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Abstract. A C2 function on Rn is called strictly (n−1)-convex if the sum of any n−1
eigenvalues of its Hessian is positive. In this paper, we establish a global C2 estimates
to the Monge-Ampère equation for strictly (n−1)-convex functions with Neumann
condition. By the method of continuity, we prove an existence theorem for strictly
(n−1)-convex solutions of the Neumann problems.
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1 Introduction

Let Ω⊂Rn be a bounded convex domain and ν(x) be the outer unit normal at x ∈ ∂Ω.
Suppose f ∈ C2(Ω) is positive and ϕ ∈ C3(Ω). In this paper, we mainly consider the
following equations of Monge-Ampère type with Neumann condition,

det(W)= f (x), in Ω,
∂u
∂ν

=−u+ϕ(x), in ∂Ω.
(1.1)

where the matrix W=(wα1···αm,β1···βm)n×n, for m=n−1, with the elements as follows,

wα1···αm,β1···βm =
m

∑
i=1

n

∑
j=1

uαi jδ
α1···αi−1 jαi+1···αm
β1···βi−1βi βi+1···βm

, (1.2)

a linear combination of uij, where uij =
∂2u

∂xi∂xj
and δ

α1···αi−1γαi+1···αm
β1···βi−1βi βi+1···βm

is the generalized Kro-
necker symbol. All indexes i, j,αi,βi,··· come from 1 to n.
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For general 1 ≤ m ≤ n−1, the matrix W ∈ RCm
n ×Cm

n , Cm
n = n!

m!(n−m)! , comes from the

following operator U[m] as in [2] and [10]. First, note that (uij)n×n induces an operator U
on Rn by

U(ei)=
n

∑
j=1

uijej, ∀1≤ i≤n,

where {e1,e2,··· ,en} is the standard orthogonal basis of Rn. We further extend U to act on
the real vector space ∧mRn by

U[m](eα1∧···∧eαm)=
m

∑
i=1

eα1∧···∧U(eαi)∧···∧eαm ,

where {eα1∧···∧eαm | 1≤α1< ···<αm ≤n} is the standard basis for ∧mRn. Then W is the
matrix of U[m] under this standard basis. It is convenient to denote the multi-index by
α=(α1 ···αm). We only consider the increasing multi-index, that is, 1≤ α1 < ···< αm ≤n.
By the dictionary arrangement, we can arrange all increasing multi-indexes from 1 to Cm

n ,
and use Nα denote the order number of the multi-index α = (α1 ···αm), i.e., Nα = 1 for
α=(12···m), ···. We also use α denote the index set {α1,··· ,αm} without confusion. It is
not hard to see that

WNα Nα
=wα,α =

m

∑
i=1

uαiαi , (1.3)

WNα Nβ
=wαβ =(−1)|i−j|uαi β j , (1.4)

if the index set {α1,···,αm}\{αi} equals to the index set {β1,···,βm}\{β j} but αi ̸=β j ; and
also

WNα Nβ
=wαβ =0, (1.5)

if the index sets {α1,···,αm} and {β1,···,βm} have more than one different element. Specif-
ically, for n=3,m=2, we have

W=

 u11+u22 u23 −u13
u32 u11+u33 u12
−u31 u21 u22+u33

.

It follows that W is symmetrical and diagonal with (uij)n×n diagonal. The eigenvalues of
W are the sums of eigenvalues of (uij)n×n. Denoted by µ(D2u) = (µ1,··· ,µn) the eigen-
values of the Hessian and by λ(W)=(λ1,λ2,··· ,λCm

n
) the eigenvalues of W. Generally, for

any k=1,2,··· ,Cm
n , we define the kth elementary symmetry function by

Sk(W)=Sk
(
λ(W)

)
= ∑

1≤i1<i2<···<ik≤Cm
n

λi1 λi2 ···λik ,
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We also set S0=1. In particular, we have

det(W)=SCm
n
(W)=λ1λ2 ···λCm

n
= ∏

1≤i1<i2<···<im≤n
(µi1+µi2+···+µim).

If m=1, the equation (1.1) is known as Monge-Ampère equation.
Define the Gårding’s cone in Rn by

Γk,n ={µ∈Rn| Si(µ)>0,∀1≤ i≤ k}.

Then we define the generalized Gårding’s cone by, for 1≤m≤n, 1≤ k≤Cm
n ,

Γ(m)
k,n ={µ∈Rn| {µi1+···+µim | 1≤ i1< ···< im ≤n}∈Γk,Cm

n
}.

In the absence of ambiguity, we omit the subscript n for simplicity. Obviously, Γk =Γ(1)
k

and Γn ⊂ Γ(m)
k ⊂ Γ1. Normally, we say a C2 function u is convex if any eigenvalue of

the Hessian is nonnegative, equivalently µ(D2u)∈ Γn. Similarly, we give the following
definition of m-convexity.

Definition 1.1. We say a C2 function u is strictly m-convex if µ(D2u)∈Γ(m)
Cm

n
, i.e., the sum of any

m eigenvalues of the Hessian is positive. Furthermore, we say u is m-convex if µ(D2u)∈ Γ(m)
Cm

n
,

i.e., the sum of any m eigenvalues of the Hessian is nonnegative.

In particular, if µ(D2u)∈Γ(n−1)
n for any x∈Ω, then equivalently λ(W)∈Γn, such that

the equation (1.1) is elliptic (see [2] or [18]). In addition, we say u is a strictly (n−1)-
convex solution if u is a solution of (1.1).

For the Dirichlet problem in Rn, many results are known. For example, the Dirich-
let problem of Laplace equation is studied in [8], Caffarelli-Nirenberg-Spruck [1], and
Ivochkina [16] solved the Dirichlet problem of Monge-Ampère equation, and Caffarelli-
Nirenberg-Spruck [2] solved the Dirichlet problem of general Hessian equations even in-
cluding the case considered here. For the general Hessian quotient equation, the Dirichlet
problem is solved by Trudinger in [31]. Finally, Guan [9] treated the Dirichlet problem
for general fully nonlinear elliptic equation on the Riemannian manifolds.

Also, the Neumann or oblique derivative problem of partial differential equations
was widely studied. For a priori estimates and the existence theorem of Laplace equa-
tion with Neumann boundary condition, we refer to the book [8]. Also, we can see the
book written by Lieberman [17] for the Neumann or oblique derivative problem of linear
and quasilinear elliptic equations. In 1987, Lions-Trudinger-Urbas solved the Neumann
problem of Monge-Ampère equation in the celebrated paper [21]. For the the Neumann
problem of k-Hessian equations, Trudinger [32] established the existence theorem when
the domain is a ball, and he conjectured (in [32], page 305) that one can solve the problem
in sufficiently smooth uniformly convex domains. Recently, Ma and Qiu [22] gave a posi-
tive answer to this problem and solved the the Neumann problem of k-Hessian equations
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in uniformly convex domains. After their work, the research on the Neumann problem
of other equatios has made progresses (see, e.g., [3, 4, 23, 33]).

Similarly to m-convexity for the Hessian (see Definition 1.1), we can formulate the
notion of m-convexity for curvature operator and second fundamental forms of hyper-
surfaces. There are large amount literature in differential geometry on this subject. For
example, Sha [25] and Wu [34] introduced the m-convexity of the sectional curvature of
Riemannian manifolds and studied the topology for these manifolds. In a series interest-
ing papers, Harvey and Lawson ([11-13]) introduce some generalized convexities on the
solutions of the nonlinear elliptic Dirichlet problem, m-convexity is a special case. Han-
Ma-Wu [10] obtained an existence theorem of m-convex starshaped hypersurface with
prescribed mean curvature. More recently, in the complex space Cn case, Tosatti and
Weinkove ([29, 30]) solved the Monge-Ampère equation for (n−1)-plurisubharmonic
functions on a compact Kähler manifold, where the (n−1)-plurisubharmonicity means
the sum of any n−1 eigenvalues of the complex Hessian is nonnegative.

From the above geometry and analysis reasons, it is naturally to study the Neumann
problem (1.1). In [6], the author considered the following Neumann problem for general
fully nonlinear equations 

Sk(W)= f (x), in Ω,
∂u
∂ν

=−u+ϕ(x), on ∂Ω.
(1.6)

Eq. (1.1) is a special case of (1.6) when m=n−1,k=n. Parallel to Definition 1.1, we give

Definition 1.2. We say u is k-admissible if µ(D2u)∈Γ(m)
k . Particularly, if k=Cm

n , u is strictly
m-convex.

For k≤Cm−1
n−1 = m

n Cm
n , we obtained an existence theorem of the k-admissible solution

with less geometric restrictions to the boundary. For m< n
2 and k=Cm−1

n−1 +k0≤ n−m
n Cm

n , we

got an existence theorem if Ω is strictly (m,k0)-convex, i.e., κ∈Γ(m)
k0

, where κ=(κ1,··· ,κn−1)
denote the principal curvatures of ∂Ω with respect to its inner normal −ν. We didn’t
prove the existence for strictly m-convex solution for the equation (1.6) in [6]. Particularly,
for m=n−1 (maybe the most interesting case except the case m=1), we got the existence
of the k-admissible solution for k≤n−1 only except that of the (n−1)-convex solution for
k= n. In this paper, given a strong geometric restriction to the boundary, we can prove
the existence of strictly (n−1)-convex solution to the Neumann problem (1.1).

We always denote κ=(κ1,··· ,κn−1) the principal curvature and H=∑n−1
i=1 κi the mean

curvature of the boundary. We now state the main result of this paper as follows.

Theorem 1.1. Suppose Ω⊂Rn (n≥3) is a bounded strictly convex domain with C4 boundary.
Denote κmax(x) (κmin(x)) the maximum (minimum) principal curvature at x∈∂Ω such that

κmax−κmin<
H

2(n−1)(n−2)
. (1.7)
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Let f ∈C2(Ω) be a positive function and ϕ∈C3(Ω). Then there exists a unique strictly (n−1)-
convex solution u∈C3,α(Ω) of the Neumann problem (1.1).

We may point out that the curvature condition (1.7) is only used to obtain the upper
bound for the double normal derivative in Lemma 4.3. When the dimension n is large, it
is easy to see that the domain Ω is almost a ball. As a special case, for n=3, H=κmax+κmin,
we have

Corollary 1.1. Suppose Ω⊂R3 is a bounded strictly convex domain with C4 boundary. Denote
κmax(x) (κmin(x)) the maximum (minimum) principal curvature at x ∈ ∂Ω such that κmax <
5
3 κmin. Let f ∈C2(Ω) be a positive function and ϕ∈C3(Ω). Then there exists a unique strictly
2-convex solution u∈C3,α(Ω) of the Neumann problem (1.1).

The rest of this paper is arranged as follows. In Section 2, we give some basic proper-
ties of the elementary symmetric functions and some notations. In Section 3, we establish
a priori C0 estimates and global gradient estimates. In Section 4, we show the proof of the
global estimates of second order derivatives. Finally, we can prove the existence theorem
by the method of continuity in Section 5.

2 Preliminary

In this section, we give some basic properties of elementary symmetric functions and
some notations. First, we denote by Sk(λ|i) the symmetric function with λi = 0 and
Sk(λ|ij) the symmetric function with λi =λj =0.

Proposition 2.1. Let λ=(λ1,··· ,λn)∈Rn and k=1,··· ,n, then

Sk(λ)=Sk(λ|i)+λiSk−1(λ|i), ∀1≤ i≤n, (2.1)
n

∑
i=1

λiSk−1(λ|i)= kSk(λ), (2.2)

n

∑
i=1

Sk(λ|i)=(n−k)Sk(λ). (2.3)

We also denote by Sk(W|i) the symmetric function with W deleting the i-row and i-
column and Sk(W|ij) the symmetric function with W deleting the i, j-rows and i, j-columns.
Then we have the following identities.

Proposition 2.2. Suppose A=(aij)n×n is diagonal and k is a positive integer, then

∂Sk(A)

∂aij
=

{
Sk−1(A|i), if i= j,
0, if i ̸= j.

(2.4)
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Furthermore, suppose W=(wαβ)Cm
n ×Cm

n
defined as in (1.2) is diagonal, then

∂Sk(W)

∂uij
=

∑
i∈α

Sk−1(W|Nα), if i= j,

0, if i ̸= j.
(2.5)

Proof. For (2.4), see a proof in [18]. Note that

∂Sk(W)

∂uij
=∑

α,β

∂Sk(W)

∂wαβ

∂wαβ

∂uij
, (2.6)

Using (1.3) and (1.4), then (1.5) and (2.5) are immediate consequences of (2.4).

Recall that the Gårding’s cone is defined by

Γk =
{

λ∈Rn| Si(λ)>0, ∀ 1≤ i≤ k
}

.

Proposition 2.3. Let λ∈ Γk and k∈{1,··· ,n}. Suppose that λ1 ≥ ···≥λk ≥ ···≥λn, then we
have

Sk−1(λ|n)≥···≥Sk−1(λ|k)≥···≥Sk−1(λ|1)>0, (2.7)

λ1Sk−1(λ|1)≥
k
n

Sk(λ), (2.8)

S
1
k
k (λ) is concave in Γk. (2.9)

Proof. All the properties are well-known. For example, see [18] or [15] for a proof of
(2.7), [5] or [14] for (2.8) and [2] for (2.9).

The Newton-Maclaurin inequality is as follows:

Proposition 2.4. For λ∈Γk and k> l>0, we have(
Sk(λ)

Ck
n

) 1
k

≤
(

Sl(λ)

Cl
n

) 1
l

, (2.10)

where Ck
n =

n!
k!(n−k)! . Furthermore we have

n

∑
i=1

∂S
1
k
k

∂λi
≥ [Ck

n]
1
k . (2.11)

Proof. See [28] for a proof of (2.10). For (2.11), we use (2.10) and Proposition 2.1 to get

n

∑
i=1

∂S
1
k
k (λ)

∂λi
=

1
k

S
1
k −1
k

n

∑
i=1

Sk−1(λ|i)=
n−k+1

k
S

1
k −1
k Sk−1(λ)≥ [Ck

n]
1
k .

This completes the proof of the proposition.
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We define
d(x)=dist(x,∂Ω), Ωµ ={x∈Ω| d(x)<µ}. (2.12)

It is well known that there exists a small positive universal constant µ0 such that d(x)∈
C4(Ωµ), ∀0< µ≤ µ0, provided ∂Ω∈C4. As in Simon-Spruck [27] or Lieberman [17] (p.
331), we can extend ν by ν =−Dd in Ωµ and note that ν is a C3(Ωµ) vector field. As
mentioned in the book [17], we also have the following formulas

|Dν|+|D2ν|≤C(n,Ω), in Ωµ, (2.13a)
n

∑
i=1

νiDjν
i =

n

∑
i=1

νiDiν
j =

n

∑
i=1

didij =0, in Ωµ, (2.13b)

|ν|= |Dd|=1, in Ωµ. (2.13c)

3 The zero-order and first-order estimates

As proved in [6], we have the following theorem.

Theorem 3.1. Let Ω⊂Rn (n≥ 3) be a bounded domain with C3 boundary, and f ∈C1(Ω) be
a positive function and ϕ∈C3(Ω). Suppose that u∈C2(Ω)∩C3(Ω) is a k-admissible solution
of the Neumann problem (1.6). Then there exists a constant C1 depending only on k,m,n, | f |C1 ,
|ϕ|C3 and Ω, such that

sup
Ω

(|u|+|Du|)≤C1. (3.1)

Proof. See Theorem 3.1 in [6] for the zero-order estimate. See Theorem 4.2 and Theorem
4.4 in [6] for the first-order estimate. The proof of the gradient estimates could also be
found in [7].

4 Global second order derivatives estimates

Generally, the double normal estimates are the most important and hardest parts for the
Neumann problem. As in [21] and [22], we construct sub and super barrier functions to
give lower and upper bounds for uνν on the boundary. Then we give the global second
order estimates.

In this section, we establish the following global second order estimate.

Theorem 4.1. Suppose Ω⊂Rn (n≥3) is a bounded strictly convex domain with C4 boundary.
Denote κmax(x) (κmin(x)) the maximum (minimum) principal curvature at x∈∂Ω such that

κmax−κmin<
γH

2(n−1)(n−2)
∀ γ∈ [

1
2

,1).
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Let f (x,z)∈C2(Ω×R) be a positive function and ϕ(x,z)∈C3(Ω×R) be decreasing with respect
to z. If u∈C3,α(Ω) is a strictly (n−1)-convex solution of the Neumann problem

det(W)= f (x,u), in Ω,
∂u
∂ν

=ϕ(x,u), on ∂Ω.
(4.1)

Then we have

sup
Ω

|D2u|≤C, (4.2)

where C depends only on n, γ, |u|C1(Ω),| f |C2(Ω×[−M0,M0])
, min f , |ϕ|C3(Ω×[−M0,M0])

and Ω, with
M0=supΩ |u|.

Throughout the rest of this paper, we always admit the Einstein’s summation con-
vention. All repeated indices come from 1 to n. We will always denote F(D2u)=det(W)
and

Fij =
∂F(D2u)

∂uij
=

∂det(W)

∂wαβ

∂wαβ

∂uij
. (4.3)

From (1.3) and (2.5) in Proposition 2.2 we have, for any 1≤ i≤n,

Fii =∑
i∈α

∂det(W)

∂wαα
=∑

i∈α

Sn−1(W|Nα). (4.4)

Throughout the rest of the paper, we will also denote

F=
n

∑
i=1

Fii =(n−1)
n

∑
Nα=1

Sn−1(W|Nα)

for simplicity.

4.1 Reduce the global second derivative estimates into double normal deriva-
tives estimates on boundary

Using the method of Lions-Trudinger-Urbas [21], we can reduce the second derivative
estimates of the solution into the boundary double normal estimates.

Lemma 4.1. Let Ω ⊂ Rn be a bounded strictly convex domain with C4 boundary. Assume
f (x,z) ∈ C2(Ω×R) is positive and ϕ(x,z) ∈ C3(Ω×R) is decreasing with respect to z. If u
is a strictly (n−1)-convex solution of the Neumann problem (4.1), denote N=sup

∂Ω
|uνν|, then we

have

sup
Ω

|D2u|≤C0(1+N), (4.5)
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where C0 depends only on n, |u|C1(Ω), | f |C2(Ω×[−M0,M0])
, min f , |ϕ|C3(Ω×[−M0,M0])

and Ω, with
M0=supΩ |u|.

Proof. Write Eq. (4.1) in the form ofdet(W)
1
n = f̃ (x,u), in Ω,

∂u
∂ν

=ϕ(x,u), on ∂Ω,
(4.6)

where f̃ = f
1
n . Since λ(W)∈Γn ⊂Γ2 in Rn, we have

∑
i ̸=j

|uij|≤ c(n)S1(W)= c(n)S1(D2u), (4.7)

where c(n) is a universal number independent of u. It is sufficiently to prove (4.5) for any
direction ξ∈Sn−1, that is

uξξ ≤C0(1+N). (4.8)

We consider the following auxiliary function in Ω×Sn−1,

v(x,ξ)=uξξ−v′(x,ξ)+K1|x|2+K2|Du|2, (4.9)

where
v′(x,ξ)= alul+b=2(ξ ·ν)ξ ′ ·(Dxϕ+ϕzDu−ul Dνl),

with ξ ′= ξ−(ξ ·ν)ν and

al =2(ξ ·ν)(ξ ′lϕz−ξ ′iDiν
l), b=2(ξ ·ν)ξ ′lϕxl .

K1, K2 are positive constants to be determined. By direct computations, we have

vi =uξξi−Dialul−aluli−Dib+2K1xi+2K2ululi, (4.10)

vij =uξξij−Dijalul−Dialul j−Djaluli−alulij−Dijb

+2K1δij+2K2uliul j+2K2ululij. (4.11)

Denote F̃(D2u)=det(W)
1
n , and

F̃ij =
∂F̃
∂uij

=
1
n

det(W)
1−n

n
∂det(W)

∂wαβ

∂wαβ

∂uij
, (4.12)

and

F̃pq,rs =
∂2F̃

∂upq∂urs
=

1
n

det(W)
1−n

n
∂2det(W)

∂wαβ∂wηξ

∂wαβ

∂upq

∂wηξ

∂urs
, (4.13)
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since wαβ is a linear combination of uij, 1≤ i, j≤n. Differentiating Eq. (4.6) twice, we have

F̃ijuijl =Dl f̃ , (4.14)

F̃pq,rsupqξursξ+ F̃ijuijξξ =Dξξ f̃ . (4.15)

By the concavity of det(W)
1
n operator with respect to W, we have

Dξξ f̃ = F̃pq,rsupqξursξ+ F̃ijuijξξ ≤ F̃ijuijξξ . (4.16)

Now we contract (4.11) with F̃ij to get, using (4.14)-(4.16),

F̃ijvij = F̃ijuijξξ− F̃ijDijalul−2F̃ijDialul j− F̃ijuijlal

−F̃ijDijb+2K1F̃+2K2F̃ijuilujl+2K2F̃ijuijlul

≥ Dξξ f̃ − F̃ijDijalul−2F̃ijDialuij−al Dl f̃ − F̃ijDijb

+2K1F̃+2K2F̃ijuilujl+2K2ul Dl f̃ , (4.17)

where F̃=
n
∑

i=1
F̃ii. Note that

Dξξ f̃ = f̃ξξ+2 f̃ξzuξ+ f̃zuξξ , Dijal =2(ξ ·ν)ξ ′lϕzzuij+rl
ij,

Dijb=2(ξ ·ν)ξ ′lϕxlzuij+rij,

with |rl
ij|,|rij|≤C(|u|C1 ,|ϕ|C3 ,|∂Ω|C4). At the maximum point x0 ∈Ω of v, we can assume

(uij)n×n is diagonal. It follows that, by the Cauchy-Schwartz inequality,

F̃ijvij ≥ −C(F̃+K2+1)−CF̃ii|uii|+ f̃zuξξ+2K1F̃+2K2F̃iiu2
ii

≥ −C(F̃+K2+1)+ f̃zuξξ+2K1F̃+(2K2−1)F̃iiu2
ii, (4.18)

where C=C(|u|C1 ,|ϕ|C3 ,|∂Ω|C4 ,| f |C2).
Assume u11≥u22 ···≥unn, and denote λ1≥λ2≥···≥λn the eigenvalues of the matrix

(wαβ)n×n. It is easy to see

λ1=u11+
n−1

∑
i=2

uii ≤ (n−1)u11.

Then we have, by (2.5) in Proposition 2.2 and (2.9) in Proposition 2.3,

F̃11u2
11= ∑

1∈α

1
n

det(W)
1−n

n Sn−1(λ|Nα)u2
11

≥ 1
(n−1)n

det(W)
1−n

n Sn−1(λ|1)λ1u11

=
1

(n−1)n
det(W)

1
n u11=

f̃
(n−1)n

u11. (4.19)
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We can assume uξξ ≥ 0, otherwise we have (4.8). Plug (4.19) into (4.18) and use the
Cauchy-Schwartz inequality, then

F̃iivii ≥ (K2−1)
n

∑
i=1

F̃iiu2
ii+(

K2 f̃
(n−1)n

+ f̃z)uξξ+(2K1−C)F̃ −C(K2+1). (4.20)

Choosing K2=
(n−1)max| fz|

min f +1 and K1=C(K2+2)+1, it follows that

F̃iivii ≥ (2K1−C)F̃ −C(K2+1)>0, (4.21)

since we have F̃ ≥ 1 from (2.11). This implies that v(x,ξ) attains its maximum on the
boundary by the maximum principle. Now we assume (x0,ξ0)∈ ∂Ω×Sn−1 is the maxi-
mum point of v(x,ξ) in Ω×Sn−1. Then we consider two cases as follows:

Case1. ξ0 is a tangential vector at x0∈∂Ω.

We directly have ξ0 ·ν= 0 , ν=−Dd, v′(x0,ξ0)= 0, and uξ0,ξ0(x0)> 0. As in [17], we
define

cij =δij−νiνj, in Ωµ, (4.22)

and it is easy to see that cijDj is a tangential direction on ∂Ω. We compute at (x0,ξ0).
From the boundary condition, we have

uliν
l = (cij+νiνj)νlul j = cijujϕz+cijϕxj −cijul Djν

l+νiνjνlul j. (4.23)

It follows that

ulipνl =[cpq+νpνq]uliqνl

= cpqDq(cijujϕz+cijϕxj −cijul Djν
l+νiνjνlul j)−cpquliDqνl+νpνqνluliq,

then we obtain

uξ0ξ0ν =
n

∑
ilp=1

ξ i
0ξ

p
0 ulipνl

=
n

∑
i=1

ξ i
0ξ

q
0

(
Dq(cijujϕz+cijϕxj −cijul Djν

l+νiνjνlul j)−uliDqνl
)

≤ −2ξ i
0ξ

q
0uliDqνl+C(1+|uνν|). (4.24)

We use ϕz ≤ 0 in the last inequality. We assume ξ0 = e1, it is easy to get the bound for
u1i(x0) for i> 1 from the maximum of v(x,ξ) in the ξ0 direction. In fact, we can assume
ξ(t)= (1,t,0,···,0)√

1+t2 . Then we have

0=
dv(x0,ξ(t))

dt
|t=0=2u12(x0)−2ν2(ϕzu1−ul Dlν

l),
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consequently,

|u12|(x0)≤C+C|Du|. (4.25)

Similarly, we have for ∀i>1,

|u1i|(x0)≤C+C|Du|. (4.26)

Thus we have, by D1ν1≥κmin>0,

uξ0ξ0ν ≤ −2D1ν1u11+C(1+|uνν|)
≤ −2κminuξ0ξ0+C(1+|uνν|).

On the other hand, we have from the Hopf lemma, (4.10) and (4.26),

0≤ vν(x0,ξ0)

= uξ0ξ0ν−Dνalul−aluνν−Dνb+2K1xiν
i+2K2ululν

≤ −2κminuξ0ξ0+C(1+|uνν|).

Then we get

uξ0ξ0(x0)≤C(1+|uνν|). (4.27)

Case2. ξ0 is non-tangential.

We can find a tangential vector τ, such that ξ0 = ατ+βν, with α2+β2 = 1. Then we
have

uξ0ξ0(x0)= α2uττ(x0)+β2uνν(x0)+2αβuτν(x0)

= α2uττ(x0)+β2uνν(x0)+2(ξ0 ·ν)ξ ′0 ·(ϕzDu−ul Dνl).

By the definition of v(x0,ξ0),

v(x0,ξ0)= α2v(x0,τ)+β2v(x0,ν)≤α2v(x0,ξ0)+β2v(x0,ν).

Thus, v(x0,ξ0)=v(x0,ν) and

uξ0ξ0(x0)≤|uνν|+C. (4.28)

In conclusion, we have (4.8) in both cases.

First, we denote d(x)=dist(x,∂Ω), and define

h(x)=−d(x)+K3d2(x). (4.29)

The constant K3 will be determined later. Then we give the following key lemma.
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Lemma 4.2. Suppose Ω⊂Rn is a bounded strictly convex domain with C2 boundary. Denote
κmax(x) (κmin(x)) the maximum (minimum) principal curvature at x ∈ ∂Ω. Let u∈C2(Ω) is
strictly (n−1)-convex and h(x) is defined as in (4.29). Then, for any γ∈ [ 1

2 ,1), there exists K3,
a sufficiently large number depending only on n, γ, min f and Ω, such that,

Fijhij ≥γκ0(1+F ), in Ωµ (0<µ≤ µ̃), (4.30)

where
κ0=

H
n−1

≥κmin and µ̃=min{ 1
4K3

,
2−γ

2K3
,

1
2κmin

,µ0}.

Fij is defined by (4.3), and µ0 is mentioned in (2.13). As γ tends to 1, K3 tends to infinity.

Proof. For x0 ∈Ωµ, there exists y0 ∈ ∂Ω such that |x0−y0|= d(x0). Then, in terms of the
principal coordinate system at y0, we have (see [8], Lemma 14.17)

[D2d(x0)]=−diag
[ κ1

1−κ1d
,··· , κn−1

1−κn−1d
,0
]
, (4.31)

Dd(x0)=−ν(x0)=(0,··· ,0,−1). (4.32)

Observe that

[D2h(x0)]=diag
[ ((1−2K3d)κ1

1−κ1d
,··· , (1−2K3d)κn−1

1−κn−1d
,2K3

]
. (4.33)

Denote µi =
(1−K3d)κi

1−κid
>0, ∀1≤ i≤n−1, and µn =2K3 for simplicity. Then we define

λ(D2h)={µi1+···+µin−1 | 1≤ i1< ···< in−1≤n}

and assume λ1≥···≥λn−1≥λn, it is easy to see that

λn−1≥2K3+
m−1

∑
l=1

µil ≥K3, (4.34)

if we choose K3 sufficiently large and µ≤ 1
4K3

. It is also easy to see that h is strictly convex.
We now consider the function w=h− 1

2 γκ0|x|2. As above, we define µ̃(D2w)=(µ̃1,··· ,µ̃n)
the eigenvalues of the Hessian D2w, and

λ̃={µ̃i1+···+µ̃in−1 | 1≤ i1< ···< in−1≤n}

with λ̃1≥···≥ λ̃n. For any γ∈ [ 1
2 ,1), assume µ≤min{ 1

4K3
, 2−γ

2K3
, 1

2κmin
}, we have

1−K3d
1−κid

>γ, ∀i=1,··· ,n−1.
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Set δ= 1
2 (

1−K3d
1−κmind −γ) independent of K3, recalling H=

n−1
∑

i=1
κi, it follows that

λ̃n =
n−1

∑
i=1

µi−(n−1)γκ0≥ (n−1)δκ0. (4.35)

By the concavity of F̃(D2u)=det(W)
1
n , denote F̃ij = ∂F̃

∂uij
, we have

F̃ijwij ≥ F̃[D2u+D2w]− F̃[D2u]≥ F̃[D2w]

≥ Kn−1
3 ((n−1)δκ0)≥K3, (4.36)

for a large enough K3≥ 1
(n−1)δκ0

. Then we get

F̃ijhij = F̃ij(h− 1
2

γκ0|x|2+
1
2

γκ0|x|2)ij ≥K3+γκ0F̃ . (4.37)

If we choose K3≥ γκ0 max f
1
n

nmin f , then we have

Fijhij ≥γκ0(1+F ). (4.38)

This completes the proof of the lemma.

Following the line of Qiu-Ma [22] and Chen-Ma-Zhang [4], we construct the sub bar-
rier function as

P(x)= g(x)(Du·ν−ϕ(x,u))−G(x), (4.39)

with

ν(x)=−Dd(x), g(x)=1−βh(x),
G(x)=(A+σN)h(x),

where A, σ, and β are positive constants to be determined. We have the following lemma.
The curvature condition in Theorem 4.1 is only used here.

Lemma 4.3. Fix σ, if we select β large, µ small, A large, and assume N large, then

P≥0, in Ωµ. (4.40)

Furthermore, we have

sup
∂Ω

uνν ≤C+σN, (4.41)

where C depends only on n, |u|C1 , |∂Ω|C2 | f |C2 and |ϕ|C2 .
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Proof. We assume P(x) attains its minimum point x0 in the interior of Ωµ. Differentiate P
twice to obtain

Pi = gi(ulν
l−ϕ)+g(uliν

l+ul Diν
l−Diϕ)−Gi, (4.42)

Pij = gij(ulν
l−ϕ)+gi(ul jνl+ul Djν

l−Djϕ)

+gj(uliν
l+ul Diν

l−Diϕ)+g(ulijν
l+uliDjν

l

+ul jDiν
l+ul Dijν

l−Dijϕ)−Gij. (4.43)

By a rotation of coordinates, we may assume that (uij)n×n is diagonal at x0, so are W
and (Fij)n×n, with Fij defined by (4.3).

We choose µ<min{µ̃, 2ϵ
β , ϵ

2K3
}, where µ̃ is defined in Lemma 4.2 and ϵ∈(0, 1

2 ) is a small
positive number to be determined , such that |βh|≤β

µ
2 ≤ϵ. It follows that

1≤ g≤1+ϵ. (4.44)

Since hi =−(1−2K3d)di, we also have

(1−ϵ)|di|≤ |hi|≤ |di|. (4.45)

By a straight computation, using Lemma 4.2, we obtain

FijPij = Fiigii(ulν
l−ϕ)+2Fiigi(uiiν

i+ul Diν
l−Diϕ)

+gFii(uliiν
l+2uiiDiν

i+ul Diiν
l−Diiϕ)−(A+σN)Fiihii

≤
(

βC1−(A+σN)γκ0
)
(F+1)−2βFiiuiihiν

i+2gFiiuiiDiν
i, (4.46)

where C1=C1(|u|C1 ,|∂Ω|C3 ,|ϕ|C2 ,| f |C1 ,n).
We divide indexes I={1,2,··· ,n} into two sets in the following way,

B={i∈ I||βd2
i |<ϵκmin}, G= I\B={i∈ I||βd2

i |≥ϵκmin},

where κmin (κmax) is the minimum (maximum) principal curvature of the boundary. For
i∈G, by Pi(x0)=0, we get

uii =(1−2K3d)
(
(A+σN)

g
+

β(ulν
l−ϕ)

g

)
+

ul Diν
l−Diϕ

di
. (4.47)

Because |d2
i |≥

ϵκmin
β , (4.44) and (4.45), we have∣∣∣∣ (1−2K3d)β(ulν

l−ϕ)

g
+

ul Diν
l−Diϕ

di

∣∣∣∣≤βC2(ϵ
−1,|u|C1 ,|∂Ω|C2 ,|ψ|C1).

Then let A≥3βC2, we have

A
3
+

1−ϵ

1+ϵ
σN≤uii ≤

4A
3

+σN, (4.48)
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for ∀i∈G. We choose β≥2nϵκmin+1 to let |d2
i |≤

1
2n for i∈B. Because |Dd|=1, there is a

i0∈G, say i0=1, such that

d2
1≥

1
n

. (4.49)

We have

−2β∑
i∈I

Fiiuiihiν
i = −2β ∑

i∈G
Fiiuiihiν

i−2β∑
i∈B

Fiiuiihiν
i

≤ −2(1−ϵ)βF11u11d2
1−2β ∑

i∈B,uii<0
Fiiuiid2

i

≤ −βF11u11

n
−2ϵκmin ∑

uii<0
Fiiuii, (4.50)

2g∑
i∈I

FiiuiiDiν
i = 2g ∑

uii≥0
FiiuiiDiν

i+2g ∑
uii<0

FiiuiiDiν
i

≤ 2κmax ∑
uii≥0

Fiiuii+2κmin ∑
uii<0

Fiiuii. (4.51)

Plug (4.50) and (4.51) into (4.46) to get

FijPij ≤
(

βC1−(A+σN)γκ0

)
(F+1)− β

2n
F11u11

+2(1−ϵ)κmin ∑
uii<0

Fiiuii+2κmax ∑
uii≥0

Fiiuii. (4.52)

Denote u22≥···≥unn, and

λ1= max
1∈α

{wαα}=u11+
n−1

∑
i=2

uii, λm1 =min
1∈α

{wαα}=u11+
n

∑
i=3

uii,

and λ2 ≥ ···≥λn > 0 the eigenvalues of the matrix W. Assume N > 1, from (4.5) we see
that

uii ≤2C0N, ∀i∈ I. (4.53)

Then

λi ≤2(n−1)C0N, ∀1≤ i≤n. (4.54)

If u11≤u22, we see that λm1 =λn. Then

F11>Sn−1(λ|n)≥
1

n(n−1)
F , (4.55)
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it follows that

FijPij ≤
(

βC1−(A+σN)γκ0
)
(F+1)+2C0κmaxNF

− β

2n2(n−1)
(

A
3
+

1−ϵ

1+ϵ
σN)F<0. (4.56)

if we choose β>12n2(n−1)κmaxC0/σ and A> βC1
γκ0

.
In the following cases, we always assume u11>u22.

Case1. unn ≥0. It follows from

n f =
n

∑
i=1

Fiiuii = ∑
uii≥0

Fiiuii

and (4.80) that

FijPij ≤
(

βC1−(A+σN)γκ0
)
(F+1)+2κmaxn f <0, (4.57)

if we choose A>βC1+2κmaxnmax f /γκ0.

Case2. B= ∑
uii<0

uii >−(n−2)σN−ϵN and λn ≤ϵN. It follows from λn =∑n
i=2 uii that

2κmax ∑
uii≥0

Fiiuii+(2−ϵ)κmin ∑
uii<0

Fiiuii

≤ 2κmaxF11u11+2[κmax(ϵN−B)+(1−ϵ)κminB]F
≤ 2(n−2)[κmax−(1−ϵ)κmin]σNF+4ϵκmaxNF+2κmaxF11u11. (4.58)

Since κmax−κmin<
γH

2(n−1)(n−2) , we have

(n−1)γκ0=γHκmin>2(n−1)(n−2)(κmax−κmin). (4.59)

We can choose a sufficiently small ϵ=ϵ(n,γ,κmax,κmin) to get

2κmax ∑
uii≥0

Fiiuii+(2−ϵ)κmin ∑
uii<0

Fiiuii ≤γκ0σNF+2κmaxF11u11.

We now choose A>βC1+1 and β≥4nκmax to get

FijPij <0. (4.60)

Case3. B= ∑
uii<0

uii >−(n−2)σN−ϵN and λn >ϵN. It is easy to see, by (4.54), that,

F11> Sn−1(λ|1)=λ2 ···λn

≥ ϵn−1Nn−1=

(
ϵ

2(n−1)C0

)n−1

[2(n−1)C0N]n−1

≥ 1
n

(
ϵ

2(n−1)C0

)n−1

Sn−1(λ). (4.61)
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Similarly, if we choose β> 2n+13n2(n−1)nκmax(C0)
n

σϵn−1 and A> βC1
γκ0

, then

FijPij <0. (4.62)

Case4. B= ∑
uii<0

uii ≤−(n−2)σN−ϵN. We have

λn =u22+
n

∑
i=3

uii >0.

It follows that

u22≥
|B|

n−2
≥
(

σ+
ϵ

n−2

)
N>u11,

if we assume N> 4(n−2)A
3ϵ . This contradicts to that u11>u22.

In conclusion, we choose a small ϵ=ϵ(n,γ,κmax,κmin),

β=max
{

4nκmax+1,
2n+13n2(n−1)nκmax(C0)n

σϵn−1

}
and µ = min{µ̃, 2ϵ

β , ϵ
2K3

}. If A > max{3βC2, βC1+2κmaxnmax f
γκ0

} and N > 4(n−2)A
3ϵ , we obtain

FiiPij < 0, which contradicts to that P attains its minimum in the interior of Ωµ. This
implies that P attains its minimum on the boundary ∂Ωµ.

On ∂Ω, it is easy to see

P=0. (4.63)

On ∂Ωµ∩Ω, we have

P≥−C3(|u|C1 ,|ϕ|C0)+(A+σN)
µ

2
≥0, (4.64)

if we take A=max{ 2C3
µ ,3βC2, βC1+2κmaxnmax f

γκ0
}. Finally the maximum principle tells us that

P≥0, in Ωµ. (4.65)

Suppose uνν(y0)=sup∂Ω uνν >0, we have

0≥ Pν(y0)

≥ (uνν+ul Diν
lνi−Dνϕ)−(A+σN)hν

≥ uνν(y0)−C(|u|C1 ,|∂Ω|C2 ,|ϕ|C2)−(A+σN).

Then we get

sup
∂Ω

uνν ≤C+σN. (4.66)

This completes the proof of the lemma.
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In a similar way, we construct the super barrier function as

P(x) := g(x)(Du·ν−ϕ(x,u))+G(x). (4.67)

We also have the following lemma.

Lemma 4.4. Fix σ, if we select β large, µ small, A large, then

P≤0, in Ωµ. (4.68)

Furthermore, we have

inf
∂Ω

uνν ≥−C−σN, (4.69)

where C depends only on n, |u|C1 , |∂Ω|C2 | f |C2 and |ϕ|C2 .

Proof. We assume P(x) attains its maximum point x0 in the interior of Ωµ. Differentiate
P twice to obtain

Pi = gi(ulν
l−ϕ)+g(uliν

l+ul Diν
l−Diϕ)+Gi, (4.70)

Pij = gij(ulν
l−ϕ)+gi(ul jνl+ul Djν

l−Djϕ)

+gj(uliν
l+ul Diν

l−Diϕ)+g(ulijν
l+uliDjν

l

+ul jDiν
l+ul Dijν

l−Dijϕ)+Gij. (4.71)

As before we assume that (uij) is diagonal at x0, so are W and (Fij), with Fij defined by
(4.3). We choose µ small enough such that |βh|≤β

µ
2 ≤

1
2 . It follows that

1≤ g≤ 3
2

. (4.72)

Recall that hi =−(1−2K3d)di, we also have

1
2
|di|≤ |hi|≤ |di|. (4.73)

By a straight computation, using Lemma 4.7, we obtain

FijPij = Fiigii(ulν
l−ϕ)+2Fiigi(uiiν

i+ul Diν
l−Diϕ)

+gFii(uliiν
l+2uiiDiν

i+ul Diiν
l−Diiϕ)+(A+σN)Fiihii

≥
(
(A+σN)γκ0−βC1

)
(F+1)−2βFiiuiihiν

i+2gFiiuiiDiν
i (4.74)

where C1=C1(|u|C1 ,|∂Ω|C3 ,|ϕ|C2 ,| f |C1 ,n).
We divide indexes I={1,2,··· ,n} into two sets in the following way,

B=

{
i∈ I||βd2

i |<
1
2

κmin

}
, G= I\B=

{
i∈ I||βd2

i |≥
1
2

κmin

}
,
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where κmin (κmax) is the minimum (maximum) principal curvature of the boundary. For
i∈G, by Pi(x0)=0, we get

uii =(1−2K3d)
(
−(A+σN)

g
+

β(ulν
l−ϕ)

g

)
+

ul Diν
l−Diϕ

di
. (4.75)

Because |d2
i |≥

κmin
2β , by (4.72) and (4.73), we have∣∣∣∣ (1−2K3d)β(ulν

l−ϕ)

g
+

ul Diν
l−Diϕ

di

∣∣∣∣≤βC2(|u|C1 ,|∂Ω|C2 ,|ψ|C1).

Then let A≥3βC2, we have

−4A
3

−σN≤uii ≤−A
3
− 1

3
σN, (4.76)

for ∀i∈G. We choose β≥ nκmin+1 to let |d2
i | ≤

1
2n for i∈ B. Because |Dd|= 1, there is a

i0∈G, say i0=1, such that

d2
1≥

1
n

. (4.77)

We have

−2β∑
i∈I

Fiiuiihiν
i = −2β ∑

i∈G
Fiiuiihiν

i−2β∑
i∈B

Fiiuiihiν
i

≥ −βF11u11d2
1−2β ∑

i∈B,uii>0
Fiiuiid2

i

≥ −βF11u11

n
−κmin ∑

uii>0
Fiiuii, (4.78)

2g∑
i∈I

FiiuiiDiν
i = 2g ∑

uii>0
FiiuiiDiν

i+2g ∑
uii≤0

FiiuiiDiν
i

≥ 2κmin ∑
uii>0

Fiiuii+2κmax ∑
uii≤0

Fiiuii. (4.79)

Plug (4.78) and (4.79) into (4.74) to get

FiiPij ≥
(
(A+σN−βC1)γκ0

)
(F+1)− β

2n
F11u11

+κmin ∑
uii>0

Fiiuii+2κmax ∑
uii≤0

Fiiuii. (4.80)

Denote u22≥···≥unn, and

λm1 = min
1∈α

{wαα}=u11+
n

∑
i=3

uii,
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and λ1 ≥λ2 ≥···≥λn >0 the eigenvalues of the matrix W. Assume N>1, from (4.5) we
see that

uii ≤2C0N, ∀i∈ I. (4.81)

Then

λi ≤2(n−1)C0N, ∀1≤ i≤n. (4.82)

Since u11≤u22, we see that λm1 =λn. Then

F11>Sn−1(λ|n)≥
1

n(n−1)
F , (4.83)

it follows that

FijPij ≥
(
(A+σN)γκ0−βC1

)
(F+1)−2C0κmaxNF

+
β

2n2(n−1)
(

A
3
+

1
3

σN)F>0. (4.84)

if we choose β= 12n2(n−1)κmaxC0/σ+nκmin+1 and A> βC1
γκ0

. This contradicts to that P
attains its maximum in the interior of Ωµ. This contradiction implies that P attains its
maximum on the boundary ∂Ωµ.

On ∂Ω, it is easy to see P=0. On ∂Ωµ∩Ω, we have

P≤C3(|u|C1 ,|ϕ|C0)−(A+σN)
µ

2
≤0,

if we take A= 2C3
µ + βC1

k3
+1. Finally the maximum principle tells us that

P≤0, in Ωµ. (4.85)

Suppose uνν(y0)= inf∂Ω uνν, we have

0≤ Pν(y0)

≤ (uνν+ul Diν
lνi−Dνϕ)+(A+σN)hν

≤ uνν(y0)+C(|u|C1 ,|∂Ω|C2 ,|ϕ|C2)+(A+σN). (4.86)

Then we get

inf
∂Ω

uνν ≥−C−σN. (4.87)

This completes the proof of the lemma.

Then we prove Theorem 4.1 immediately.

Proof of Theorem 4.1. We choose σ= 1
2 in Lemmas 4.3 and 4.4, then

sup
∂Ω

|uνν|≤C. (4.88)

Combining (4.88) with (4.5) in Lemma 4.1, we obtain (4.2).
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5 Existence of the Neumann boundary problem

We use the method of continuity to prove the existence theorem for the Neumann prob-
lem (1.1).

Proof of Theorem 1.1. Consider a family of equations with parameter t,
det(W)= t f +(1−t)(n−1)n, in Ω,

uν =−u+tϕ+(1−t)(x ·ν+ 1
2
|x|2), on ∂Ω.

(5.1)

From Theorems 3.1 and 4.1, we get a global C2 estimate independent of t for Eq. (5.1). It
follows that Eq. (5.1) is uniformly elliptic. Due to the concavity of det

1
n (W) with respect

to D2u (see [2]), we can get the global Hölder estimates of second derivatives following
the discussions in [19], that is, we can get

|u|C2,α ≤C, (5.2)

where C depends only on n, |u|C2 ,| f |C2 ,min f , |ϕ|C3 and Ω. It is easy to see that 1
2 |x|2 is a

strictly (n−1)-convex solution to (5.1) for t=0. Applying the method of continuity (see
[8], Theorem 17.28), the existence of the classical solution holds for t=1. By the standard
regularity theory of uniformly elliptic partial differential equations, we can obtain the
higher regularity. The uniqueness is easy to get from maximum principle.
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