generators x1, x2 in π1(T
2), where

x1 : S1 ↪→ T 2, x1(e
iθ) = (eiθ, 1),

x2 : S1 ↪→ T 2, x2(e
iθ) = (1, eiθ),

and consider the closed curve

γ : S1 ↪→ T 2, γ(eiθ) = xp
1x

q
2.

If (p, q) = (0, 0) or p, q are relatively prime, then γ is called a (p, q) knot in T 2, denoted

by K(p, q). Obviously,

K(1, 0) = x1, K(0, 1) = x2.

This paper is organized by two sections: In Section 2, we cover the necessary definitions

and lemmas. The main result and its proof are provided in Section 3.

2 Preliminary

The data that determine a knot in R3 are usually given by a projection onto a plane. Now

we derive it in thickened surface F × I as in R3.

Definition 2.1 [10] Let F be a compact orientable surface, L be a framed link in the thick-

ened surface F × I. Suppose r : ⊔k
j=1S

1
j × {0} → ⊔k

j=1S
1
j × I, p : F × I → F × {0}, we call

the composition mapping p · L · r : ⊔k
j=1S

1
j → F a projection of L onto F, denoted by ℓ.

Definition 2.2 [10] A projection ℓ of a framed link L is called regular if

(1) ℓ is an immerse;

(2) there are only finitely many intersections in ℓ and all intersections are double points;

(3) ℓ is transverse to the every intersection point.

Moreover, if the upper crossing line and the lower crossing line are marked at every double

point in a regular projection, then this regular projection of a link is called a link projection.
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We work always in the smooth-category. We do not make any distinction between two

ambient isotopic framed links, while two framed links, L and L′, in M are said to be ambient

isotopic if there is a smooth orientation preserving automorphism h : M → M such that

h(L) = L′.

Then we give the definition of the Kauffman bracket skein module of F×I for an oriented

surface F and an interval I as follows:

Definition 2.3 [3], [11] The Kauffman bracket skein module of 3-manifold F ×I, S2,∞(F ×
I; R, A) is defined as follows: Let L be the set of unoriented framed links in F ×I (including

the empty knot ∅), R any commutative ring with identity and A an invertible element in

R. Let RL be the free R-module generated by L, S2,∞ be the submodule of RL generated

by two skein expressions: L+ −AL0 −A−1L∞, L ⊔ T1 + (A2 +A−2)L, where the triple L+,

L0 and L∞ as presented by their regular projections ℓ+, ℓ0 and ℓ∞ on F are shown in Fig.

2.1, which can be ambient isotopy except within the neighborhood shown, and T1 denotes

the trivial framed knot. Set S2,∞(F × I; R, A) = RL/S2,∞. The notation is shortened for

special case:

S2,∞(F × I) = S2,∞(F × I; Z[A±1], A).

ℓ+ :
l

ll ,,
,,

ℓ0 : ℓ∞ :

Fig. 2.1 Link projections

From the above definition, we have:

Proposition 2.1 For a framed link L in F × I, its expression in S2,∞(F × I) is an

ambient isotopic invariant of L.

Proof. Suppose that two framed links L and L′ are ambient isotopic in F × I, then the

link projection of L is obtained from the link projection of L′ by a sequence of Reidemeister

moves R2(R2−1) or R3(R3−1). Suppose that L and L′ are presented in the free module

S2,∞(F × I) as L =
∑
i

fi(A)ci and L′ =
∑
i′
f ′
i′(A)ci′ , using skein expressions of Definition

2.3, it is easy to obtain that
∑
i

fi(A)ci is unchanged in S2,∞(F × I) by Reidemeister moves

R2(R2−1) or R3(R3−1), so∑
i

fi(A)ci =
∑
i′
f ′
i′(A)ci′ ∈ S2,∞(F × I).

Moreover, the expression of L in the free module is unique. Hence, it is an ambient isotopic

invariant of the framed link L.

The following lemmas are used later.

Lemma 2.1 [8] S2,∞(F×I; R, A) is a free R-module with a basis B(F ) consisting of links

in F without contractible components (but including the empty knot).

Lemma 2.2 [9] Suppose that K(p, q) and K(p′, q′) are two knots in T 2. If K(p, q)∩K(p′, q′) =

∅, then K(p, q) = K(p′, q′) or one of them is K(0, 0).
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3 Main Results

Beginning with our main ingredient, we consider the special case T 2 × I. Given S2,∞(T 2 ×
I;R,A) the Kauffman bracket skein module of T 2 × I and

S2,∞(T 2 × I) = S2,∞(T × I; Z[A±1], A).

For a framed link L in T 2×I, by Lemma 2.1, its expression in the free module S2,∞(T 2×I)

is presented as

f =
∑
i

fi(A) ⊔ni

k=1 K(pi, qi),

where K(pi, qi) is a (pi , qi) knot in T 2.

Definition 3.1 For any two K(p, q) and K(p′, q′) in T 2, we define an equivalent relation

∼: K(p, q) ∼ K(p′, q′) if and only if p − p′ ≡ q − q′ ≡ 0 (mod 2), then we call quotient

module S2,∞(T 2 × I)/ ∼ the mod 2 Kauffman bracket skein module of T 2 × I, denoted by

SZ2
2,∞(T 2 × I). The equivalent class of K(p, q) is denoted by K(p, q).

Theorem 3.1 Let L be a framed link in T 2 × I. Then there exists a unique K(p, q) such

that L is presented in SZ2
2,∞(T 2 × I) as L =

∑
i

fi(A) ⊔ni

k=1 K(p, q). Furthermore, K(p, q) in

this expression is an ambient isotopic invariant of L.

Proof. Suppose that L is a framed link in T 2 × I with framing (ϕ1, · · · , ϕk). By skein

expression, we have

L(1) = −A3L ∈ S2,∞(T 2 × I),

where L(1) denotes a link obtained from L by twisting the framing of L by a full twist in

a positive direction. It follows that for L, there exists a framed link L′ with blackboard

framing (this framing is obtained by converting each component to a band lying flat on F ),

its framing is denoted by (ϕ′
1, · · · , ϕ′

k), such that

L = (−A3)

(
k∑

i=1
ϕi−

k∑
i=1

ϕ′
i

)
L′ ∈ S2,∞(T 2 × I).

Suppose that ℓ : ⊔k
j=1S

1
j → T 2 is a link projection of L′ on T 2, and its crossing set is

{x1, · · · , xV (ℓ)}. For an arbitrary crossing xi ∈ {x1, · · · , xV (ℓ)}, ℓ(xi, 0) : ⊔k
j=1S

1
j → T 2 and

ℓ(xi,∞) : ⊔k
j=1S

1
j → T 2 respectively denote ℓ0 and ℓ∞ at crossing xi, as depicted in Fig.

2.1 within the neighborhood of xi. So we obtain state S = (s1, · · · , sV (ℓ)), and si = 0 or ∞
respectively denotes the choice of ℓ(xi, 0) or ℓ(xi,∞). Obviously, there are 2V (ℓ) different

states.

By the first skein expression of Definition 2.3, we also have

L+ = AL0 +A−1L∞ ∈ S2,∞(T 2 × I),

it is followed that

L′ =
∑
S

Aa(S)−b(S)LS ∈ S2,∞(T 2 × I),

where S denotes one of the states of ℓ;

a(S) = ♯{si | si is the component of S, si = 0},

b(S) = ♯{si | si is the component of S, si = ∞},
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obviously, a(S) + b(S) = V (ℓ); LS denotes the framed link without crossing in the state S,

including contractible components. In fact, LS is a union of some (p, q) knots in T 2.

Nextly, by the second skein expression of Definition 2.3, we see

L ⊔ T1 = (−A2 −A−2)L ∈ S2,∞(T 2 × I),

so we get

LS = (−A2 −A−2)m(S) ⊔n(S)
k=1 K(pS ,qS) ∈ S2,∞(T 2 × I),

where m(S) denotes the number of contractible components, and n(S) denotes the number

of uncontractible components.

From the above analysis we obtain

L = (−A3)

(
k∑

i=1

ϕi−
k∑

i=1

ϕ′
i

)∑
S

Aa(S)−b(S)(−A2 −A−2)m(S) ⊔n(S)
k=1 K(pS , qS) ∈ S2,∞(T 2 × I).

By Lemma 2.1, the expression of L is unique after collecting the link terms.

It remains to show that if there is one different component between two states S =

(s1, · · · , sV (ℓ)) and S′ = (s′1, · · · , s′V (ℓ)), then even though nS ̸= nS′ , we can obtainK(pS , qS) =

K(pS′ , qS′ ).

Assume si = 0, s′i = ∞, while for any j ̸= i, sj = s′j . Firstly we consider K(pS , qS) and

K(pS′ , qS′ ) ∈ π1(T
2). We can consider the loops in π1(T

2). We define four paths near the

crossing xi to be αWS , αES , αEN , αWN : I, 0, 1 → F, α∗(0), α∗(1).

Without loss of generality we assume that

αWS(0) = αES(1) = αWN (0) = αEN (1) = xi,

which decides the direction of four paths as shown in Fig. 3.1.

l
ll ,,

,,
xi

WN EN

WS ES

Fig. 3.1 The directions of four paths

We are now in a position to discuss the following three cases:

Case 1. Provided that αWS(1) = αES(0), αWN (1) = αEN (0), we have

ℓ = αWS ◦ αES ◦ αWN ◦ αEN ,

while

ℓ(xi, 0) = αWS ◦ αES ⊔ αWN ◦ αEN ,

ℓ(xi, ∞) = αWS ◦ αES ◦ α−1
EN ◦ α−1

WN ,

see Fig. 3.2.

ℓ :
l

ll ,,
,,

xi

WN EN

WS ES

ℓ(xi, 0) :

WN EN

WS ES

ℓ(xi,∞) :

WN EN

WS ES

Fig. 3.2 The link projections for Case 1
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Notice that in ℓ(xi, 0), αWN ◦ αEN ∩ αWS ◦ αES = ∅. Using Lemma 2.2, we can now

derive αWN ◦ αEN = αWS ◦ αES or one of αWN ◦ αEN , αWS ◦ αES is K(0, 0). The results

of these calculations are given in Table 3.1.

It should be noted that the subtraction here is a formal subtraction, and the result of

each subtraction is obtained by the analysis of actual ℓ(xi, 0) and ℓ(xi, ∞). Besides, for

unoriented (p, q) knot, K(p, q) = K(−p,−q).

Table 3.1 The results for Case 1

ℓ(xi, 0) ℓ(xi, ∞)

αWN ◦ αEN , αWS ◦ αES αWS ◦ αES ◦ α−1
EN ◦ α−1

WN

K(0, 0), K(0, 0) K(0, 0) −K(0, 0) = K(0, 0)

K(0, 0), K(p, q) K(p,q) −K(0, 0) = K(p, q)

K(p, q), K(0, 0) K(0, 0) −K(p, q) = K(−p,−q)

K(p, q), K(p, q) K(p,q) −K(p, q) = K(0, 0)

It follows from Table 3.1 that there exists a unique K(p, q) ∈ π1(T
2), such that

ℓ(xi, 0), ℓ(xi, ∞) ∈ {K(0, 0), K(p, q)}.
Case 2. Provided that αWS(1) = αEN (0), αWN (1) = αES(0), we have

ℓ = αWS ◦ αEN ∪ αWN ◦ αES ,

while

ℓ(xi, 0) = αWS ◦ αEN ◦ αWN ◦ αES ,

ℓ(xi, ∞) = αWS ◦ αEN ◦ α−1
ES ◦ α−1

WN ,

see Fig. 3.3.

ℓ :
l

ll ,,
,,

xi

WN EN

WS ES

ℓ(xi, 0) :

WN EN

WS ES

ℓ(xi,∞) :

WN EN

WS ES

Fig. 3.3 The link projections for Case 2

Assume αWS ◦ αEN = K(a, b), αWN ◦ αES = K(c, d). Then

ℓ(xi, 0) = αWS ◦ αEN ◦ αWN ◦ αES = K(a+c, b+d),

ℓ(xi, ∞) = αWS ◦ αEN ◦ α−1
ES ◦ α−1

WN = K(a−c, b−d).

We see

(a+ c)− (a− c) ≡ (b+ d)− (b− d) ≡ 0 (mod 2).

So there exists a unique K(p, q) = K(a+c,b+d) such that ℓ(xi, 0), ℓ(xi, ∞) ∈ {K(p, q)}.
Case 3. Provided that αWS(1) = αWN (1), αEN (0) = αES(0), we have

ℓ = αWS ◦ α−1
WN ◦ α−1

ES ◦ αEN ,
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while

ℓ(xi, 0) = αWS ◦ α−1
WN ◦ α−1

EN ◦ αES ,

ℓ(xi,∞) = αWS ◦ α−1
WN ⊔ αEN ◦ α−1

ES ,

see Fig. 3.4.

ℓ :
l

ll ,,
,,

xi

WN EN

WS ES

ℓ(xi, 0) :

WN EN

WS ES

ℓ(xi,∞) :

WN EN

WS ES

Fig. 3.4 The link projections for Case 3

By Lemma 2.2, we also have the results in the Table 3.2.

Table 3.2 The results for Case 3

ℓ(xi, 0) ℓ(xi, ∞)

αWS ◦ α−1
WN ◦ α−1

EN ◦ αES αWS ◦ α−1
WN , αEN ◦ α−1

ES

K(0, 0) −K(0, 0) = K(0, 0) K(0, 0), K(0, 0)

K(0, 0) −K(p, q) = K(−p,−q) K(0, 0), K(p, q)

K(p, q) −K(0, 0) = K(p, q) K(p, q), K(0, 0)

K(p, q) −K(p, q) = K(0,0) K(p, q), K(p, q)

It follows from Table 3.2 that there exists a unique K(p,q) ∈ π1(T
2), such that

ℓ(xi, 0), ℓ(xi,∞) ∈ {K(0,0),K(p,q)}.

No matter what the case is, even if there is one different component between two states

S = (s1, · · · , sV (ℓ)) and S′ = (s′1, · · · , s′V (ℓ)), we have K(pS ,qS) = K(pS′ ,qS′ ). Using the

same argument, we can easily show that even if there are k (1 ≤ k ≤ V (ℓ)) different

components between two states S = (s1, · · · , sV (ℓ)) and S′ = (s′1, · · · , s′V (ℓ)), we also have

K(pS ,qS) = K(pS′ ,qS′ ) in the expression

L = (−A3)

(
k∑

i=1

ϕi−
k∑

i=1

ϕ′
i

)∑
S

Aa(S)−b(S)(−A2 −A−2)m(S) ⊔nS

k=1 K(pS ,qS)

∈ SZ2
2,∞(T 2 × I).

Hence, there exist a unique K(p,q), such that L is presented in SZ2
2,∞(T 2 × I) as

L =
∑
i

fi(A) ⊔ni

k=1 K(p,q).

We finally remark that K(p,q) in this expression is an ambient isotopic invariant of L due to

L =
∑
i

fi(A) ⊔ni

k=1 K(p,q)

being an ambient isotopic invariant of L by Proposition 2.1.

We complete the proof.
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