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Abstract. We explore minimization problems of the form

Inf

{∫ 1

0
|u′|+

k

∑
i=1
|u(ai)− fi|2 + α

∫ 1

0
|u|2

}
,

where u is a function defined on (0, 1), (ai) are k given points in (0, 1), with k ≥ 2, ( fi)
are k given real numbers, and α ≥ 0 is a parameter taken to be 0 or 1 for simplicity.
The natural functional setting is the Sobolev space W1,1(0, 1). When α = 0 the Inf is
achieved in W1,1(0, 1). However, when α = 1, minimizers need not exist in W1,1(0, 1).
One is led to introduce a relaxed functional defined on the space BV(0, 1), whose mini-
mizers always exist and can be viewed as generalized solutions of the original ill-posed
problem.

Key Words: Interpolation, minimization problems, functions of bounded variation, relaxed func-
tional.
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1 Introduction

Given k points, with k ≥ 2,

0 < a1 < a2 < · · · < ak < 1, (1.1)

and k real numbers fi, i = 1, · · · , k, the aim is to find a function u defined on (0, 1) such
that u(ai) approximates fi as best as possible, and keeping at the same time some control
on the regularity of u, measured here in terms of total variation of u. For this purpose
define the functional

F(u) =
∫ 1

0
|u′|+

k

∑
i=1
|u(ai)− fi|2, (1.2)
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and then minimize F. (One may also insert a fidelity parameter in front of the first in-
tegral, but we take to be 1 for simplicity). Note that F is well-defined on the Sobolev
space W1,1(0, 1) since W1,1(0, 1) ⊂ C([0, 1]), so that u(ai) makes sense. As is well-known
W1,1(0, 1) is not a good function space from the point of view of minimization tech-
niques in Functional Analysis. Often, variational problems do not admit minimizers in
W1,1(0, 1). To make up for this “defect” one is usually led to enlarge W1,1(0, 1) and re-
place it by BV(0, 1), the space of functions of bounded variation (see e.g., [1, 2, 5]), where
the existence of minimizers is often a matter of routine. The drawback is that the spe-
cific functional F is not properly defined on BV(0, 1) since the term u(ai) has no obvious
meaning when u has a jump at ai.

In Section 2 we establish that (surprisingly!) the problem

Inf
u∈W1,1(0,1)

F(u) (1.3)

always admits minimizers. In fact all minimizers are classified with the help of a finite-
dimensional auxiliary problem. Given

λ = (λ1, · · · , λk) ∈ Rk,

set

Φ(λ) :=
k−1

∑
i=1
|λi+1 − λi|+

k

∑
i=1
|λi − fi|2. (1.4)

By convexity
m := min

λ∈Rk
Φ(λ) (1.5)

is achieved by some unique λ denoted

U = (U1, · · · , Uk),

and which plays an important role throughout the paper. In this section we never in-
voke Functional Analysis and the space BV(0, 1) is noticeably absent. The existence of
minimizers in W1,1(0, 1) is derived from an elementary computation originally due to T.
Sznigir [6,7]. However this “miracle” does not repeat itself: as we are going to see in Sec-
tion 5 even “mild” pertubations of F need not admit minimizers in W1,1(0, 1), and there it
will be essential to “relax” the problem and search for minimizers in BV(0, 1) using tools
of Functional Analysis.

In Section 3 we introduce the relaxed functional Fr of F, which is much better suited
to minimization problems involving the functional F. We start with the standard abstract
formulation, namely Fr is defined for every v ∈ BV(0, 1) by

Fr(v) := Inf lim inf
n→∞

F(vn), (1.6)

where the Inf in (1.6) is taken over all sequences (vn) ⊂ W1,1(0, 1) such that vn → v in
L2(0, 1). The main result, Theorem 3.1, provides an explicit formula for Fr. The major
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obstacle stems from the fact that u(a) is not well-defined when u ∈ BV(0, 1); however, u
admits at every point a ∈ (0, 1) limits from the left and from the right, which enter in the
formula for Fr. Theorem 4.1 provides a complete description of all minimizers of Fr on
BV(0, 1). It turns out that Fr admits many more minimizers than the original functional F,
even when Fr is restricted to W1,1(0, 1).

In Section 5 we consider a mild perturbation of F, and we show that the corresponding
minimizing problems differ significantly from those associated with F. Set

G(u) = F(u) +
∫ 1

0
|u|2 =

∫ 1

0
|u′|+

k

∑
i=1
|u(ai)− fi|2 +

∫ 1

0
|u|2, (1.7)

where u ∈W1,1(0, 1). Our initial goal is to investigate the minimization problem

A = Inf
u∈W1,1

G(u). (1.8)

As we are going to see the infimum in (1.8) need not be achieved and we will replace
it by a relaxed problem defined on BV(0, 1) as we have done in Section 3. It is easy to
check that the relaxed functional Gr of G is given by

Gr(v) = Fr(v) +
∫ 1

0
|v|2, ∀v ∈ BV(0, 1), (1.9)

so that Gr is strictly convex on BV(0, 1) and it is lower semicontinuous in the sense that
for every sequence (vn) ⊂ BV(0, 1) such that vn → v in L2(0, 1) as n→ ∞, we have

lim inf
n→∞

Gr(vn) ≥ Gr(v).

Consequently
B = Inf

v∈BV
Gr(v) (1.10)

is uniquely achieved and we denote by v̄ ∈ BV(0, 1), its unique minimizer.
The bottom line is that we have replaced Problem (1.8) which need not have a solution

by Problem (1.10) which always admits a unique solution v̄. Moreover, if Problem (1.8)
admits a minimizer, it must coincide with v̄. Therefore v̄ may be viewed as the generalized
solution of Problem (1.8). In addition, v̄ has a very simple structure and can be computed
via a finite-dimensional convex minimization problem.

2 The functional F and its minimizers on W1,1

The main result in this section is

Theorem 2.1 (T. Sznigir [6, 7]). We have

m = Inf
u∈W1,1

F(u), (2.1)
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where m has been defined in (1.5), and the Inf in (2.1) is achieved. More precisely u ∈W1,1(0, 1)
is a minimizer if and only if it satisfies the following three conditions:

u is monotone on each interval (ai, ai+1), i = 1, · · · , k− 1, (2.2a)
u(ai) = Ui, i = 1, · · · k, (2.2b)
u(x) = U1, ∀x ∈ [0, a1] and u(x) = Uk, ∀x ∈ [ak, 1]. (2.2c)

Proof. Given u ∈W1,1(0, 1) we have∫ 1

0
|u′| ≥

k−1

∑
i=1

∫ ai+1

ai

|u′| ≥
k−1

∑
i=1
|u(ai+1)− u(ai)|, (2.3)

with equalities if and only if:

u is monotone on each interval (ai, ai+1), (2.4a)
u is constant on (0, a1) and on (ak, 1). (2.4b)

Thus

F(u) ≥
k−1

∑
i=1
|u(ai+1)− u(ai)|+

k

∑
i=1
|u(ai)− fi|2.

Letting λi = u(ai), i = 1, · · · , k, we see that, for every u ∈W1,1(0, 1),

F(u) ≥ min
λ∈Rk

Φ(λ) = m. (2.5)

If u ∈W1,1(0, 1) satisfies (2.2a)-(2.2c) we have

F(u) =
k−1

∑
i=1
|Ui+1 −Ui|+

k

∑
i=1
|Ui − fi|2 = m,

so that u is a minimizer for (2.1). Conversely if u ∈ W1,1(0, 1) is such that F(u) = m then
(2.4a) and (2.4b) hold. Moreover u(ai) = λi is a minimizer in (1.5), and by uniqueness we
have u(ai) = Ui for i = 1, · · · , k.

Remark 2.1. In view of the abundance of minimizers for F in W1,1(0, 1) one may wonder
whether some of them are “preferred” e.g., in the sense that they are “stable” with respect
to pertubations. The minimizer u` of F which is obtained by linear interpolation (i.e., u` is
linear on each interval (ai, ai+1) is definitely a good candidate. Here are three “natural”
perturbed functionals:

F1,ε(u) = ε
∫ 1

0
|u′|2 + F(u), u ∈ H1(0, 1), ε > 0,

F2,p(u) =
∫ 1

0
|u′|p +

k

∑
i=1
|u(ai)− fi|2, u ∈W1,p(0, 1), p > 1,

F3,ε(u) = ε
∫ 1

0
|u′′|2 + F(u), u ∈ H2(0, 1), ε > 0.
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It is easy to see that each one admits a unique minimizer. T. Sznigir [6, 7] has established
that as ε → 0 (resp. p↘ 1) the minimizers of F1,ε (resp. F2,p) converge to u`. By contrast
the minimizers of F3,ε converge as ε → 0 to the solution û of a variational inequality
corresponding to

min
{∫ 1

0
|u′′|2; u ∈ H2(0, 1) and satisfies (2.2a)− (2.2c)

}
.

The function û belongs to C1([0, 1]) (while u` /∈ C1) and û is a piecewise cubic function
on each interval (ai, ai+1), i = 1, · · · , k− 1, see [6, 7].

3 The relaxed functional Fr on BV

As usual the relaxed functional Fr is defined for every v ∈ BV(0, 1) by

Fr(v) := Inf lim inf
n→∞

F(vn), (3.1)

where the Inf in (3.1) is taken over all sequences (vn) ⊂ W1,1(0, 1) such that vn → v in
L2(0, 1) (the choice of L2 is just a matter of convenience–one can replace it by any Lp,
1 ≤ p < ∞).

The main result in this section is an explicit formula for Fr, but first some notation.
Given v ∈ BV(0, 1) and a ∈ (0, 1) we denote by j(v)(a) the jump interval of v at a, i.e.,

j(v)(a) = [min(v(a− 0), v(a + 0)), max(v(a− 0), v(a + 0))]. (3.2)

We also set

ϕ(t) =

{
t2, if 0 ≤ t ≤ 1,
2t− 1, if t > 1.

(3.3)

Theorem 3.1. For every v ∈ BV(0, 1), we have

Fr(v) =
∫ 1

0
|v′|+

k

∑
i=1

ϕ (dist( fi, j(v)(ai)) , (3.4)

where dist denotes the distance of a point to a set.

The proof of Theorem 3.1 relies on the following three lemmas. The first two are
familiar to the experts (see e.g., [4, Appendix 18.8] and [3, Lemma 2]).

Lemma 3.1. Let (vn) be a bounded sequence in BV(a, b) such that vn → v in L1(a, b), vn(a)→
α, vn(b)→ β as n→ ∞. Then v ∈ BV(a, b) and

lim inf
n→∞

∫ b

a
|v′n| ≥

∫ b

a
|v′|+ |v(a)− α|+ |v(b)− β|, (3.5)

where we write for simplicity vn(a) = vn(a + 0), etc.
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Proof. Fix any function h ∈ C∞
c (R) such that h(a) = α and h(b) = β. Consider the

functions

wn(t) :=


h(t), if t < a,
vn(t), if a ≤ t ≤ b,
h(t), if t > b,

w(t) :=


h(t), if t < a,
v(t), if a ≤ t ≤ b,
h(t), if t > b.

Clearly wn, w ∈ BV(R) and∫
R
|w′n| =

∫ a

−∞
|h′|+

∫ b

a
|v′n|+

∫ ∞

b
|h′|+ |vn(a)− α|+ |vn(b)− β|, (3.6a)∫

R
|w′| =

∫ a

−∞
|h′|+

∫ b

a
|v′|+

∫ ∞

b
|h′|+ |v(0)− α|+ |v(b)− β|. (3.6b)

Since wn → w in L1(R) it is well-known that

lim inf
n→∞

∫
R
|w′n| ≥

∫
R
|w′|.

Combining this with (3.6) yields (3.5).

Lemma 3.2. Given any v ∈ BV(a, b) and constants α, β ∈ R, there exists a sequence (vn) ⊂
W1,1(a, b) such that vn → v in L2(a, b), vn(a) = α, vn(b) = β, ∀n, and

lim
n→∞

∫ b

a
|v′n| =

∫ b

a
|v′|+ |v(a)− α|+ |v(b)− β|. (3.7)

Proof. Set

w(t) :=


α, if t < a,
v(t), if a ≤ t ≤ b,
β, if t > b.

Let wn = ρn ∗ w where (ρn) is a sequence of mollifiers. Clearly∫
R
|w′n| ≤

∫
R
|w′| =

∫ b

a
|v′|+ |v(a)− α|+ |v(b)− β|. (3.8)

Moreover wn(t) = α if t < a − (1/n) and wn(t) = β if t > b + (1/n). Rescaling the
sequence (wn) by a change of variables we obtain a sequence (vn) of smooth functions
such that vn → v in L2(a, b), vn(a) = α, vn(b) = β, ∀n, and

lim sup
n→∞

∫ b

a
|v′n| ≤

∫ b

a
|v′|+ |v(a)− α|+ |v(b)− β|.

Applying Lemma 3.1 we conclude that (3.7) holds.
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The third lemma relies on an elementary computation left to the reader.

Lemma 3.3. Given any α, β, f ∈ R we have

Inf
t∈R

{
|t− α|+ |t− β|+ |t− f |2

}
= |α− β|+ ϕ(dist( f , J)), (3.9)

where J = [min(α, β), max(α, β)] and ϕ has been defined in (3.1).

Proof of Theorem 3.1. It consists of two steps.
Step 1. Given any v ∈ BV(0, 1) there exists a sequence (vn) ⊂W1,1(0, 1) such that vn → v
in L2(0, 1) and

lim
n→∞

F(vn) = Fr(v),

where Fr(v) is defined by (3.4).
Proof. Applying Lemma 3.3 with α = v(ai − 0), β = v(ai + 0), and f = fi, 1 ≤ i ≤ k, we
obtain some ti (a minimizer in (3.9)) such that

|ti − v(ai − 0)|+ |ti − v(ai + 0)|+ |ti − fi|2

=|v(ai − 0)− v(ai + 0)|+ ϕ(dist ( fi, j(v)(ai))). (3.10)

We next apply Lemma 3.2 successively on

(0, a1), (ai, ai+1), 1 ≤ i ≤ k− 1, and (ak, 1).

First on (0, a1) with α = v(0+) and β = t1. This yields a sequence (vn) ⊂W1,1(0, a1) such
that vn(0) = v(0+), vn(a1) = t1, ∀n, vn → v in L2(0, a1), and∫ a1

0
|v′n| =

∫ a1

0
|v′|+ |v(a1 − 0)− t1|+ o(1). (3.11)

Next on (ai, ai+1), 1 ≤ i ≤ k − 1, with α = ti and β = ti+1; this yields a sequence
(vn) ⊂W1,1(ai, ai+1) such that vn(ai) = ti, vn(ai+1) = ti+1, vn → v in L2(ai, ai+1), and∫ ai+1

ai

|v′n| =
∫ ai+1

ai

|v′|+ |v(ai + 0)− ti|+ |v(ai+1 − 0)− ti+1|+ o(1). (3.12)

Finally on (ak, 1) with α = tk and β = v(1−); this yields a sequence (vn) ⊂ W1,1(ak, 1)
such that vn(ak) = tk, vn(1) = v(1−), vn → v in L2(ak, 1), and∫ 1

ak

|v′n| =
∫ 1

ak

|v′|+ |v(ak + 0)− tk|+ o(1). (3.13)

Glueing these functions we obtain a sequence (vn) ⊂ W1,1(0, 1) such that vn → v in
L2(0, 1), and∫ 1

0
|v′n| =

k

∑
i=0

∫ ai+1

ai

|v′|+
k

∑
i=1

(|v(ai − 0)− ti|+ |v(ai + 0)− ti|) + o(1), (3.14)
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with the convention that a0 = 0 and ak+1 = 1.
Inserting (3.10) into (3.14) we see that

∫ 1

0
|v′n| =

∫ 1

0
|v′| −

k

∑
i=1
|ti − fi|2 +

k

∑
i=1

ϕ(dist ( fi, j(v)(ai))) + o(1). (3.15)

Since vn(ai) = ti, ∀n, ∀i, we conclude that

F(vn) =
∫ 1

0
|v′n|+

k

∑
i=1
|vn(ai)− fi|2 = Fr(v) + o(1), (3.16)

which completes the proof of Step 1.
Step 2. Let (vn) be a bounded sequence in W1,1(0, 1) such that vn → v in L1(0, 1). Then
v ∈ BV(0, 1) and

lim inf
n→∞

F(vn) ≥ Fr(v). (3.17)

Proof. Passing to a subsequence we may always assume that, for every i = 0, 1, · · · , k + 1,
there exists some `i such that

vn(ai)→ `i as n→ ∞.

From Lemma 3.1 we know that for every i = 0, 1, · · · k,∫ ai+1

ai

|v′n| ≥
∫ ai+1

ai

|v′|+ |v(ai + 0)− `i|+ |v(ai+1 − 0)− `i+1|+ o(1).

Adding these inequalities yields

F(vn) ≥
k

∑
i=0

∫ ai+1

ai

|v′|+
k

∑
i=1

(|v(ai + 0)− `i|+ |v(ai − 0)− `i|+ |`i − fi|2) + o(1).

Applying Lemma 3.3 we find that

F(vn) ≥
k

∑
i=0

∫ ai+1

ai

|v′|+
k

∑
i=1
|v(ai + 0)− v(ai − 0)|+

k

∑
i=1

ϕ(dist ( fi, j(v)(ai)) + o(1)

=Fr(v) + o(1),

which completes the proof of Step 2, and thereby the proof of Theorem 3.1. �

4 Some properties of Fr

We discuss in this section some properties of Fr. First a few straightforward facts. We
have

Fr(v) ≤ F(v), ∀v ∈W1,1(0, 1), (4.1)
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indeed it suffices to choose vn = v, ∀n in (3.1). It may happen that Fr(v) < F(v) for some
v′s in W1,1(0, 1). In fact

[Fr(v) = F(v) for some v ∈W1,1(0, 1)]⇔ [|v(ai)− fi| ≤ 1, ∀i = 1, · · · , k], (4.2)

this is an immediate consequence of (1.2), (3.4) and (3.3).

Lemma 4.1. The functional Fr is convex on BV(0, 1) and it is lower semicontinuous in the sense
that for every sequence (vn) ⊂ BV(0, 1) such that vn → v in L2(0, 1) as n→ ∞, we have

lim inf
n→∞

Fr(vn) ≥ Fr(v). (4.3)

Proof. Given v, w ∈ BV(0, 1) there exist (by Step 1 above) sequences (vn), (wn) ⊂
W1,1(0, 1) such that vn → v, wn → w in L2(0, 1) and F(vn) → Fr(v), F(wn) → Fr(w).
By convexity of F we have

F(tvn + (1− t)wn) ≤ tF(vn) + (1− t)F(wn), ∀t ∈ [0, 1]. (4.4)

Passing to the limit in (4.4) and using Step 2 we see that

Fr(tv + (1− t)w) ≤ tFr(v) + (1− t)Fr(w).

Next, the proof of (4.3). By Step 1 applied to vn with n fixed we may find some wn ∈
W1,1(0, 1) such that

‖vn − wn‖L2 <
1
n

and |Fr(vn)− F(wn)| <
1
n

. (4.5)

Thus wn → v in L2(0, 1) and from the definition (3.1) we conclude that

Fr(v) ≤ lim inf
n→∞

F(wn) = lim inf
n→∞

Fr(vn) by (4.5).

Thus, we complete the proof.

We now discuss the minization of Fr on BV(0, 1). Recall (see Theorem 2.1) that

m = min
v∈W1,1

F(v), (4.6)

where m is defined by (1.5). Set
µ := Inf

v∈BV
Fr(v). (4.7)

From Lemma 4.1 and the compactness of the embedding BV(0, 1) ⊂ L2(0, 1) we deduce
that the Inf in (4.7) is achieved. Clearly, by (4.1),

µ = Inf
v∈BV

Fr(v) ≤ Inf
v∈W1,1

Fr(v) ≤ Inf
v∈W1,1

F(v) = m. (4.8)
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We claim that
µ = m. (4.9)

Indeed, by (4.6) we have

m ≤ F(v), ∀v ∈W1,1(0, 1). (4.10)

From Step 1 above and (4.10) we deduce that

m ≤ Fr(v), ∀v ∈ BV(0, 1), (4.11)

and thus
m ≤ Inf

v∈BV
Fr(v) = µ.

Combined with (4.8) this yields (4.9).
As a consequence, any minimizer for F on W1,1(0, 1) must be a minimizer for Fr on

BV(0, 1). Indeed if F(u) = m, then µ ≤ Fr(u) ≤ F(u) = m = µ so that Fr(u) = µ.
The next result provides a complete description of all minimizers of Fr on BV(0, 1).

Theorem 4.1. Assume that u ∈ BV(0, 1) satisfies the following three conditions:
u is monotone nondecreasing (resp. nonincreasing)
on each interval (ai, ai+1), i = 1, · · · , k− 1,
such that Ui ≤ Ui+1( resp. Ui+1 ≤ Ui),

(4.12a)

{
Ui ≤ u(ai + 0) and u(ai+1 − 0) ≤ Ui+1 if
Ui ≤ Ui+1(resp. reverse inequalities if Ui+1 ≤ Ui),

(4.12b)

u(x) = U1, ∀x ∈ [0, a1] and u(x) = Uk, ∀x ∈ [ak, 1], (4.12c)

then u is a minimizer of Fr on BV(0, 1). And conversely.

Remark 4.1. We deduce from Theorem 4.1 that the relaxed functional Fr admits many
more minimizers than the original functional F, even when Fr is restricted to W1,1(0, 1),
since they are not bound by the rigid constraint u(ai) = Ui, ∀i.

The proof relies on the following monotone version of Lemma 3.2.

Lemma 4.2. Given any nondecreasing function v on (a, b) and constants α ≤ v(a), β ≥ v(b),
there exists a sequence of nondecreasing functions (vn) ⊂ W1,1(a, b) such that vn → v in
L2(a, b), vn(a) = α, vn(b) = β ∀n, and

lim
n→∞

∫ a

b
|v′n| =

∫ b

a
|v′|+ |v(a)− α|+ |v(b)− β|. (4.13)

The proof of Lemma 4.2 which is similar to the proof of Lemma 3.2 is left to the reader.
We now turn to the
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Proof of Theorem 4.1. Applying Lemma 4.2 on the interval (ai, ai+1) with α = Ui and β =
Ui+1 we obtain a sequence (vn) of monotone functions in W1,1(ai, ai+1) such that vn → u
in L2(ai, ai+1),

vn(ai) = Ui and vn(ai+1) = Ui+1, ∀n, (4.14a)

lim
n→∞

∫ ai+1

ai

|v′n| =
∫ ai+1

ai

|u′|+ |u(ai + 0)−Ui|+ |u(ai+1 − 0)−Ui+1|. (4.14b)

Next we set

vn(x) = U1, ∀x ∈ [0, a1] and vn(x) = Uk, ∀x ∈ [ak, 1]. (4.15)

Glueing the functions vn defined above we obtain a function still denoted vn ∈W1,1(0, 1),
satisfying all the requirements of Theorem 2.1. Thus vn is a minimizer for F in W1,1(0, 1)
so that

F(vn) = m, ∀n. (4.16)

Since vn → u in L2(0, 1), we deduce (from the definition (3.1) of Fr) that

Fr(u) ≤ lim
n→∞

F(vn) = m.

(Note that the full strength of Lemma 4.1 was not used). Invoking (4.9) we conclude that
u is a minimizer for Fr.

We now turn to the converse. Assume that u is a minimizer for Fr on BV(0, 1). Let
ti, i = 1, · · · , k, be the unique minimizer in (3.9) corresponding to α = u(ai − 0), β =
u(ai + 0) and f = fi, so that

|ti − u(ai − 0)|+ |ti − u(ai + 0)|+ |ti − fi|2

=|u(ai − 0)− u(ai + 0)|+ ϕ(dist( fi, j(u)(ai)). (4.17)

Next write, for 1 ≤ i ≤ k− 1,

ti − ti+1 = (ti − u(ai + 0)) + (u(ai + 0)− u(ai+1 − 0)) + (u(ai+1 − 0)− ti+1), (4.18)

so that

|ti − ti+1| ≤ |ti − u(ai + 0)|+ |u(ai + 0)− u(ai+1 − 0)|+ |u(ai+1 − 0)− ti+1|. (4.19)

We now compute, as in (1.4),

Φ(t̄) =
k−1

∑
i=1
|ti − ti+1|+

k

∑
i=1
|ti − fi|2,
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where t̄ is defined by t̄ := (t1, · · · , tk). From (4.19) and (4.17) we have when k ≥ 3 (if
k = 2 go directly to (4.20))

k−1

∑
i=1
|ti − ti+1|

≤
k−1

∑
i=1
|ti − u(ai + 0)|+

k

∑
i=2
|ti − u(ai − 0)|+

k−1

∑
i=1
|u(ai + 0)− u(ai+1 − 0)|

=|t1 − u(a1 + 0)|+ |tk − u(ak − 0)|+
k−1

∑
i=2

(|ti − u(ai − 0)|+ |ti − u(ai + 0)|)

+
k−1

∑
i=1
|u(ai + 0)− u(ai+1 − 0)|

=|t1 − u(a1 + 0)|+ |tk − u(ak − 0)|+
k−1

∑
i=2
|u(ai + 0)− u(ai − 0)|

+
k−1

∑
i=2

ϕ(dist( fi, j(u)(ai))−
k−1

∑
i=2
|ti − fi|2 +

k−1

∑
i=1
|u(ai + 0)− u(ai+1 − 0)|.

Therefore,

Φ(t̄) =
k−1

∑
i=1
|ti − ti+1|+

k

∑
i=1
|ti − fi|2

≤|t1 − u(a1 + 0)|+ |tk − u(ak − 0)|+ |t1 − f1|2 + |tk − fk|2 +
k−1

∑
i=2
|u(ai + 0)

− u(ai − 0)|+
k−1

∑
i=1
|u(ai + 0)− u(ai+1 − 0)|+

k−1

∑
i=2

ϕ(dist( fi, j(u)(ai))

≤|t1 − u(a1 + 0)|+ |tk − u(ak − 0)|+ |t1 − f1|2 + |tk − fk|2

+
k−1

∑
i=1

∫ ai+1

ai

|u′|+
k−1

∑
i=2
|u(ai + 0)− u(ai − 0)|+

k−1

∑
i=2

ϕ(dist ( fi, j(u)(ai))

=|t1 − u(a1 + 0)|+ |tk − u(ak − 0)|+ |t1 − f1|2 + |tk − fk|2

+
∫ 1

0
|u′| −

∫ a1

0
|u′| −

∫ 1

ak

|u′| − |u(a1 + 0)− u(a1 − 0)|

− |u(ak + 0)− u(ak − 0)|+
k−1

∑
i=2

ϕ(dist( fi, j(u)(ai)).

Since u is a minimizer for Fr we know by (4.7) and (4.9) that

Fr(u) =
∫ 1

0
|u′|+

k

∑
i=1

ϕ(dist( fi, j(u)(ai)) = m,
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so that

Φ(t̄) ≤|t1 − u(a1 + 0)|+ |tk − u(ak − 0)|+ |t1 − f1|2 + |tk − fk|2

+ m− ϕ(dist( f1, j(u)(a1))− ϕ(dist( fk, j(u)(ak))−
∫ a1

0
|u′|

−
∫ 1

ak

|u′| − |u(a1 + 0)− u(a1 − 0)| − |u(ak + 0)− u(ak − 0)|. (4.20)

Finally we use (4.17) for i = 1 and i = k, and deduce from (4.20) that

Φ(t̄) ≤ −|t1 − u(a1 − 0)| − |tk − u(ak + 0)| −
∫ a1

0
|u′| −

∫ 1

ak

|u′|+ m. (4.21)

Therefore
Φ(t̄) ≤ m,

so that by (1.5), t̄ = (t1, · · · , tk) is a minimizer of Φ on Rk. By uniqueness we have

ti = Ui, ∀i. (4.22)

Moreover from (4.21) we deduce that

|t1 − u(a1 − 0)| = |tk − u(ak + 0)| =
∫ a1

0
|u′| =

∫ ak

0
|u′| = 0.

Consequently (4.12c) holds. Returning to the above estimates we infer that all inequalities
are equalities. In particular, ∀i = 1, · · · , k− 1,∫ ai+1

ai

|u′| = |u(ai + 0)− u(ai+1 − 0)| (4.23)

and

|ti − ti+1| = |ti − u(ai + 0)|+ |u(ai + 0)− u(ai+1 − 0)|+ |u(ai+1 − 0)− ti+1|. (4.24)

Equality (4.23) implies that u is monotone on the interval (ai, ai+1), while equality (4.24)
yields

sign(ti − ti+1) =sign(ti − u(ai + 0)) = sign(u(ai + 0)− u(ai+1 − 0))
=sign(u(ai+1 − 0)− ti+1).

In view of (4.22) we conclude easily that u satisfies (4.12a) - (4.12b).

Remark 4.2. Theorem 4.1 is stated in T. Sznigir [6] though the proof in [6] is somewhat
obscure.
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Remark 4.3. We have
|Ui − fi| ≤ 1, ∀i = 1, · · · , k. (4.25)

Indeed consider the piecewise linear function u` defined in Remark 2.1. Then u` satisfies

m = F(u`) = µ = Fr(u`).

In view of (4.2) this implies (4.25). Inequality (4.25) could also be deduced directly from
the fact that U = (U1, · · · , Uk) is a minimizer of Φ defined in (1.4). We have, using the
theory of sub-differentials,

0 ∈ 2(Ui − fi) + Sign (Ui −Ui−1) + Sign (Ui −Ui+1), ∀i = 2, · · · , k− 1, (4.26)

where Sign denotes as usual the monotone graph defined by

Sign(s) :=


+1, if s > 0,
[−1,+1], if s = 0,
−1, if s < 0.

This implies (4.25). On the other hand, we have

0 ∈ 2(U1 − f1) + Sign (U1 −U2),

and
0 ∈ 2(Uk − fk) + Sign (Uk −Uk−1),

which imply in fact that

|U1 − f1| ≤
1
2

and |Uk − fk| ≤
1
2

.

5 Where a mild pertubation can produce a big difference

In this section we consider a mild pertubation of the original functional F defined by (1.2)
and we show that the corresponding minimizing problems differ significantly from those
associated with F.

Set

G(u) = F(u) +
∫ 1

0
|u|2 =

∫ 1

0
|u′|+

k

∑
i=1
|u(ai)− fi|2 +

∫ 1

0
|u|2, (5.1)

where u ∈W1,1(0, 1). Our initial goal is to investigate the minimization problem

A = Inf
u∈W1,1

G(u). (5.2)
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It turns out that the infimum in (5.2) need not be achieved (see [6, 7] and Remark
5.2) and we will replace it by a relaxed problem defined on BV(0, 1) as we have done in
Section 3. For every v ∈ BV(0, 1) set

Gr(v) = Inf lim inf
n→∞

G(vn), (5.3)

where the Inf in (5.3) is taken over all sequences (vn) ⊂ W1,1(0, 1) such that vn → v in
L2(0, 1). It is easy to check that

Gr(v) = Fr(v) +
∫ 1

0
|v|2, ∀v ∈ BV(0, 1), (5.4)

so that Gr is strictly convex on BV(0, 1) and it is lower semicontinuous in the sense that
for every sequence (vn) ⊂ BV(0, 1) such that vn → v in L2(0, 1) as n→ ∞, we have

lim inf
n→∞

Gr(vn) ≥ Gr(v).

Consequently
B = Inf

v∈BV
Gr(v) (5.5)

is uniquely achieved, and we denote by v̄ ∈ BV(0, 1) its unique minimizer, i.e.,

B = Gr(v̄). (5.6)

We claim that
A = B. (5.7)

From (4.1), we deduce that Gr ≤ G on W1,1(0, 1), and thus

B = Inf
v∈BV

Gr(v) ≤ Inf
v∈W1,1

Gr(v) ≤ Inf
v∈W1,1

G(v) = A. (5.8)

On the other hand we have by (5.2)

A ≤ G(u) = F(u) +
∫ 1

0
|u|2, ∀u ∈W1,1(0, 1). (5.9)

From (5.9) and Step 1 in Section 3 we deduce that

A ≤ Fr(v) +
∫ 1

0
|v|2 = Gr(v), ∀v ∈ BV(0, 1), (5.10)

and thus
A ≤ Inf

v∈BV
Gr(v) = B. (5.11)

Combining (5.11) with (5.8) yields A = B.
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As a consequence, if Problem (5.2) admits a minimizer v0 ∈W1,1(0, 1), then

B ≤ Gr(v0) ≤ G(v0) = A,

so that, by (5.7), Gr(v0) = B, i.e., v0 is a minimizer for Problem (5.5). By uniqueness
v0 = v̄.

The bottom line is that we have replaced Problem (5.2) which need not have a solution
by Problem (5.5) which always admits a unique solution v̄. Therefore v̄ may be viewed as
the generalized solution of Problem (5.2).

Remark 5.1. This concept of generalized solution is quite robust. In particular if (un) ⊂
W1,1(0, 1) is a minimizing sequence for (5.2), then un → v̄ as n → ∞ in L2(0, 1). Indeed,
we have

Gr(un) ≤ G(un) ≤ A + o(1),

and a subsequence (unk) converges in L2(0, 1) to some ū ∈ BV(0, 1) satisfying

B ≤ Gr(ū) = A,

so that Gr(ū) = B and by uniqueness ū = v̄. Similarly, if we consider as in Remark 2.1,

G1,ε(u) = F1,ε(u) +
∫ 1

0
|u|2, G2,p(u) = F2,p(u) +

∫ 1

0
|u|2,

G3,ε(u) = F3,ε(u) +
∫ 1

0
|u|2,

their unique minimizers also converge in L2(0, 1) to v̄. This is an easy consequence of the
fact that C∞([0, 1]) is dense in W1,1(0, 1).

It turns out that the minimizer v̄ of (5.5) has a remarkable property:

Theorem 5.1. The minimizer v̄ of (5.5) is a constant Ki on each interval (ai, ai+1), i = 0, 1, · · · , k
with the convention that a0 = 0 and ak+1 = 1.

Moreover
|Ki| ≤ 1/|ai+1 − ai|, ∀i = 0, 1, · · · , k. (5.12)

The main ingredient in the proof of Theorem 5.1 is the following result taken from [3,
Theorem 3] with roots in [6, Theorem 3.16].

Lemma 5.1. Fix α, β, L ∈ R and consider the minimization problem

X = Inf
{∫ L

0
|u′|+

∫ L

0
|u|2; u ∈ BV(0, L), u(0) = α and u(L) = β

}
. (5.13)

A minimizer exists if and only if

α = β with |α| = |β| ≤ 1/L, (5.14)

and in this case the unique minimizer in (5.13) is the constant function α = β.
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Proof. For the convenience of the reader we review briefly the argument from [3]. Set

H(u) =
∫ L

0
|u′|+

∫ L

0
|u|2, u ∈W1,1(0, L), (5.15a)

u(0) = α, u(L) = β, (5.15b)

and for v ∈ BV(0, L),
Hr(v) = Inf lim inf

n→∞
H(vn), (5.16)

where the Inf in (5.16) is taken over all sequences (vn) ⊂ W1,1(0, L) such that vn → v in
L2(0, L), vn(0) = α and vn(L) = β.

From Lemmas 3.1 and 3.2 we know that

Hr(v) =
∫ L

0
|v′|+

∫ L

0
|v|2 + |v(0)− α|+ |v(L)− β|, ∀v ∈ BV(0, L). (5.17)

Moreover,
X = min

v∈BV
Hr(v). (5.18)

Problem (5.13) usually admits no minimizer, while Problem (5.18) always admits a unique
minimizer denoted V ∈ BV(0, L). If (by chance!) Problem (5.13) admits a minimizer
U ∈ BV(0, L), then U = V. On the other hand, if we happen to know that the minimizer
V of (5.18) satisfies V(0) = α and V(L) = β then V is a minimizer for (5.13).

To summarize, the existence of a minimizer for (5.13) boils down to the question
whether V satisfies V(0) = α and V(L) = β. We are thus led to study the properties
of V. It is convenient to distinguish two cases:

Case 1: αβ ≤ 0. Case 2: αβ > 0.

In Case 1 we have V ≡ 0 and we conclude that our original Problem (5.13) admits a
solution only if α = β = 0; in this case U ≡ 0 is the minimizer of (5.13).

In Case 2 we may assume, without loss of generality, that

0 < α ≤ β.

The heart of the matter is the surprising fact that V is a constant function (see the proof
of Lemma 5.1 in [3]). In order to identify the constant we compute Hr given by (5.17) on
the constant function v ≡ t; this yields

Hr(t) = Lt2 + |t− α|+ |t− β|.

An easy inspection shows that min
t≥0

Hr(t) is achieved at t = 1/L if α > 1/L and at t = α if

α ≤ 1/L.
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Proof of Theorem 5.1. We apply Lemma 5.1 on each interval (ai, ai+1) with L = ai+1 − ai,
α = v̄(ai + 0) and β = v̄(ai+1 − 0). Clearly v̄ restricted to (ai, ai+1) (and shifted) is a
minimizer for (5.13). Otherwise we could find a function w ∈ BV(ai, ai+1) such that∫ ai+1

ai

|w′|+
∫ ai+1

ai

|w|2 <
∫ ai+1

ai

|v̄′|+
∫ ai+1

ai

|v̄|2,

w(ai + 0) = v̄(ai + 0), w(ai+1 − 0) = v̄(ai+1 − 0).

Then the function w̄ ∈ BV(0, 1) defined by

w̄ :=

{
w on (ai, ai+1),
v̄ on (0, 1) \ (ai, ai+1),

would satisfy Gr(w̄) < Gr(v̄), which is imposible since v̄ is a minimizer for Gr on BV(0, 1).
We deduce from Lemma 5.1 that v̄ = Ki on (ai, ai+1), for some constant Ki satisfying
(5.12).

As an immediate consequence of Theorem 5.1 we have now an explicit finite-dimensional
convex minimization problem which governs Problem (5.5):

Corollary 5.1. The unique minimizer v̄ of (5.5) is given by

v̄ =
k

∑
i=0

K̄i1(ai ,ai+1) (5.19)

and the constants K̄i are obtained by minimizing

Ψ(K) =
k−1

∑
i=0
|Ki+1 − Ki|+

k

∑
i=1

ϕ(dist ( fi, Ji) +
k

∑
i=0

K2
i (ai+1 − ai) (5.20)

over K = (K0, · · · , Kk) ∈ Rk+1, where Ji denotes the interval [min(Ki−1, Ki), max(Ki−1, Ki)].

Finally we return to Problem (5.1) and derive some necessary conditions for the exis-
tence of a minimizer.

Corollary 5.2. Assume that Problem (5.1) admits a minimizer ū ∈W1,1(0, 1), then necessarily

ū ≡ K̄ ≡ 1
k + 1

k

∑
i=1

fi. (5.21)

Moreover we must have

| fi − K̄| ≤ 1, ∀i = 1, · · · , k, (5.22a)
(ai+1 − ai)|K̄| ≤ 1, ∀i = 0, 1, · · · , k, (5.22b)

so that in particular
|K̄| ≤ k + 1. (5.23)
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Proof of Corollary 5.2. Since ū is also a minimizer for (5.5) we know by Theorem 5.1 that ū
is constant on each interval (ai, ai+1). On the other hand ū ∈W1,1(0, 1), and thus

ū ≡ K̄ on (0, 1),

for some constant K̄. To identify K̄ we write that

G(K̄) ≤ G(t), ∀t ∈ R,

i.e.,
k

∑
i=1
|K̄− fi|2 + |K̄|2 ≤

k

∑
i=1
|t− fi|2 + t2, ∀t ∈ R,

which implies (5.21). Next we recall that, by (5.7),

G(ū) = Gr(ū).

Going back to (5.1) and (5.4) we see that

F(ū) = Fr(ū),

which implies (5.22a) by (4.2). Finally (5.22b) comes from (5.12).

Remark 5.2. In view of Corollary 5.2 it is easy to construct examples where Problem (5.2)
admits no minimizer. Take for example k = 2 and f1, f2 such that |2 f1 − f2| > 3.

6 Further directions of research

6.1) Try to adapt results from the previous sections to the following situations:
6.1.a) Let µ be a probability measure on [0, 1] and let

F(u) =
∫ 1

0
|u′|+

∫ 1

0
|u− f |2dµ, u ∈W1,1(0, 1),

where f is a given (smooth) function on [0, 1].
6.1.b) Let

F(u) =
∫ 1

0
(1 + |u′|2)1/2 +

k

∑
i=1
|u(ai)− fi|2, u ∈W1,1(0, 1),

where (ai) and ( fi) are as in Section 1.
6.2) Investigate the following minimization problem:

Inf

{
k

∑
i=1
|u(ai)− fi|2; u ∈W1,1(0, 1),

∫ 1

0
|u′| ≤ A,

(
resp.

∫ 1

0
(|u′|+ |u|2) ≤ A

)}
,
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where A > 0 is given.
6.3) Let Γ be a smooth curve in a domain Ω ⊂ R2 and let

F(u) =
∫

Ω
|∇u|+

∫
Γ
|u− f |dσ, u ∈W1,1(Ω),

where f is a given (smooth) function on Γ. Study the minimization of F.
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