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Abstract. Let 1< p<∞ and ω∈ Ap. The space CMO(Rn) is the closure in BMO(Rn)
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c (Rn). In this paper, an equivalent characterization of CMO(Rn) with
Ap weights is established.
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1 Introduction

The goal of this paper is to provide an equivalent characterization of CMO(Rn), which
is useful in the study of compactness of commutators of singular integral operator and
fractional integral operator.

The space BMO(Rn) is defined by the set of functions f ∈L1
loc(R

n) such that

∥ f ∥BMO(Rn) := sup
Q⊂Rn

M( f ,Q)<∞,

where
M( f ,Q) :=

1
|Q|

∫
Q
| f (x)− fQ|dx, fQ :=

1
|Q|

∫
Q

f (x)dx.

The space CMO(Rn) is the closure in BMO(Rn) of the set of C∞
c (Rn), which is a proper

subspace of BMO(Rn).
In fact, it is known that CMO(Rn)=VMO0(Rn), where VMO0(Rn) is the closure of

C0(Rn) in BMO(Rn), see [2, 3, 9]. Here C0(Rn) is the set of continuous functions on Rn

which vanish at infinity. Neri [8] gave a characterization of CMO(Rn) by Riesz trans-
forms. Meanwhile, Neri proposed the following characterization of CMO(Rn) and its
proof was established by Uchiyama in his remarkable work [11].
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Theorem 1.1. Let f ∈ BMO(Rn). Then f ∈CMO(Rn) if and only if f satisfies the following
three conditions

(a) lim
a→0

sup
|Q|=a

M( f ,Q)=0;

(b) lim
a→∞

sup
|Q|=a

M( f ,Q)=0;

(c) lim
|x|→∞

M( f ,Q+x)=0 for each cube Q⊂Rn, where Q+x :={y+x : y∈Q}.

Recently, Guo, Wu and Yang [6] established an equivalent characterization of space
CMO(Rn) by local mean oscillations. Lots of works about space CMO(Rn) have been
studied, see [4] for example. Muckenhoupt and Wheeden [7, Theorem 5] showed the
norm of BMOω(Rn)(see Definition 1.2) is equivalent to the norm of BMO(Rn), where
the weight function ω is Muckenhoupt Ap weight. So it is natural to consider equivalent
characterizations of CMO(Rn) associated to Ap weights.

To state our main results, we first recall some relevant notions and notations.
The following class of Ap was introduced in [1, 5].

Definition 1.1. Let ω(x)≥ 0 and ω(x)∈ L1
loc(R

n). For 1< p<∞, we say that ω(x)∈ Ap if
there exists a constant C>0 such that for any cube Q,( 1

|Q|

∫
Q

ω(x)dx
)( 1

|Q|

∫
Q

ω(x)−
1

p−1 dx
)p−1

≤C. (1.1)

Also, for p=1, we say that ω(x)∈A1 if there is a constant C>0 such that

Mω(x)≤Cω(x), (1.2)

where M is the Hardy-Littlewood maximal operator. For p≥ 1, the smallest constant appearing
in (1.1) and (1.2) is called the Ap characteristic constant of ω and is denoted by [ω]Ap .

Definition 1.2. Let ω∈Ap. For a cube Q in Rn, we say a function f∈L1
loc(R

n) is in BMOω(Rn)
if f satisfies

∥ f ∥BMOω(Rn) := sup
Q⊂Rn

M( f ,Q)ω <∞,

where

m( f ,Q)ω :=
1

ω(Q)

∫
Q

f (x)ω(x)dx,

M( f ,Q)ω :=
1

ω(Q)

∫
Q
| f (x)−m( f ,Q)ω|ω(x)dx.
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Let ω∈Ap(p≥1), q>1, f ∈L1
loc(R

n). Then BMOω,q(Rn) is defined by

∥ f ∥BMOω,q(Rn) := sup
Q⊂Rn

M( f ,Q)ω,q <∞,

where

M( f ,Q)ω,q :=
( 1

ω(Q)

∫
Q
| f (x)−m( f ,Q)ω|qω(x)dx

)1/q
.

Now, we can formulate our main results as follows.

Theorem 1.2. Let p≥ 1, 1< q<∞. Suppose f ∈ BMO(Rn) and ω ∈ Ap. Then the following
conditions are equivalent:

(1) f ∈CMO(Rn);

(2) f satisfies the following three conditions:

(i) lim
a→0

sup
|Q|=a

M( f ,Q)ω,q =0,

(ii) lim
a→∞

sup
|Q|=a

M( f ,Q)ω,q =0,

(iii) lim
|x|→∞

M( f ,Q+x)ω,q =0 for each Q⊂Rn.

(3) f satisfies the following three conditions:

(i′) lim
a→0

sup
|Q|=a

M( f ,Q)ω =0,

(ii′) lim
a→∞

sup
|Q|=a

M( f ,Q)ω =0,

(iii′) lim
|x|→∞

M( f ,Q+x)ω =0 for each Q⊂Rn.

Throughout this paper, the letter C, will stand for positive constants, not necessarily
the same one at each occurrence, but independent of the essential variables. If f ≤Cg, we
write f . g or g& f ; and if f . g. f , we write f ∼ g. A dyadic cube Q on Rn is a cube of
the form {

x=(x1,··· ,xn)∈Rn : ki2j ≤ xi < (ki+1)2j,i=1,··· ,n,ki ∈Z, j∈Z
}

,

Rj means {x∈Rn : |xi|< 2j,i= 1,2,··· ,n}. For λ> 0, λQ denotes the cube with the same
center as Q and side-length λ times the side-length of Q.

2 The proof of Theorem 1.2

This section is devoted to the proof of Theorem 1.2. To do this, we firstly recall some aux-
iliary lemmas. Note that [7, Theorem 3] impiles the following weighted John-Nirenberg
inequalities, also see [1, 10].
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Lemma 2.1. (John-Nirenberg) Let p∈ [1,∞), ω∈Ap and f ∈BMOω(Rn). For every α>0 and
cube Q, there exist constants c1 and c2 such that

ω({x∈Q : | f (x)− fQ|>α})< c1e
− α

c2∥ f ∥BMOω (Rn) ω(Q).

Next, we recall some useful properties of Ap weights.

Lemma 2.2 ([5]). Let ω∈Ap and 1≤ p<∞.

1. There exist 0<δ<1 and C>0 that depending only on the dimension n, p, and [ω]Ap such
that for any cube Q and any measurable subset S of Q we have

ω(S)
ω(Q)

≤C
( |S|
|Q|

)δ
. (2.1)

2. There exist constants C and γ> 0 that depending only on the dimension n, p, and [ω]Ap

such that for every cube Q we have( 1
|Q|

∫
Q

ω(x)1+γdx
) 1

1+γ ≤ C
|Q|

∫
Q

ω(x)dx. (2.2)

3. For all λ>1, and all cubes Q,

ω(λQ)≤λnp[ω]Ap ω(Q). (2.3)

Now, we are in position to prove the Theorem 1.2.

Proof. To prove (1)⇒(2) in Theorem 1.2. Assume that f ∈CMO(Rn). If f ∈C∞
c (Rn), then

(i)−(iii) hold. It is obvious that (i) holds for uniformly continuous functions f . Without
loss of generality, we assume supp( f )⊂Q0. Then for each Q⊂Rn, there exists h∈Rn, for
|x|> |h|, we have Q0∩(Q+x)=∅, (iii) holds.

Note that ( 1
ω(Q)

∫
Q
| f (x)−m( f ,Q)ω|qω(x)dx

)1/q

≤
( 1

ω(Q)

∫
Rn

| f (x)−m( f ,Q)ω|qω(x)dx
)1/q

.

For f ∈C∞
c (Rn), we have(∫

Rn
| f (x)−m( f ,Q)ω|qω(x)dx

)1/q
<∞.

On the other hand, Q(0,r) denotes the closed cube centered at 0 with side-length r.
For any x0∈Q(0,r), there exists a cube Q centered at x0 such that Q(0,r)⊂Q, by (2.1), we
get

1
ω(Q)

∫
Q
| f (x)−m( f ,Q)ω|qω(x)dx. 1

ω(Q(0,r))

( |Q(0,r)|
|Q|

)δ
,
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which tends to 0 as |Q| tends to +∞, (ii) holds.
If f ∈ CMO(Rn)\C∞

c (Rn), for any given ε > 0, there exists fε ∈ C∞
c (Rn) satisfying

(i)−(iii) and ∥ f − fε∥BMO(Rn)< ε. Then by Lemma 2.1 and (2.2), for ω∈Ap, 1< p<∞, it is
easy to see

∥ f − fε∥BMOω,q(Rn).∥ f − fε∥BMOω(Rn).∥ f − fε∥BMO(Rn). ε. (2.4)

The detailed proof of (2.4) also can be found in [1,7]. By (2.4) and the triangle inequal-
ity, we deduce that (i)−(iii) hold for f .

The proof of (2)⇒(3). By the Hölder inequality, we get

1
ω(Q)

∫
Q
| f (x)−m( f ,Q)ω|ω(x)dx

. 1
ω(Q)

(∫
Q
| f (x)−m( f ,Q)ω|qω(x)dx

)1/q(∫
Q

ω(x)dx
)1/q′

=
( 1

Q

∫
Q
| f (x)−m( f ,Q)ω|qω(x)

)1/q
, (2.5)

where 1/q+1/q′=1.
It follows from (2.5) that if f satisfies (i)−(iii) then f satisfies (i′)−(iii′).
The proof of (3)⇒(1). Now we show that if f satisfies (i′)−(iii′) then for all ε>0, there

exists gε ∈BMO(Rn) such that

inf
h∈C∞

c (Rn)
∥gε−h∥BMOω(Rn)<Cnε, (2.6)

∥gε− f ∥BMOω(Rn)<Cnε. (2.7)

We prove (2.6) and (2.7) by the following two steps.
Step I By (i′) and (ii′), there exist iε and kε such that

sup{M( f ,Q)ω : |Q|≤2n(iε+8)}< ε, (2.8)

sup{M( f ,Q)ω : |Q|≥2nkε}< ε. (2.9)

By (iii′), there exists jε > kε such that

sup{M( f ,Q)ω : Q∩Rjε =∅}< ε. (2.10)

Now for each x ∈ Rjε , we take dyadic cube Qx with side-length 2iε containing x; if x ∈
Rm\Rm−1(jε <m), Qx means a dyadic cube of side-length 2iε+m−jε . Set g

′
ε(x)=m( f ,Qx)ω,

by (ii′), there exists mε > jε such that

sup{|g′
ε(x)−g

′
ε(y)| : x,y∈Rmε \Rmε−1}< ε. (2.11)
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To see this, by (ii′), let mε> jε+kε−iε be large enough such that when ω(Rmε)≥2n(mε+iε−jε),

M( f ,Rmε+1)ω <
ε

C1(jε−iε+1)
(2.12)

for some positive constant C1.
For x∈Rmε \Rmε−1, it is obvious that

2jε−iε Qx ⊂Rmε+1⊂8·2jε−iε Qx.

This together with (2.12) and (2.3) imply that

|m( f ,2jε−iε Qx)ω−m( f ,Rmε+1)ω|

. ω(Rmε+1)

ω(2jε−iε Qx)
M( f ,Rmε+1)ω . ε

C1(jε−iε+1)
. ε

8
. (2.13)

Since Qx ⊂Rmε \Rmε−1, by (2.3) and (2.12), we have

|m( f ,Rmε+1)ω−m( f ,Rmε \Rmε−1)ω|

. ω(Rmε+1)

ω(Rmε \Rmε−1)
M( f ,Rmε+1)ω

.ω(8·2jε−iε Qx)

ω(Qx)
M( f ,Rmε+1)ω . ε

8
. (2.14)

By (2.13), (2.14) and (2.12), we conclude that for any Qx with x∈Rmε \Rmε−1,

|m( f ,Qx)ω−m( f ,Rmε \Rmε−1)ω|

.|m( f ,2jε−iε Qx)ω−m( f ,Rmε \Rmε−1)ω|+
jε−iε

∑
k=1

|m( f ,2kQx)ω−m( f ,2k−1Qx)ω|

.|m( f ,2jε−iε Qx)ω−m( f ,Rmε+1)ω|

+|m( f ,Rmε+1)ω−m( f ,Rmε \Rmε−1)ω|+
jε−iε

∑
k=1

2np ε

C1(jε−iε+1)

. ε

8
+

ε

8
+

2np

C1
ε. ε

2
. (2.15)

For any Qx,Qy ⊂Rmε \Rmε−1, by (2.15), we get

|m( f ,Qx)ω−m( f ,Qy)ω|
.|m( f ,Qx)ω−m( f ,Rmε \Rmε−1)ω|+|m( f ,Rmε \Rmε−1)ω−m( f ,Qy)ω|
.ε.
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Step II Define gε(x)=g
′
ε(x) when x∈Rmε and gε(x)=m( f ,Rmε\Rmε−1)ω when x∈Rc

mε
.

Notice that
i f Q̄x∩Q̄y ̸=∅, diam Qx ≤2diam Qy. (2.16)

By the definition of iε, jε and mε, if Q̄x∩Q̄y ̸=∅ or x,y∈Rc
mε−1, there exists C2>0 such that

|gε(x)−gε(y)|<C2ε. (2.17)

In fact, assume that |x|< |y|. Firstly, we show that if x,y∈Rc
mε−1, then (2.17) holds. By

noting that x,y∈Rc
mε

, we get

gε(x)= gε(y)=m( f ,Rmε \Rmε−1)ω

and (2.17) holds. Next, if x,y∈Rmε \Rmε−1, we deduce from (2.11) that

|gε(x)−gε(y)|= |g′
ε(x)−g

′
ε(y)|< ε.

Thirdly, if x∈Rmε \Rmε−1 and y∈Rc
mε

, (2.15) indicates that

|gε(x)−gε(y)|= |m( f ,Qx)ω−m( f ,Rmε \Rmε−1)ω|< ε.

Now we show if Q̄x∩Q̄y ̸=∅, then (2.17) holds. We assume that Qx ̸=Qy and let Q be
the smallest cube containing Qx and Qy, then Q⊂4Qx. If x,y∈Rjε , then

Qx,Qy ⊂Rjε and |Q|<2n(iε+4),

by (2.8), (2.17) holds. Similarly, if Qx ⊂ Rjε , Qy ⊂ Rmε−1 and Q̄x∩Q̄y ̸=∅, by (2.8), (2.17)
also holds. If x,y∈Rc

mε−1, notice that Q∩Rjε =∅ and by (2.10),

|g′
ε(x)−m( f ,Q)ω|.

ω(Q)

ω(Qx)
M( f ,Q)ω . ε.

Similarly, we have
|g′

ε(y)−m( f ,Q)ω|. ε.

Hence
|g′

ε(x)−g
′
ε(y)|. |g′

ε(x)−m( f ,Q)ω|+|m( f ,Q)ω−g
′
ε(y)|. ε.

Combining these cases, (2.17) holds.
We turn to prove that gε satisfies (2.6). Set

∼
hε(x) := gε(x)−m( f ,Rmε \Rmε−1)ω.

By the definition of gε, we get

∼
hε(x)=0 for any x∈Rmε , ∥

∼
hε−gε∥BMOω(Rn)=0.
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Moreover, if Q̄x∩Q̄y ̸=∅ or x,y∈Rc
mε−1, by (2.17), we have

|
∼
hε(x)−

∼
hε(y)|= |gε(x)−gε(y)|<C2ε.

Observe that supp(
∼
hε)⊂Rmε . Take a positive valued function φ(x)∈C∞

c (Rn) supported
in B(0,1) and

∫
Rn φ(x)dx=1. For t>0, set

φt(x)=
1
tn φ(

x
t
).

Select t<2iε , then

|φt∗
∼
hε(x)−

∼
hε(x)|.

∫
Rn

φt(y)|
∼
hε(x−y)−

∼
hε(x)|dy

=
∫

Rn
φ(u)|

∼
hε(x−tu)−

∼
hε(x)|du. sup

u∈Rn
|
∼
hε(x−tu)−

∼
hε(x)|,

where in the second inequality we make the change of variable y=ut.
Since u∈B(0,1) and t<2iε , ∀x∈Rn,

|(x−tu)−x|= |tu|<2iε .

By (2.17), if x,x−tu∈Rmε , Q̄x∩Q̄x−tu ̸=∅, hence

|
∼
hε(x−tu)−

∼
hε(x)|<C2ε.

If one of x and x−tu in Rc
mε

, the other must be in Rc
mε−1, we also have

|
∼
hε(x−tu)−

∼
hε(x)|<C2ε.

Moreover, φt∗
∼
hε(x)∈C∞

c (Rn) and

∥φt∗
∼
hε−

∼
hε∥BMOω(Rn).∥φt∗

∼
hε−

∼
hε∥L∞(Rn)+ε.

Therefore

∥φt∗
∼
hε−gε∥BMOω(Rn)

.∥φt∗
∼
hε−

∼
hε∥BMOω(Rn)+∥

∼
hε−gε∥BMOω(Rn)

.∥φt∗
∼
hε−

∼
hε∥L∞(Rn)+ε.

We obtain that (2.6) holds.
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Now we prove (2.7). By the definition iε and jε again, we obtain that for any x∈Rmε ,∫
Qx

| f (y)−gε(y)|ω(y)dy.ω(Qx)ε. (2.18)

Indeed, ∫
Qx

| f (y)−gε(y)|ω(y)dy=
∫

Qx

| f (y)−m( f ,Qx)ω|ω(y)dy.

If Qx∩Rjε =∅, by (2.10), (2.18) holds. If Qx∩Rjε ̸=∅, using (2.8), (2.18) holds.
Let Q be a arbitrary cube in Rn. In order to prove (2.7) holds, it suffices to show

M( f −gε,Q)ω < ε. (2.19)

We consider the following four cases:
Case(i): Q ⊂ Rmε and max{diam Qx : Qx∩Q ̸= ∅}> 4diam Q, by (2.16), the number of
Qx∩Q ̸=∅ is finite. If Qxi ∩Q ̸=∅ and Qxj ∩Q ̸=∅, Q̄xi ∩Q̄yj ̸=∅, by (2.17),

M(gε,Q)ω . 1
ω(Q) ∑

i:Qxi∩Q ̸=∅

∫
Qxi∩Q

|gε(x)−m(gε,Q)ω|ω(x)dx

. 1
ω(Q) ∑

i:Qxi∩Q ̸=∅

∫
Qxi∩Q

1
ω(Q) ∑

j:Qxj∩Q ̸=∅

∫
Qxj∩Q

|gε(x)−gε(y)|ω(y)dyω(x)dx

. ε.

Moreover, if Q∩Rjε ̸=∅, then |Q|≤2n(iε+1), by (2.8), we have M( f ,Q)ω < ε; if Q∩Rjε =∅,
by (2.10), we also obtain M( f ,Q)ω < ε . Hence

M( f −gε,Q)ω .M( f ,Q)ω+M(gε,Q)ω . ε.

Case(ii): Q⊂Rmε and max{diam Qx : Qx∩Q ̸=∅}≤4diam Q, we have

∪
Qxi∩Q ̸=∅

⊃Q , ∑
Qxi∩Q ̸=∅

ω(Qxi)∼ω(Q).

Invoking (2.18), we get

M( f −gε,Q)ω . 2
ω(Q) ∑

Qxi∩Q ̸=∅

∫
Qxi

| f (y)−gε(y)|ω(y)dy

. 2
ω(Q) ∑

Qxi∩Q ̸=∅
ω(Qxi)ε. ε.

Case(iii): Q⊂Rc
mε−1, then Q∩Rjε =∅ and M( f ,Q)ω < ε. Using (2.17),

M(gε,Q)ω . 1
ω(Q)

∫
Q

1
ω(Q)

∫
Q
|gε(x)−gε(y)|ω(y)dyω(x)dx< ε.
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Hence
M( f −gε,Q)ω .M( f ,Q)ω+M(gε,Q)ω < ε.

Case(iv): Q∩Rc
mε
̸=∅ and Q∩Rmε−1 ̸=∅. Let PQ be a smallest positive number such that

Q⊂RPQ . Then
M( f ,Q)ω .M( f ,RPQ)ω.

Moreover,

M( f −gε,RPQ)ωω(RPQ).
∫

RPQ

|( f −gε)(x)−m( f −gε,RPQ \Rmε)ω|ω(x)dx

.
∫

RPQ

| f (x)−m( f ,RPQ \Rmε)ω|ω(x)dx+
∫

RPQ

|gε(x)−m(gε,RPQ \Rmε)ω|ω(x)dx.

On the one hand, by (2.18), we have∫
RPQ

| f (x)−m( f ,RPQ \Rmε)ω|ω(x)dx

.
∫

RPQ

| f (x)−m( f ,RPQ)ω|ω(x)dx+|m( f ,RPQ)ω−m( f ,RPQ \Rmε)ω|ω(RPQ)

.
∫

RPQ

| f (x)−m( f ,RPQ)ω|ω(x)dx

.ω(RPQ)ε.

On the other hand, it is easy to prove that

∑
i:Qxi⊂Rmε

ω(Qxi) ∼ ω(Rmε).

Combining with (2.9) and (2.18) and the fact that gε(x)=gε(y) for any x,y∈Rc
mε

, we obtain∫
RPQ

|gε(x)−m(gε,RPQ \Rmε)ω|ω(x)dx

. 1
ω(RPQ \Rmε)

∫
RPQ

∫
RPQ\Rmε

|gε(x)−gε(y)|ω(y)dyω(x)dx

=
1

ω(RPQ \Rmε)

∫
Rmε

∫
RPQ\Rmε

|gε(x)−gε(y)|ω(y)dyω(x)dx

. 1
ω(RPQ \Rmε)

∫
Rmε

∫
RPQ\Rmε

[
|gε(x)− f (x)|

+| f (x)−m( f ,Rmε \Rmε−1)|
]
ω(y)dyω(x)dx

. 1
ω(RPQ \Rmε)

∫
RPQ\Rmε

∑
i:Qxi⊂Rmε

∫
Qxi

|gε(x)− f (x)|ω(x)dxω(y)
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+
∫

Rmε

[
| f (x)−m( f ,Rmε)ω|+|m( f ,Rmε)ω−m( f ,Rmε \Rmε−1)ω|

]
ω(x)dx

. 1
ω(RPQ \Rmε)

∫
RPQ\Rmε

ε ∑
i:Qxi⊂Rmε

ω(Qxi)ω(y)dy

+
∫

Rmε

| f (x)−m( f ,Rmε)ω|ω(x)dx

.ω(Rmε)ε.ω(RPQ)ε.

This implies (2.7) and completes the proof of Theorem 1.2.
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