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Abstract. A C? function on R" is called strictly (n—1)-convex if the sum of any n—1
eigenvalues of its Hessian is positive. In this paper, we establish a global C? estimates
to the Monge-Ampere equation for strictly (n—1)-convex functions with Neumann
condition. By the method of continuity, we prove an existence theorem for strictly
(n—1)-convex solutions of the Neumann problems.
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1 Introduction

Let QO CR" be a bounded convex domain and v(x) be the outer unit normal at x € 9Q).
Suppose f € C2(Q) is positive and ¢ € C3(Q)). In this paper, we mainly consider the
following equations of Monge-Ampere type with Neumann condition,

det(W) = f(x), in Q,

?)Z:—M—I—gb(x), in 9Q. -0

where the matrix W = (W, ...q,, 8, ---g,, )Juxn, for m=n—1, with the elements as follows,

m n

w“l""xmugl'“ﬁm = Z 11/1“1]5;1;11111];‘11&11“%"1, (12)

i=1j=

qu (SRR AT R (L TR (R T : _
Fr and ¢ BrBi 1 Bifiir---Bo 15 the generalized Kro

necker symbol. All indexes i,j,a;,B;,--- come from 1 to n.

a linear combination of u;j, where u;; =
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For general 1 <m <n-—1, the matrix W € RC <G| = Wlm),, comes from the

following operator Ul as in [2] and [10]. First, note that (4ij)nxn induces an operator U
on R" by

n
U(ei) = Zui]f]', V1 S i S n,
j=1

where {e1,e2,---,€, } is the standard orthogonal basis of R". We further extend U to act on
the real vector space A"IR" by

m
UM (e, A+ Aea, ) =Y eay Ao AU(ea,) A+ Nea,,,
i=1

where {eg, A+ Aeg,, | 1<ay <---<wa, <n} is the standard basis for A"R". Then W is the
matrix of U™ under this standard basis. It is convenient to denote the multi-index by
&= (aq---ap ). We only consider the increasing multi-index, that is, 1 <aj <--- <ay, <n.
By the dictionary arrangement, we can arrange all increasing multi-indexes from 1 to C}}},
and use Ny denote the order number of the multi-index & = (aq---ay,), i.e.,, Ny =1 for
w=(12---m), ---. We also use & denote the index set {ay,---,a,, } without confusion. It is
not hard to see that

m

WNyNy - wﬁ,& == Zutxiail (1‘3)
i=1

Wiy = weg = (=1) Ty, (1.4)

if the index set {a1,---,a,, } \ {;} equals to the index set {B1,---,Bm } \{B;} but a; #B; ; and
also

WNENE = w&ﬁ =0, (15)

if the index sets {ay,---,a, } and {B1,---, Bm } have more than one different element. Specif-
ically, for n=3,m=2, we have

U1 +uxp U3 —U13
W= U3 U171+ U3z U2
—Us1 Uoy Uz +u33

It follows that W is symmetrical and diagonal with (), diagonal. The eigenvalues of
W are the sums of eigenvalues of (u;;),xn. Denoted by u(D?u) = (p1,-++,un) the eigen-
values of the Hessian and by A (W)= (A1,A2,---,A¢cp) the eigenvalues of W. Generally, for
any k=1,2,---,C", we define the k" elementary symmetry function by

Sk(W) =S, (A(W)) = ) Ay Aiy -+ Ai,

1§i1<i2<~-~<ik§C,';’
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We also set So=1. In particular, we have

det(W)=Scu(W)=AAz--Acyn = I (i Fpiy+o o+ i, )

1<ii<ip<---<im<n

If m=1, the equation (1.1) is known as Monge-Ampere equation.
Define the Garding’s cone in R" by

Tin={pneR"| S;(p)>0,V1<i<k}.
Then we define the generalized Garding’s cone by, for 1 <m <n, 1<k <C}’,

T = {ueR"| {piy+-+pi, | 1<i < <im<n} €Ty cp}.
(1)

In the absence of ambiguity, we omit the subscript n for simplicity. Obviously, I'y =T
and I';, C I",(Cm) CT1. Normally, we say a C? function u is convex if any eigenvalue of
the Hessian is nonnegative, equivalently y(D?*u) € T,,. Similarly, we give the following
definition of m-convexity.

Definition 1.1. We say a C? function u is strictly m-convex if u(D?u) GFE?Z’), i.e., the sum of any

(m)

m eigenvalues of the Hessian is positive. Furthermore, we say u is m-convex if y(D*u) €T/,
n
i.e., the sum of any m eigenvalues of the Hessian is nonnegative.

In particular, if u(D?u) € T for any x € (), then equivalently A(W) €T, such that
the equation (1.1) is elliptic (see [2] or [18]). In addition, we say u is a strictly (n—1)-
convex solution if u is a solution of (1.1).

For the Dirichlet problem in R”, many results are known. For example, the Dirich-
let problem of Laplace equation is studied in [8], Caffarelli-Nirenberg-Spruck [1], and
Ivochkina [16] solved the Dirichlet problem of Monge-Ampere equation, and Caffarelli-
Nirenberg-Spruck [2] solved the Dirichlet problem of general Hessian equations even in-
cluding the case considered here. For the general Hessian quotient equation, the Dirichlet
problem is solved by Trudinger in [31]. Finally, Guan [9] treated the Dirichlet problem
for general fully nonlinear elliptic equation on the Riemannian manifolds.

Also, the Neumann or oblique derivative problem of partial differential equations
was widely studied. For a priori estimates and the existence theorem of Laplace equa-
tion with Neumann boundary condition, we refer to the book [8]. Also, we can see the
book written by Lieberman [17] for the Neumann or oblique derivative problem of linear
and quasilinear elliptic equations. In 1987, Lions-Trudinger-Urbas solved the Neumann
problem of Monge-Ampere equation in the celebrated paper [21]. For the the Neumann
problem of k-Hessian equations, Trudinger [32] established the existence theorem when
the domain is a ball, and he conjectured (in [32], page 305) that one can solve the problem
in sufficiently smooth uniformly convex domains. Recently, Ma and Qiu [22] gave a posi-
tive answer to this problem and solved the the Neumann problem of k-Hessian equations
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in uniformly convex domains. After their work, the research on the Neumann problem
of other equatios has made progresses (see, e.g., [3, 4, 23, 33]).

Similarly to m-convexity for the Hessian (see Definition 1.1), we can formulate the
notion of m-convexity for curvature operator and second fundamental forms of hyper-
surfaces. There are large amount literature in differential geometry on this subject. For
example, Sha [25] and Wu [34] introduced the m-convexity of the sectional curvature of
Riemannian manifolds and studied the topology for these manifolds. In a series interest-
ing papers, Harvey and Lawson ([11-13]) introduce some generalized convexities on the
solutions of the nonlinear elliptic Dirichlet problem, m-convexity is a special case. Han-
Ma-Wau [10] obtained an existence theorem of m-convex starshaped hypersurface with
prescribed mean curvature. More recently, in the complex space C" case, Tosatti and
Weinkove ([29, 30]) solved the Monge-Ampere equation for (n—1)-plurisubharmonic
functions on a compact Kiahler manifold, where the (n—1)-plurisubharmonicity means
the sum of any 17 —1 eigenvalues of the complex Hessian is nonnegative.

From the above geometry and analysis reasons, it is naturally to study the Neumann
problem (1.1). In [6], the author considered the following Neumann problem for general
fully nonlinear equations

Sk(W)=f(x), inQ),
ou (1.6)

a—vz—u—l—(p(x), on dQ).

Eq. (1.1) is a special case of (1.6) when m =n—1,k=n. Parallel to Definition 1.1, we give

Definition 1.2. We say u is k-admissible if u(D?u) € F,((m). Particularly, if k=CI, u is strictly
m-convex.

For k< C,T__ll = "1C}, we obtained an existence theorem of the k-admissible solution

with less geometric restrictions to the boundary. For m <% and k= C,T:ll +ko <G, we

got an existence theorem if () is strictly (m,ko)-convex, i.e., KEF]({;”) , where k= (%1, ,%k,_1)

denote the principal curvatures of d() with respect to its inner normal —v. We didn’t
prove the existence for strictly m-convex solution for the equation (1.6) in [6]. Particularly,
for m=n—1 (maybe the most interesting case except the case m=1), we got the existence
of the k-admissible solution for k<n—1 only except that of the (n—1)-convex solution for
k=mn. In this paper, given a strong geometric restriction to the boundary, we can prove
the existence of strictly (n—1)-convex solution to the Neumann problem (1.1).

We always denote x = (k1,---,k,_1) the principal curvature and H = Z'-Z:_ll k; the mean
curvature of the boundary. We now state the main result of this paper as follows.

Theorem 1.1. Suppose Q CIR" (n>3) is a bounded strictly convex domain with C* boundary.
Denote Kmax(X) (kmin (X)) the maximum (minimum) principal curvature at x € 9Q) such that

H

Kmax — Kmin < W (1.7)
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Let f € C*(Q) be a positive function and ¢ € C>(Q)). Then there exists a unique strictly (n—1)-
convex solution u € C>*(Q)) of the Neumann problem (1.1).

We may point out that the curvature condition (1.7) is only used to obtain the upper
bound for the double normal derivative in Lemma 4.3. When the dimension 7 is large, it
is easy to see that the domain () is almost a ball. As a special case, for 1=3, H=Kmax+Xmin,
we have

Corollary 1.1. Suppose Q CR? is a bounded strictly convex domain with C* boundary. Denote
Kmax (%) (Kmin (X)) the maximum (minimum) principal curvature at x € 0Q) such that Kmax <
2Kmin. Let f € C3H(Q) bea positive function and ¢ C3(QY). Then there exists a unique strictly
2-convex solution u € C>*(Q) of the Neumann problem (1.1).

The rest of this paper is arranged as follows. In Section 2, we give some basic proper-
ties of the elementary symmetric functions and some notations. In Section 3, we establish
a priori C? estimates and global gradient estimates. In Section 4, we show the proof of the
global estimates of second order derivatives. Finally, we can prove the existence theorem
by the method of continuity in Section 5.

2 Preliminary

In this section, we give some basic properties of elementary symmetric functions and
some notations. First, we denote by Si(A|i) the symmetric function with A; =0 and
Sk(Alij) the symmetric function with A;=A;=0.

Proposition 2.1. Let A= (Aq,---,A,) ER" and k=1,---,n, then

SK(A) =Sk(A[))+ASi 1 (Ali),  Vi<i<n, 2.1)
Y AiSe 1 (Ali) =kS¢(A), 2)
i=1

3 S(Al0) = (n—K)S (1), @3)

i=1

We also denote by Si(W|i) the symmetric function with W deleting the i-row and i-
column and Si(W|ij) the symmetric function with W deleting the 7, j-rows and 7, j-columns.
Then we have the following identities.

Proposition 2.2. Suppose A= (a;j)nxn is diagonal and k is a positive integer, then

dS(A) _ {Sk—l(A|i)r ifi=j, (2.4)

dajj 0, ifi#].
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Furthermore, suppose W = (w@)cﬁqu defined as in (1.2) is diagonal, then

3Si(W) _ { Y Si1(WINg),  ifi=],

icx (2.5)
0, ifi#].
Proof. For (2.4), see a proof in [18]. Note that

Buij

Sk (W Sk (W
2.
aul] Z aww Bulj (2.6)
Using (1.3) and (1.4), then (1.5) and (2.5) are immediate consequences of (2.4). O]

Recall that the Garding’s cone is defined by
T = {AelR”| Si(A)>0, V1 gigk}.

Proposition 2.3. Let A €Ty and k€ {1,---,n}. Suppose that Ay > -+- > A > -+- > Ay, then we

have
Sk-1(Aln) =+ = g1 (Alk) = -+ = 51 (A1) >0, (2.7)
LS (D)= Es,(0), 29)
S,% (A) is concave in Ty. (2.9)

Proof. All the properties are well-known. For example, see [18] or [15] for a proof of
(2.7), [5] or [14] for (2.8) and [2] for (2.9). O

The Newton-Maclaurin inequality is as follows:

Proposition 2.4. For A €Ty and k>1>0, we have

() <)

whereC = (n k) Furthermore we have

N‘»\»—A

i (2.11)
:1

Proof. See [28] for a proof of (2.10). For (2.11), we use (2.10) and Proposition 2.1 to get

1
" 9dS E n— k+1 1
k - k k > k14
)» ;M S Zskmr St 81 (A) > [ChE.

This completes the proof of the proposition. O
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We define
d(x)=dist(x,0Q?), Q,={xeQ|d(x)<u}. (2.12)

It is well known that there exists a small positive universal constant y such that d(x) €
C*H(Qy), Y0 < u < o, provided 9Q) € C*. As in Simon-Spruck [27] or Lieberman [17] (p.
331), we can extend v by v=—Dd in (), and note that v is a C3(Q),) vector field. As
mentioned in the book [17], we also have the following formulas

|Dv|+|D*v| < C(n,Q), in Q, (2.13a)
n . . n . . n

Y VD' =Y VD =) didj=0,  inQy, (2.13b)

i=1 i=1 i=1

lv|=|Dd| =1, in Q). (2.13¢)

3 The zero-order and first-order estimates

As proved in [6], we have the following theorem.

Theorem 3.1. Let Q CIR" (n>3) be a bounded domain with C3 boundary, and f € C*(Q) be
a positive function and ¢ € C*(Q)). Suppose that u € C>(Q)NC3(QY) is a k-admissible solution
of the Neumann problem (1.6). Then there exists a constant Cy depending only on k,m,n, |f|c1,
|| cs and Q, such that

sup(|u| +Dul) <Cr. G1)
Q

Proof. See Theorem 3.1 in [6] for the zero-order estimate. See Theorem 4.2 and Theorem
4.4 in [6] for the first-order estimate. The proof of the gradient estimates could also be
found in [7]. O

4 Global second order derivatives estimates

Generally, the double normal estimates are the most important and hardest parts for the
Neumann problem. As in [21] and [22], we construct sub and super barrier functions to
give lower and upper bounds for u,, on the boundary. Then we give the global second
order estimates.

In this section, we establish the following global second order estimate.

Theorem 4.1. Suppose Q CIR" (n>3) is a bounded strictly convex domain with C* boundary.
Denote Kmax(X) (kmin (x)) the maximum (minimum) principal curvature at x € 9Q) such that

+H 1
e TPy
Kmax Km1n<2(n_1)(n_2) ’)’E[

21).
5:1)
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Let f(x,2) eC*(QxR) be a positive function and ¢(x,z) € C*(QAx R) be decreasing with respect
to z. If u € C3*(Q) is a strictly (n—1)-convex solution of the Neumann problem

{ det(W)=f(xu), inQ,

ou (4.1)
gch(x,u), on oQ).

Then we have

sup |D2u| <C, 4.2)
Q

where C depends only on n, 7y, [u|cy @) | fle (O [~ Mo, Mo])- TS, |lcs( (O [~ Mo, My)) 1 O, with
My =supg, |u|.
Throughout the rest of this paper, we always admit the Einstein’s summation con-

vention. All repeated indices come from 1 to n. We will always denote F(D?u) =det(W)
and

OF(D?u) _ ddet(W) 9Wgg

i — =
F aui]' aw@ au,‘]' ' (43)
From (1.3) and (2.5) in Proposition 2.2 we have, for any 1 <i <n,
adet(W
=y S Y S (W), (44
ica w‘m ica

Throughout the rest of the paper, we will also denote

F= ZF” (1-1) Y. Sy 1 (WINy)

Ne=1

for simplicity.

4.1 Reduce the global second derivative estimates into double normal deriva-
tives estimates on boundary

Using the method of Lions-Trudinger-Urbas [21], we can reduce the second derivative
estimates of the solution into the boundary double normal estimates.

Lemma 4.1. Let QO CR" be a bounded strictly convex domain with C* boundary. Assume
f(x,z) € C2(QxR) is positive and ¢(x,z) € C3(QAxR) is decreasing with respect to z. If u
is a strictly (n—1)-convex solution of the Neumann problem (4.1), denote N =sup |uy, |, then we

9}
have

sup|D?u| < Co(14N), (4.5)
Q
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where Co depends only on 1, [u|cy e, | f|c2@x (= Mo, my]) NS 1Pl 3@k (= Mo mo]) 41 €, with
My =supg, |u|.

Proof. Write Eq. (4.1) in the form of

u (4.6)

where f=fi. Since A(W) €T, CT, in R", we have

Y luijl <c(n)S$1(W)=c(n)S1(D?u), (4.7)
i#]

where ¢(n) is a universal number independent of u. It is sufficiently to prove (4.5) for any
direction ¢ € §"-1 thatis

M@éSCO(l—f—N). (4.8)
We consider the following auxiliary function in QxS"1,
o(x,8) =uge —0' (x,6) +Ki|x[*+ Ko | Du?, (4.9)

where
o' (x,&) =a'u+b=2(&-v)& - (Dyp+¢,Du—u;Dv'),

with ¢'=¢—(¢-v)v and

a'=2(Z-v) ("9 —&"Dv"), b=2(C-v)&"pu.

K1, Ky are positive constants to be determined. By direct computations, we have

Vi =Uggi— Dialul —aluli —D;b+2Kqx; +2Koujuy;, (4.10)
’01‘]‘ = M@éi]‘ — Dijalul — Dialul]- — D]‘Elluli —aluli]- — Dl]b
—|—2K1(5ij+2K2uliu1]~+2K2ululij. (4.11)

Denote F(D?u) =det(W)+, and

. E o oW =
Fir = 98 _ 1 qepwy s 2detW) 7. 4.12)
Mi]‘ n aw@ aui]'
and
~ 2F v OW-7 OW-=
prars—_OF Lyt EdetV) Tp Tz (4.13)
QUpgOUlys 1 awaﬁawﬁg Oupg Ollys
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since Wy is a linear combination of u;;, 1<i,j <n. Differentiating Eq. (4.6) twice, we have

Fiiuzy=Dyf, (4.14)
FPO™ ety + Flujizz = Dgz . (4.15)
By the concavity of det(W)% operator with respect to W, we have
Dee f =FP" upgettyse + Flujiee < Flujes. (4.16)
Now we contract (4.11) with F/ to get, using (4.14)-(4.16),
ﬁijvi]- = fijuijgg—fijDi]-alul —2fijDialu,j —fijuijlal
—FID;ib+2Ky F+2Ko Flugyuj + 2K Fluguy
> Deef — FDyja'u; —2FDja'u;;—a' Dy f — FDyjb
+2K1 F+ 2K Flujuj +2Kou Dy f, (4.17)

~ n ..
where F = ) F”. Note that
i=1

Degf = feg+2feattg + fattgg,  Dyjal =2(G-v)& ozt +ri,
Dljb = 2(6 V)Cllgbxlzuij—Fi’ij,

with |rfj|,|rij| <C(|ulc1,|p| 3,10 cs). At the maximum point xp € Q) of v, we can assume
(4ij)nxn is diagonal. It follows that, by the Cauchy-Schwartz inequality,

ﬁij’()ij > —C(ﬁ—f—Kz—f—l) — Cﬁii ]uii| +fzu,§§+2K1]?+2K21?ﬁu%i
> —C(F+Ka+1)+ fauge +2K F 4+ (2Ko — 1) Fu2, (4.18)

where C=C([uc1,|¢[cs, [0 s, |flc2)-
Assume 117 > U+ -+ > Upy, and denote Ay > Ay >--- > A, the eigenvalues of the matrix
(wgg)nxn- It is easy to see
n—1
M=up+ Y ui<(n—1)uy.
i=2

Then we have, by (2.5) in Proposition 2.2 and (2.9) in Proposition 2.3,

~. 1 —n
Fhidy = Y —det(W) ™" S,m1 (A Noufy
lex
]. 1-n
> T
= (n_l)ndet(W) Sn,l()&|1))t1u11

Uil = (n—fl)null' (419)

==

1
= mdet(W)



76 B. Deng / J. Math. Study, 53 (2020), pp. 66-89

We can assume ugz > 0, otherwise we have (4.8). Plug (4.19) into (4.18) and use the
Cauchy-Schwartz inequality, then

. -
_K ~
Filgy > (Ky—1) Y P+ f) +fo)uge+ (2K —C)F—C(Kp+1).  (4.20)
i=1
Choosing Ky = %ﬁ}x‘le +1 and K; =C(Ky+42)+1, it follows that

Fiip; > (2K; —C) F —C(Ky41) >0, (4.21)

since we have F >1 from (2.11). This implies that v(x,¢) attains its maximum on the
boundary by the maximum principle. Now we assume (x,5o) € 9Q x S"~1 is the maxi-
mum point of v(x,¢) in QxS" 1. Then we consider two cases as follows:

Casel. § is a tangential vector at xp € 0.

We directly have o-v=0, v=—Dd, v'(x0,80) =0, and ug, ¢ (x0) >0. As in [17], we
define

cll =0jj —v'v/, in Qy, (4.22)

and it is easy to see that c'/ D; is a tangential direction on dQ). We compute at (xo,Go)-
From the boundary condition, we have

v = (cij+vivj)vlul]- = cijuj¢z+cij<pxj —cijulevl —I—vivjvlul]-. (4.23)
It follows that
ulipvl = [cp”’+vpvq]uliqvl
= Cquq(Ciju]’(Pz—i—Cij(ij —cijulevl—l—vivjvlul]-) —cpquliqul—i—vpqululiq,

then we obtain

n
i !
Ugogov = Z gz)ggulipv

ilp=1
= Z%(jg (Dq(c”u]-qbzch”quj—c”u,D]-vl+vl1/]vlulj) —u,iqul>
=1
< =288 0uDgv! +C (14w ). (4.24)

We use ¢, <0 in the last inequality. We assume {p = ey, it is easy to get the bound for
u1;(x0) for i >1 from the maximum of v(x,&) in the &y direction. In fact, we can assume

&)= (LE00) Then we have

VAR
_ do(xo,8(t))
=4

|10 =2u12(x0) —2v2(¢pouq —u; D),
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consequently,

lt12|(x9) <C+C|Dul. (4.25)
Similarly, we have for Vi>1,

[u1i|(x0) <C+C|Dul. (4.26)
Thus we have, by D1v! > Kmin >0,

Uz Eov < —2D11/1M11 —|—C(1—|— |1/lm,|)
< —2Kmmu§0§0 + C(l + |I/lw | ) .

On the other hand, we have from the Hopf lemma, (4.10) and (4.26),

0 < vy (x0,80)
= Ugyzyy — Dyt —a'uyy — Dyb+ 2Ky x;v' + 2Kouguy,
= _ZKminuCOCO"f—C(l"f"uWD-

Then we get
gz (x0) < C(1+ [uwy|). (4.27)

Case2. ¢ is non-tangential.

We can find a tangential vector 7, such that ¢y =at+pv, with 4>+ p2=1. Then we
have

MCOCO(XO) = ‘quTT(xO) +52uw(x0) "’Z“ﬁurv(xo)
= 0217 (x0) + By (x0) +2(E0-v) & (o, Du—u; DVY).

By the definition of v(x,&),
v (x0,&0) = «*v(x0,T) +,Bzv(x0,v) <a?v(x0,&) +,820(x0,1/).
Thus, v(xo,&0) =v(xp,v) and
Ugoz, (%0) < [ty | +C. (4.28)
In conclusion, we have (4.8) in both cases. O
First, we denote d(x) =dist(x,0Q2), and define
h(x)=—d(x)+Ksd*(x). (4.29)

The constant K3 will be determined later. Then we give the following key lemma.
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Lemma 4.2. Suppose QO CR" is a bounded strictly convex domain with C? boundary. Denote
Kmax (X) (Kmin(x)) the maximum (minimum) principal curvature at x € 9Q). Let u € C>(Q)) is
strictly (n—1)-convex and h(x) is defined as in (4.29). Then, for any <y € [3,1), there exists Ks,
a sufficiently large number depending only on n, 7y, minf and Q), such that,

Fihy>yxko(14F), inQy (0<u<p), (4.30)

where H 1 2 1
_ . -

p— > i d = 7’7,7’ )

Ko p— Z Kmin Ana Y 11’1{ 4K3" 2K3 " 2Kmin ‘MO}

F' is defined by (4.3), and g is mentioned in (2.13). As «y tends to 1, K5 tends to infinity.

Proof. For xg € (), there exists yo € 0Q) such that |xo—yo| =d(x0). Then, in terms of the
principal coordinate system at 1o, we have (see [8], Lemma 14.17)

2 T Koo Kn
[D*d(x0)] = dzag[l_Kld, '1—Kn_1d'0]' (4.31)
Dd(xo) =—v(x0) = (0,--+,0,—1). (4.32)
Observe that
2 T ((1—2K3d)K1 (1—2K3d)Kn,1
[D*h(xo)] =diag| T ,2K3]. (4.33)
(17K3d)K1'

Denote y; = Toxd > 0, V1<i<n—1, and u,, =2K3 for simplicity. Then we define

MD2h) = {puiy -+, | 1< <+ <ipor <n}
and assume Ay >--- > A, 1 > Ay, it is easy to see that
m—1
Au-12>2K3+ ) i > K3, (4.34)

I=1

if we choose K3 sufficiently large and u < %Ka' It is also easy to see that / is strictly convex.

We now consider the function w=h—3yxo|x|?. As above, we define ji(D*w)=(ji1," "+, fin)
the eigenvalues of the Hessian D?*w, and

X:{ﬁi1+"'+ﬁi,,,1| 1§i1<'--<in_1§n}

with A;>--->A,,. For any y € [%,1), assume Smin{i,%,%}, we have

1—-Kzd <
1—Kid v
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n—1
Set 6 = %(i}K?’dd —7) independent of K3, recalling H= }_ «;, it follows that
min 1:1
. n—1
A=Y pi—(n—1)yx0 > (n—1)dxo. (4.35)

i=1
By the concavity of F(D?u) =det(W) 7, denote Fii = 5’7?{/, we have
Fiw;; > F|D*u+ D*w]— F[D*u] > F|D*w]
> K4 ((n—1)dxo) >Ks, (4.36)

for a large enough K3 > m. Then we get

~. ~.. 1 1 ~
F'hjj=F"(h— E’YK0|X|2+§’YK0|X|2)1‘]' >Ks+yKoF. (4.37)
1
If we choose K3 > %, then we have
Fiihy > ko (14F). (4.38)
This completes the proof of the lemma. O

Following the line of Qiu-Ma [22] and Chen-Ma-Zhang [4], we construct the sub bar-
rier function as

P(x)=g(x)(Du-v—¢(x,u))—G(x), (4.39)
with

v(x)==Dd(x), g(x)=1-ph(x),
G(x)=(A+0oN)h(x),

where A, o, and f are positive constants to be determined. We have the following lemma.
The curvature condition in Theorem 4.1 is only used here.

Lemma 4.3. Fix o, if we select B large, yu small, A large, and assume N large, then

P>0, in Q. (4.40)
Furthermore, we have
supuyy <C+0oN, (4.41)
Q)

where C depends only on n, |u|c1, [0Qc2 | f|c2 and || ca.
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Proof. We assume P(x) attains its minimum point xo in the interior of (). Differentiate P
twice to obtain

P;=gi(up' —¢)+g(uv' +u; D' — D) — G, (4.42)
Pl']‘ :gij(ulvl —(P) —|—gi(ul]-1/l —|—M1D]‘1/l — D]qb)
+8j (v +u Div' = Digp) +g (i’ +uy Dy
‘|—1/ll]‘Di1/l +u1D1‘]'1/l - Dl](P) — G1] (443)
By a rotation of coordinates, we may assume that (u;j),x, is diagonal at xo, so are W

and (F7),,x,, with F7/ defined by (4.3).
We choose u <min{, %e, 3i; }» where ji is defined in Lemma 4.2 and e € (0, 1) is asmall

positive number to be determined , such that |h| < ﬁ% <e. It follows that
1<g<1+e. (4.44)
Since h; = —(1—2K3d)d;, we also have
(1—e)|di| <[h:| <|dy]. (4.45)
By a straight computation, using Lemma 4.2, we obtain
FijPij = Fligi(up! — ) +2F i g;(ujiv' +u;Djv' — Dig)
+gF (uyiv! +2u; Div' +u; Dy’ — Dyz¢p) — (A+0N) Fiihy;
< (BC1—(A+0N)yxo) (F+1) —2BF ushiv' +2gF u; D', (4.46)

where C1 = C1(|M|C1, |aQ|C3,|(P|C2,|f|C1,1’l).
We divide indexes [ ={1,2,---,n} into two sets in the following way,

B={icI||pd?| <exmin}, G=I\B={icI||Bd?| > ekmin},

where Kmin (Kmax) is the minimum (maximum) principal curvature of the boundary. For
i€G, by Pi(xp) =0, we get

I_ 2Ll D.
uii:(1—2K3d)<(A+UN)—|—ﬁ(ulv 4’)>+””Dl” Dig. (4.47)
8 8 di
Because |d?| > 6"%“‘, (4.44) and (4.45), we have
1—2K3d)B(uv' — u,Div! —D; _
U)MDY DR < per(e lulen PO Iyl
1
Then let A >3BC,, we have
A 1—¢ 4A
Sy " << .
3+1+€0N_ull_ 3 +0oN, (4.48)
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for Vi€ G. We choose B > 2nekmin+1 to let |d12| < % for i € B. Because |Dd|=1, there is a
ig € G, say igp =1, such that

1
2> - 4.4
12 (4.49)
We have
—252Ffiuﬁhivi = —Zﬁ ZFﬁuiihivi —218 ZFﬁu,‘,‘hﬂ/i
iel ieG i€eB
< —2(1—e)pFMundi—2p Y. Fluud?
i€B,u;;<0
ﬁpllull .
< _7_2€Kmin Z Fuuii/ (450)
n u;; <0

ngFiiuz‘z‘Dz‘Vi: Zg Z FiiuiiDiVi+2g Z FiiuiiDiVi

iel u;;>0 u; <0
< 2max Y Fulii+2kmin Y, Fluj;. (4.51)
Lli,‘ZO ll,‘l‘<0

Plug (4.50) and (4.51) into (4.46) to get

FijPi]’ < (IBC1 — (A—HTN)’)/K()) (f+1) — %Fllun
+2(1—€)kmin Y F'ttii+2kmax Y, Fluji. (4.52)

uii<0 lanO
Denote 1y > -+ > uy,,, and

n—1 n
M =max{wgz} =u11+ Y i, A, =min{wgs}=un+)_ui,
lea - lew 3

and Ay > --- > A, >0 the eigenvalues of the matrix W. Assume N >1, from (4.5) we see
that

u; <2CgN, Viel. (4.53)
Then
A <2(n—1)CN, Vi<i<n. (4.54)

If uy1 <upy, we see that A, =A,. Then

F'>S, 1(Aln)> - F, (4.55)
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it follows that

FiP; < (BC1—(A+0N)yxo) (F+1)+2Cokmax NF

__ B A l-e
2T (3TN F <. (4.56)

if we choose B> 12n%(1n—1)kmaxCo/0 and A > "i%
In the following cases, we always assume 111 > t2).

Casel. u,, >0. It follows from
nf= iFﬁuii = Z Fiiuy
i=1 ;>0
and (4.80) that
FiP; < (BC1—(A+0N)yKo) (F+1)+2kmaxntf <0, (4.57)
if we choose A > BCy +2Kkmaxnmax f /yxo.
Case2. B= Y u;;>—(n—2)cN—eN and A, <eN. It follows from A, =Y} ,u;; that

u;;<0

2Kmax Z Fiiuii+(2_€)Kmin Z Fiiuii

u;; >0 u; <0
< 2kmaxF Uy +2[Kkmax (N —B)+ (1 —€)Kkmin B] F
< 2(n—2)[kmax— (1 —e)xmin]UN.7:+4eKmaXN]-'+2KmaXF”u11. (4.58)
Since Kmax — Kmin < 2(;1+)H(1172)’ we have
(n—1)vxo="vYHkmin >2(n—1)(n—2) (Kmax — Kmin ) - (4.59)

We can choose a sufficiently small € =€(#,7, Kmax, Kmin) t0 get

2kmax ¥, Flutii+(2—€)kmin Y F'uii < yko0 NF +2kmax F gy

u;; >0 ;<0
We now choose A > BC;1+1 and B >4nkmax to get
FiP; <0. (4.60)

Case3. B= Y} u;;>—(n—2)cN—eN and A, >¢eN. Itis easy to see, by (4.54), that,
u;<0
Fl1>5, 1(A1)=As---A,

e n—1
> "IN = (2(71—1)(30> [2(n—1)CoN]" !

1 e n—1
> n(Z(rz—l)Cg> Sn—l(/\)- (4-61)
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.. . 21312 (1—1)"Kmax (Co)" BC1
Similarly, if we choose > o T and A > o then

FiP; <0. (4.62)

Case4. B= Y. u;;<—(n—2)cN—eN. We have

u; <0
n
Ap=ump+ Zu,‘i >0.
i=3

It follows that

U >

|B| €
> N
I U+7’l—2 N>Ll11,

if we assume N > 4("3_ €2)A. This contradicts to that 117 > ).
In conclusion, we choose a small € =€(#,, Kmax, Kmin ),

21312 (11— 1) K max (Co )™

B=max {4nKmaX+1,

and u = min{ﬁ,%e,ﬁ}. If A> max{3ﬁCz,%W} and N > %, we obtain

FiiPij < 0, which contradicts to that P attains its minimum in the interior of (. This
implies that P attains its minimum on the boundary 0(),,.
On 0(), it is easy to see

P=0. (4.63)
On 00}, N, we have

P2 ~Cs(lulcy|¢lco) +(A+oN) 5 >0, (4.64)

if we take A=max{23,3 Cz,w . Finally the maximum principle tells us that
u YKo y p p

P>0, in Q. (4.65)
Suppose iy, (Vo) =sup, Uy >0, we have
0> Py(vo)
> (uyy+u;DV'v' =D, ¢) — (A+oN)h,
>y (yo) —C(Jufc1,10Q 2, @[ c2) — (A+0N).

Then we get

supuyy <C+0oN. (4.66)
E1e)

This completes the proof of the lemma. O
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In a similar way, we construct the super barrier function as
P(x):=g(x)(Du-v—¢(x,u))+G(x). (4.67)
We also have the following lemma.
Lemma 4.4. Fix o, if we select 3 large, u small, A large, then
P<0, in Q. (4.68)
Furthermore, we have

inf >—-C—0N, 4.69
infu,, > o (4.69)

where C depends only on n, |u|c1, [0Qc2 | flc2 and || c2.

Proof. We assume P(x) attains its maximum point xo in the interior of (),. Differentiate
P twice to obtain

i=gi(un' =) +g(uyv' +u D'~ Digp) + G, (4.70)
ij :gi]'(ull/l —¢) —|—gi(u1]'1/1 —|—ule1/l — Dj4))
+8j (v +t Div' = Dip) +g (yjv' + Dy
—|-u1jDiVl—|—M1Dij1/l—Dij(l))—i—Gi]'. (4.71)

P
P

As before we assume that (u;;) is diagonal at xo, so are W and (F"), with F/ defined by
(4.3). We choose p small enough such that |8h| < g5 < 1. 1t follows that

3

1<g<?. (4.72)

Recall that h; = — (1—2K3d)d;, we also have
1
Sldil < |hil < |d;]. (4.73)
By a straight computation, using Lemma 4.7, we obtain
Fijpij = Fligii(up! — ) +2Fig;(ujjv' +u;Djv' — Digp)

—|—gPii (uliivl —|—21/liiDi1/i +u1Diﬂ/l — Diicp) + (A—FO'N)Piihii
> ((A+0N)yko—BC1) (F+1) —2BF u;ihiv' +2gFu; Div' (4.74)

where Cy = Cy ([uc1,|0Q s, |9l c2/ | flcrm).
We divide indexes I={1,2,---,n} into two sets in the following way,

1 1
B:{iEI’le% <2Kmin}/ G:I\BZ{iEI’|,Bd%’ZZKmin},
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where Kmin (Kmax) is the minimum (maximum) principal curvature of the boundary. For
i€G, by P;(x0) =0, we get

_ I_ L _D.
uii:(1—2K3d)< (A+oN) , Bl ‘P)>+”’DZV Dig (4.75)
8 g d;
Because |d12| > Kg‘é“, by (4.72) and (4.73), we have
1—2Kzd)B(upv! — u;Djv! — D,
RO )  BREDR < pea(ulcr 00 )
1
Then let A>3BC,, we have
4A A 1
—?—UNSUZ‘iS—g—gU'N, (476)

for Vi € G. We choose B > nimin—+1 to let [d?| < ;- for i € B. Because |Dd| =1, there is a
io € G, say ip =1, such that

1
2> 4.77
i (4.77)
We have
—Z[SZFiiuiihivi: —2,8ZFiiuiihivi—ZﬁZFﬁuiihivi
iel ieG i€B
> —pFMupdi—2p Y Flugd;
i1€B,u;>0
Fll .
> PEn Y Fiug, (4.78)
n u,‘1>0
ZgZFﬁuiiDivi: Zg Z Fiiuz-z-Div"+2g Z FiiuiiDil/i
iel u; >0 u; <0
> 2min Y, Fii+2Kmax Y Fluj. (4.79)
u;;>0 ;<0

Plug (4.78) and (4.79) into (4.74) to get

F'P;i> ((A+0N—BC1)yxo) (]-"—i—l)—%F”un
Fomin ¥, P+ 2Kmax Y Fluji. (4.80)
ltl'l'>0 l/l,'iSO
Denote 1y > --- > u,,, and

n
Amy = min{wgg } =u11 + Z”ii/
lew i3
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and Ay > Ay >--- > A, >0 the eigenvalues of the matrix W. Assume N >1, from (4.5) we
see that

u; <2CyN, Viel. (4.81)
Then
/\i§2(n—1)C0N, V1<i<n. (4.82)

Since 111 <upp, we see that A, =A,. Then

11
> .
F >Sn_1(A|n)_n(n_l)F, (4.83)
it follows that
FiP;;> ((A4+0N)yko—BC1)(F +1) —2CokmaxNF
B Al
+2n2(n_1) ( 3 +30N)}'>0. (4.84)

if we choose B=12n%(n—1)kmaxCo/ 0 +nkmin+1 and A > % This contradicts to that P

attains its maximum in the interior of (. This contradiction implies that P attains its
maximum on the boundary 9(),.
On 0(), it is easy to see P=0.0n 00, N, we have

P<Ca(Jufor |gle) —(A+oN)E <0,

if we take A= 2% + %1 +1. Finally the maximum principle tells us that

P<0, in Q. (4.85)
Suppose uyy (yo) =infyn ttyy, we have
0< Py(yo)
< (uw+ulDi1/l1/' —Dy¢p)+(A+0oN)h,
<y (yo) +C(|tt] 1,100 2, |p| c2) + (A+0N). (4.86)
Then we get
infu,, > —C—0oN. (4.87)
20
This completes the proof of the lemma. O

Then we prove Theorem 4.1 immediately.

Proof of Theorem 4.1. We choose 0= % in Lemmas 4.3 and 4.4, then

sup |uyy | <C. (4.88)
00

Combining (4.88) with (4.5) in Lemma 4.1, we obtain (4.2). O
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5 Existence of the Neumann boundary problem

We use the method of continuity to prove the existence theorem for the Neumann prob-
lem (1.1).

Proof of Theorem 1.1. Consider a family of equations with parameter ¢,

det(W)=tf+(1—-t)(n—1)", inQ,
1, 5.1)
uV:—u+tq>+(1—t)(x-v+§|x| ), on 0Q).

From Theorems 3.1 and 4.1, we get a global C? estimate independent of t for Eq. (5.1). It

follows that Eq. (5.1) is uniformly elliptic. Due to the concavity of detr (W) with respect
to D?u (see [2]), we can get the global Holder estimates of second derivatives following
the discussions in [19], that is, we can get

s <C, (5.2)

where C depends only on 7, |u|c,|f|c2,minf, [§|cs and Q. It is easy to see that 1[x|* isa
strictly (n—1)-convex solution to (5.1) for t =0. Applying the method of continuity (see
[8], Theorem 17.28), the existence of the classical solution holds for t=1. By the standard
regularity theory of uniformly elliptic partial differential equations, we can obtain the
higher regularity. The uniqueness is easy to get from maximum principle. O
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