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Abstract. In this paper we first present a CG-type method for inverse eigenvalue
problem of constructing real and symmetric matrices M, D and K for the quadratic
pencil Q(λ) = λ2 M + λD + K, so that Q(λ) has a prescribed subset of eigenval-
ues and eigenvectors. This method can determine the solvability of the inverse
eigenvalue problem automatically. We then consider the least squares model for
updating a quadratic pencil Q(λ). More precisely, we update the model coefficient
matrices M, C and K so that (i) the updated model reproduces the measured data,
(ii) the symmetry of the original model is preserved, and (iii) the difference be-
tween the analytical triplet (M, D, K) and the updated triplet (Mnew, Dnew, Knew) is
minimized. In this paper a computationally efficient method is provided for such
model updating and numerical examples are given to illustrate the effectiveness of
the proposed method.
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1 Introduction

The times-invariant second order differential system

Mẍ + Dẋ + Kx = f (t), (1.1)

where x∈Rn and M, C, K∈Rn×n, arises frequently in a wide scope of important appli-
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cations, including applied mechanics, electrical oscillation, vibro-acoustics, fluid me-
chanics, signal processing, and finite element discretization of PDEs. It is well known
that if x(t) = veλt represents a fundamental solution to (1.1), then the scalar λ and the
vector v must solve the quadratic eigenvalue problem (QEP)

(λ2M + λD + K)v = 0. (1.2)

The scalars λ∈C and the nonzero vectors v∈Cn are called, respectively, eigenvalues
and eigenvectors of quadratic matrix polynomial Q(λ). Together, (λ, v) is called an
eigenpair of Q(λ). It is well known that the Q(λ) has 2n finite eigenvalues over the
complex field, provided the leading coefficient matrix M is nonsingular.

There are two aspects of the QEP, namely the direct problem and the inverse prob-
lem deserve attention. The direct problem analyzes and computes the spectral infor-
mation, hence deducing the dynamical behavior of the system from a priori known
physical parameters such as mass, elasticity, inductance and capacitance. The inverse
problem determines or estimates the parameters of the system from its observed or
expected eigen-information. Both problems are of significant importance in appli-
cation. In this article, we consider a special inverse quadratic eigenvalue problem
(IQEP) which is quite common in practice–construct the quadratic pencil with only a
few eigenvalues and their corresponding eigenvectors. The IQEP that is of interest to
us can be formulated as follows:

(IQEP) (Inverse Quadratic Eigenvalue Problem) Construct a nontrivial quadratic pen-
cil

Q(λ) = λ2M + λD + K,

so that its matrix coefficients (M, D, K) are of all symmetry structure and Q(λ) has a
specified set {(λi, φi)}

m
i=1 as its eigenpairs.

Since we are only interested in real matrices, it is natural to expect that the pre-
scribed eigenpairs are closed under complex conjugation. To facilitate the discussion,
we shall described the partial eigeninformation via the pair (Λ, Φ)∈Rm×m × Rn×m of
matrices where

Λ = diag

([
α1 β1

−β1 α1

]
, · · · ,

[
αl βl

−βl αl

]
, λ2l+1, · · · , λm

)
∈ R

m×m,

Φ =
[
φ1R, φ1I , · · · , φlR, φl I , φ2l+1, · · · , φm

]
∈ R

n×m.

Here a 2 × 2 block

[
αj β j

−β j αj

]
and the corresponding columns [φjR, φjI ] in Φ represent

of store the complex conjugate pairs of eigenvalues αj ± iβ j and the corresponding
eigenvectors φjR ± φjI . The IQEP therefore amounts to solving the algebraic equation

MΦΛ2 + DΦΛ + KΦ = 0, (1.3)

for the matrices M, D and K subject to symmetry structure.
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By a model updating for the quadratic pencil Q(λ), we mean to replace a por-
tion of its original eigenstructure by some newly measured eigeninformation. It is
well-known that the dynamical behavior of a vibrating system modeled by (1.2) is
determined by its natural frequencies and mode shapes, that is, the eigenvalues and
eigenvectors of Q(λ). The undesired phenomenons such as instability and resonance
are caused by some ”troublesome” eigenvalues and the corresponding eigenvectors
of Q(λ). Therefore, in order to combat or avoid the undesired phenomenons, one way
is to update the quadratic model Q(λ) so that these ”troublesome” or unfavorable
eigenvalues and eigenvectors are replaced by some suitable ones. Among current
developments for finite element model updating, one challenge that is of practical
importance is to update the model with minimal changes. Because the solution to
a MUP is not unique, therefore the notion is optimizing the adjustment or the ro-
bustness is highly plausible. Such an updating problem, which are usually faced by
vibration engineers and designers, if possible, is known as the least squares model
updating [1, 2, 4]. Moody T. Chu in [4] also pointed out that such updating problem
is an area for further research. In this paper, we consider this special model updating
and can be stated as follows:

(LSMUP) (Least squares Model Updating Problem) Given a symmetric quadratic
pencil (M0, D0, K0) and a few of its associated eigenpairs (λj, φj)

m
j=1

with m≤n, as-

sume that new eigenpairs (λ̃j, φ̃j)
m

j=1
have been measured. Update the quadratic pen-

cil (M0, D0, K0) to a new quadratic pencil (Mnew, Cnew, Knew) of the same structure such
that

i. the newly measured (ϕj, yj)
m
j=1

form m eigenpairs of the new model (Mnew, Cnew, Knew);

ii. minimizing the different between the updated symmetric quadratic pencil (Mnew, Dnew, Knew)
and the analytical symmetric quadratic pencil (M0, D0, K0).

Similarly, let the real representation of the new measured eigenvalues {λ̃j}
m
j=1 is

Λ̃ = diag

([
α̃1 β̃1

−β̃1 α̃1

]
, · · · ,

[
α̃l β̃l

−β̃l α̃l

]
, λ̃2l+1, · · · , λ̃m

)
∈ R

m×m.

Let the real representation of the eigenvectors corresponding to the new measured
eigenvalues be Φ̃.

Using the notations above, it is easy to derive that the LSMUP amounts to known
the following matrix equality

M0ΦΛ2 + D0ΦΛ + K0Φ = 0,

we want to find a real symmetric matrix triplet (Mnew, Dnew, Knew) with Mnew nonsin-
gular satisfying the following optimization problem

minimize ‖Mnew − M0‖
2 + ‖Dnew − D0‖

2 + ‖Knew − K0‖
2, (1.4)

subject to MnewΦ̃Λ̃2 + DnewΦ̃Λ̃ + KnewΦ̃ = 0. (1.5)

Finite element model updating has emerged in the 1990s as a significant subject to
the design, construction, and maintenance of mechanical systems. This technical has
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widely application in damage detection and health-monitoring of the structures, such
as bridges, highways, etc., and in controlling resonance vibrations in the above struc-
tures (see e.g., [22]). The application intends to correct errors in a finite element model
by incorporating the measured modal data into the analytical finite element model,
producing an adjusted model on the mass, damping and stiffness whose resulting be-
havior closely matches the experimental data. Over the years, a number of approaches
has been proposed and a complete book [9] has been devoted to the subject.

The existing methods can be broadly classified into three class: (i) direct matrix
model updating methods (see [3, 5–8, 10–12, 18–21]), (ii) iterative methods (see [23])
and (iii) frequency response methods. All the existing methods proposed in [11,12,20]
aim at updating directly the mass, stiffness, and damping matrices in such a way
that the updated model remains symmetric and reproduces the measured data as ac-
curately as possible, but cannot guarantee that the updating with minimal changes.
The method proposed in [3, 5] have the additional important feature that the eigen-
values and eigenvectors which are not updated remain unchanged by the updating
procedure. This guarantees that ”no spurious modes appear in the frequency range
of interest”. Recently a novel iterative scheme was suggested in [23] to reassign one
eigenvalue at a time preserving both symmetry and no spurious in the process. The
trouble is that the algorithm can break down prematurely and cannot guarantee that
all desirable eigenvalues are updated.

In this paper we are concerned only with iterative matrix updating methods. We
first convert the IQEP to an equivalent linear matrix equation problem, then construct
a computationally efficient and symmetry preserving iterative algorithm, based on
the Conjugate Gradient (CG) method, to solve the equivalence problem completely.
We show that with the proposed algorithm, a desired quadratic pencil (M, D, K) of
IQEP can be obtained within finitely many steps in the absence of roundoff errors. We
then prove that the unique updated quadratic pencil (Mnew, Dnew, Knew) of LSMUP
is just the unique least norm solution of another matrix equation, which can also be
obtained within finitely many steps by choosing a special kinds of initial symmetric
matrix triplet. Some numerical examples are presented to show the efficiency and
reliability of the proposed method for IQEP and LSMUP.

Our contribution is innovative in three areas: (i) the solvability of the IQEP can be
determined automatically, which is the most significant characteristic of the proposed
method, (ii) both the solution of the IQEP and the the unique solution of the LSMUP
can be compute with little work and low storage requirements per iteration. In fact,
it is only required to compute a residual matrix and update the iterative solution and
gradient matrices linearly in each iteration.

The following partial notations and definitions are used throughout this paper.

• R
n×m − the set of all real n × m matrices;

• S
n×n − the set of all real n × m symmetric matrices;

• 〈A, B〉 = trace(BT A) = trace(BAT) =
n

∑
i=1

m

∑
i=1

AijBij; where A, B ∈ R
n×m;
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• 〈A, A〉 = ‖A‖2; the symbol‖ · ‖denotes the Frobenius norm of a matrix or the Eucli

-dean norm of a vector;

• AT = the transpose of A;

• A ⊗ B − denotes the Kronecker product of matrices A and B;

•R(M)− the column space of matrix M.

2 A new method for solving IQEP

To answer whether a quadratic pencil can be updated, a more fundamental question
is whether a quadratic pencil can have arbitrary k prescribed eigenpairs, which is the
essence of the IQEP. In order to find a quadratic pencil (M, D, K) of IQEP, we first
discuss a related matrix equation problem, which can be described as follows:

Problem 2.1. Given matrices A∈R
n×m, B∈R

n×m, C∈R
n×m and E∈R

n×m. Find X∈Sn×n,
Y∈Sn×n and Z∈Sn×n such that

XA + YB + ZC = E. (2.1)

Noting that if we denote

A = ΦΛ2, B = ΦΛ, and C = Φ,

then find a quadratic pencil (M, D, K) of IQEP such that

MΦΛ2 + CΦΛ + KΦ = 0,

is equivalent to find a symmetric triplet (X, Y, Z) such that (2.1) holds when E = 0.
We should point out, for the general cases of linear matrix equation (2.1), such as

(a) AXB + CYD = E,

(b) A1X1B1 + A2X2B2 + · · ·+ AlXlBl = E,

several schemes have been proposed. For small size problems (see [16, 17]), we have
the novel factorization techniques-Generalized Singular Value Decomposition (GSVD)
and Canonical Correlation Decomposition (CCD); for large-scale problems, we have
the gradient projection and hierarchical identification principle (see [13–15]). How-
ever, the real-life analytical model aries in vibration industries, including automobile,
space and aircraft industries are generally very large, direct factorization method is
not computationally feasible. Ding et al. [13–15] used the hierarchical identification
principle to construct iterative solutions to the linear matrix equation (b). However,
because of several serious computational difficulties, including the inversion of a pos-
sible ill-conditioned coefficient matrix and the complete loss of the exploitable struc-
tures of the unknown matrices, such as the symmetry, this approach is not practical
for IQEP.
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For overcoming the difficulty above-mentioned, it motivates us to construct a new
iterative method to gain faster convergence and low storage requirement per itera-
tion. The main idea is based on the classic Conjugate Gradient (CG) method. The CG
method is an effective method for solving symmetric positive definite systems. The
method proceeds by generating vector sequences of iterates (i.e., successive approxi-
mations to the solution), residuals corresponding to the iterates, and search directions
used in updating the iterates and residuals.

The iterates x(i) are updated in each iteration by a multiple αi of the search direction
vector p(i) :

x(i) = x(i−1) + αi p
(i).

Correspondingly the residuals

r(i) = b − Ax(i),

are updated as

r(i) = r(i−1) + αq(i), where q(i) = Ap(i). (2.2)

The choice

α = αi =
r(i−1)T

r(i−1)

p(i)
T

Ap(i)
,

minimizes r(i)
T

A−1r(i) over all possible choices for α in Eq. (2.2).
The search directions are updated using the residuals

p(i) = r(i) + βi−1p(i−1),

where the choice

βi =
r(i)

T
r(i)

r(i−1)T
r(i−1)

,

ensures that p(i) and Ap(i−1)-or equivalently, r(i) and r(i−1)-are orthogonal. In fact, one
can show that this choice of βi makes p(i) and r(i) orthogonal to all previous Ap(j) and
r(j) respectively.

CG method converges within at most n iterations if exact arithmetic could be per-
formed, where n is the order of the coefficient matrix. In practice the iteration numbers
may be larger than n because of the computational errors.

2.1 An extended CG method for solving Problem 2.1

In this subsection we first construct an iterative algorithm, which called the extended
CG algorithm, for Problem 2.1. We then characterize its some basic properties. Finally
we prove it is convergence within finitely many steps. We show that, for any arbi-
trary initial symmetric matrix triplet (X0, Y0, Z0), a desired solution can be obtained
in finitely many steps and the optimal (least norm) solution can also be obtained by
choosing a special kinds of initial symmetric matrix triplet.
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Extended CG Algorithm 1. Input matrices A∈R
n×m, B∈R

n×m, C∈R
n×m, E∈R

n×m and initial
matrices X0∈S

n×n, Y0∈S
n×n, Z0∈S

n×n. Calculate

1. R0 = E − (X0 A + Y0B + Z0C); Q0,x = 1
2 (R0AT + ART

0 ),

Q0,y = 1
2 (R0BT + BRT

0 ), Q0,z =
1
2 (R0CT + CRT

0 ); k := 0;

2. If Rk = 0, then stop; else compute

3. αk =
‖Rk‖

2

‖Qk,x‖
2+‖Qk,y‖

2+‖Qk,z‖
2 ; Xk+1 = Xk + αkQk,x,

Yk+1 = Xk + αkQk,y, Zk+1 = Xk + αkQk,z;

Rk+1 = Rk − αk(Qk,x A + Qk,yB + Qk,zC);

βk =
‖Rk+1‖

2

‖Rk‖
2 ; Qk+1,x = 1

2 (Rk+1 AT + ART
k+1) + βkQk,x,

Qk+1,y = 1
2 (Rk+1BT + BRT

k+1) + βkQk,y, Qk+1,z =
1
2 (Rk+1CT + CRT

k+1) + βkQk,z;

4. Let k := k + 1 and go to Step 2.

Remark 2.1. Since Q0,x∈Sn×n by assumption and Rk+1AT + ART
k+1∈Sn×n for all k, the

third equation from button in Step 3 and induction imply that Qk+1,x∈Sn×n. Since
X0∈Sn×n by assumption and Qk,x∈Sn×n for all k, the second equation in Step 3 and in-
duction imply that Xk+1∈Sn×n. Analogously, we have Qk,y∈Sn×n, Qk,z∈Sn×n, Yk∈Sn×n,
and Zk∈Sn×n, for all k. Rk is the residual of Eq. (2.1), where k = 0, 1, 2, · · · .

Lemma 2.1. Suppose Eq. (2.1) is consistent over symmetric matrix triplet, and [X∗, Y∗, C∗] is
an arbitrary solution. Then for any initial symmetric matrix triplet [X0, Y0, Z0], the sequences
Xi, Yi, Zi Ri, Qi,x, Qi,y and Qi,z generated by Algorithm 1 satisfy

〈Qi,x, X∗ − Xi〉+ 〈Qi,y, Y∗ − Yi〉+ 〈Qi,z, Z∗ − Zi〉 = ‖Ri‖
2, i = 0, 1, 2, · · · .

Proof. We prove the conclusion by induction. When i = 0, we have

〈Q0,x, X∗ − X0〉+ 〈Q0,y, Y∗ −Y0〉+ 〈Q0,z, Z∗ − Z0〉

=〈
1

2
(R0AT + ART

0 ), X∗ − X0〉+ 〈
1

2
(R0BT + BRT

0 ), Y∗ −Y0〉

+ 〈
1

2
(R0CT + CRT

0 ), Z∗ − Z0〉

=〈R0, (X∗ − X0)A〉+ 〈R0, (Y∗ − Y0)B〉+ 〈R0, (Z∗ − Z0)A〉

=〈R0, X∗A +Y∗B + Z∗C − (X0A +Y0B + Z0C)〉

=〈R0, E − (X0 A + Y0B + Z0C)〉

=‖R0‖
2.

Suppose that the conclusion holds for i = v, v ≥ 0, that is,

〈Qv,x, X∗ − Xv〉+ 〈Qv,y, Y∗ −Yv〉+ 〈Qv,z, Z∗ − Zv〉 = ‖Rv‖
2.
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Then, when i = v + 1, we have

〈Qv+1,x, X∗ − Xv+1〉+ 〈Qv+1,y, Y∗ − Yv+1〉+ 〈Qv+1,z, Z∗ − Zv+1〉

=〈
1

2
(Rv+1AT + ART

v+1)− βvQv,x, X∗ − Xv+1〉+ 〈
1

2
(Rv+1BT + BRT

v+1)

− βvQv,y, Y∗ −Yv+1〉+ 〈
1

2
(Rv+1CT + CRT

v+1)− βvQv,z, Z∗ − Zv+1〉

=〈Rv+1, X∗A +Y∗B + Z∗C − (Xv+1A +Yv+1B + Zv+1C)〉

+ βv

{
〈Qv,x, X∗ − Xv+1〉+ 〈Qv,y, Y∗ − Yv+1〉+ 〈Qv,z, Z∗ − Zv+1〉

}

=〈Rv+1, E − (Xv+1A + Yv+1B + Zv+1C)〉

+ βv

{
〈Qv,x, X∗ − (Xv + αvQv,x)〉+ 〈Qv,y, Y∗ − (Yv + αvQv,y)〉

+ 〈Qv,z, Z∗ − (Zv + αvQv,z)〉
}

=‖Rv+1‖
2 + βv

{
〈Qv,x, X∗ − Xv〉+ 〈Qv,y, Y∗ − Yv〉+ 〈Qv,z, Z∗ − Zv〉

− αv(‖Qv,x‖
2 + ‖Qv,y‖

2 + ‖Qv,z‖
2)
}

=‖Rv+1‖
2 − βv(‖Rv‖

2 − ‖Rv‖
2) = ‖Rv+1‖

2.

By the principle of induction, the desired conclusion is obtained �

Remark 2.2. From the formula of Qv,x, Qv,y and Qv,z in Algorithm 1 and Lemma 2.1,
we know that if Eq. (2.1) is consistent, then, Ri = 0 if and only if

Qv,x = 0, Qv,y = 0, and Qv,z = 0.

In other words, ‖Ri‖ 6= 0 if and only if

‖Qv,x‖
2 + ‖Qv,y‖

2 + ‖Qv,z‖
2 6= 0.

This results implies that if there exists a positive number k such that

Qv,x = 0, Qv,y = 0, and Qv,z = 0, but Rk 6= 0,

then Eq. (2.1) is inconsistent. Hence, the solvability of Eq. (2.1) can be determined
automatically by Algorithm 1 in the absence of round-off errors.

Lemma 2.2. Assume that Eq. (2.1) is consistent and the sequences Ri, Qv,x, Qv,y and Qv,z,
where Ri 6= 0, i = 0, 1, 2, · · · , k, are generated by Algorithm 1. Then

〈Ri, Rj〉 = 0,

〈Qi,x, Qj,x〉+ 〈Qi,y, Qj,y〉+ 〈Qi,z, Qj,z〉 = 0, i, j = 0, 1, 2, · · · , k, i 6= j,

Proof. Since 〈A, B〉 = 〈B, A〉 for all matrices A and B in R
n×m, we only prove the

conclusion hold for all 0 ≤ i < j ≤ k. To this end, using induction and two steps are
required.
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1. Show that

〈Ri, Ri+1〉 = 0, and 〈Qi,x, Qi+1,x〉+ 〈Qi,y, Qi+1,y〉+ 〈Qi,z, Qi+1,z〉 = 0,

for all i = 0, 1, 2, · · · , k. To prove this conclusion, we also use induction. For i = 0, we
have

〈R0, R1〉 =〈R0, R0 − α0(Q0,xA + Q0,yB + Q0,zC)〉

=‖R0‖
2 − α0

(
〈R0 AT , Q0,x〉+ 〈R0BT, Q0,y〉+ 〈R0CT , Q0,z〉

)

=‖R0‖
2 − α0

(
〈

1

2
(R0AT + ART

0 ), Q0,x〉+ 〈
1

2
(R0BT + BRT

0 ), Q0,y〉

+ 〈
1

2
(R0CT + CRT

0 ), Q0,z〉
)

=‖R0‖
2 − α0

(
‖Q0,x‖

2 + ‖Q0,y‖
2 + ‖Q0,y‖

2
)
= 0,

and

〈Q0,x, Q1,x〉+ 〈Q0,y, Q1,y〉+ 〈Q0,z, Q1,z〉

=〈Q0,x,
1

2
(R1AT + ART

1 )− β0Q0,x〉+ 〈Q0,y,
1

2
(R1BT + BRT

1 )− β0Q0,y〉

+ 〈Q0,z,
1

2
(R1CT + CRT

1 )− β0Q0,z〉

=〈Q0,xA + Q0,yB + Q0,zC, R1〉 − β0(‖Q0,x‖
2 + ‖Q0,y‖

2 + ‖Q0,y‖
2)

=
1

α0
〈R0 − R1, R1〉 − β0(‖Q0,x‖

2 + ‖Q0,y‖
2 + ‖Q0,y‖

2) = 0.

Assume that the conclusion holds for all i ≤ s, 0 < s < k. Then

〈Rs, Rs+1〉 =〈Rs, Rs − αs(Qs,xA + Qs,yB + Qs,zC)〉

=‖Rs‖
2 − αs

(
〈Rs AT, Qs,x〉+ 〈RsBT, Qs,y〉+ 〈RsCT , Qs,z〉

)

=‖Rs‖
2 − αs

(
〈

1

2
(Rs AT + ART

s ), Qs,x〉+ 〈
1

2
(RsBT + BRT

s ), Qs,y〉

+ 〈
1

2
(RsCT + CRT

s ), Qs,z〉
)

=‖Rs‖
2 − αs

(
〈Qs,x − βs−1Qs−1,x, Qs,x〉+ 〈Qs,y − βs−1Qs−1,y, Qs,y〉

+ 〈Qs,z − βs−1Qs−1,z, Qs,z〉
)

=‖Rs‖
2 − αs

(
‖Qs,x‖

2 + ‖Qs,y‖
2 + ‖Qs,y‖

2
)
= 0,

and

〈Qs,x, Qs+1,x〉+ 〈Qs,y, Qs+1,y〉+ 〈Qs,z, Qs+1,z〉

=〈Qs,x,
1

2
(Rs+1AT + ART

s+1) + βsQs,x〉+ 〈Qs,y,
1

2
(Rs+1BT + BRT

s+1) + βsQs,y〉

+ 〈Qs,z,
1

2
(Rs+1CT + CRT

s+1) + βsQs,z〉

=〈Qs,xA + Qs,yB + Qs,zC, Rs+1〉+ βs

(
‖Qs,x‖

2 + ‖Qs,y‖
2 + ‖Qs,y‖

2
)
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=
1

αs
〈Rs − Rs+1, Rs+1〉+ βs

(
‖Qs,x‖

2 + ‖Qs,y‖
2 + ‖Qs,y‖

2
)
= 0.

By the principle of induction,

〈Ri, Ri+1〉 = 0, and 〈Qi,x, Qi+1,x〉+ 〈Qi,y, Qi+1,y〉+ 〈Qi,z, Qi+1,z〉 = 0,

hold true for all i = 0, 1, 2, · · · , k.

2. Assume that

〈Ri, Ri+l〉 = 0, and 〈Qi,x, Qi+l,x〉+ 〈Qi,y, Qi+l,y〉+ 〈Qi,z, Qi+l,z〉 = 0,

for all 0 ≤ i ≤ k and 1 < l < k, we will show that

〈Ri, Ri+l+1〉 = 0, and 〈Qi,x, Qi+l+1,x〉+ 〈Qi,y, Qi+l+1,y〉+ 〈Qi,z, Qi+l+1,z〉 = 0.

The proof is as follows:

〈Ri, Ri+l+1〉 =〈Ri, Ri+l − αi+l(Qi+l,x A + Qi+l,yB + Qi+l,zC)〉

=− αi+l

(
〈Ri A

T, Qi+l,x〉+ 〈RiB
T, Qi+l,y〉+ 〈RiC

T, Qi+l,z〉
)

=− αi+l

(
〈

1

2
(Ri A

T + ART
i ), Qi+l,x〉+ 〈

1

2
(RiB

T + BRT
i ), Qi+l,y〉

+ 〈
1

2
(RiC

T + CRT
i ), Qi+l,z〉

)

=− αi+l

(
〈Qi,x − βi−1Qi−1,x, Qi+l,x〉+ 〈Qi,y − βi−1Qi−1,y, Qi+l,y〉

+ 〈Qi,z − βi−1Qi−1,z, Qi+l,z〉
)

=− αi+l

{
〈Qi,x, Qi+l,x〉+ 〈Qi,y, Qi+l,y〉+ 〈Qi,z, Qi+l,z〉

− βi−1(〈Qi−1,x, Qi+l,x〉+ 〈Qi−1,y, Qi+l,y〉+ 〈Qi−1,z, Qi+l,z〉)
}

=0,

and

〈Qi,x, Qi+l+1,x〉+ 〈Qi,y, Qi+l+1,y〉+ 〈Qi,z, Qi+l+1,z〉

=〈Qi,x,
1

2
(Ri+l+1AT + ART

i+l+1) + βi+lQi+l,x〉

+ 〈Qi,y,
1

2
(Ri+l+1BT + BRT

i+l+1) + βi+lQi+l,y〉

+ 〈Qi,z,
1

2
(Ri+l+1CT + CRT

i+l+1) + βi+lQi+l,z〉

=〈Qi,x A + Qi,yB + Qi,zC, Ri+l+1〉+ βi+l(〈Qi,x, Qi+l,x〉

+ 〈Qi,y, Qi+l,y〉+ 〈Qi,z, Qi+l,z〉)

=
1

αi
〈Ri − Ri+1, Ri+l+1〉 = 0.
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From Steps 1 and 2, we have by induction that

〈Ri, Rj〉 = 0, and 〈Qi,x, Qj,x〉+ 〈Qi,y, Qj,y〉+ 〈Qi,z, Qj,z〉 = 0,

hold for all i, j = 0, 1, 2, · · · , k, i 6= j. �

Remark 2.3. Lemma 2.2 implies that if Eq. (2.1) is consistent, then, for any initial sym-
metric matrix triplet (X0, Y0, Z0), a solution can be obtained within at most nm itera-
tion steps. Since R0, R1, R2, · · · , are orthogonal each other in a finite dimension matrix
space Rn×m, it is certain that there exists a positive number k ≤ nm such that Rk = 0.

To facilitate the statement of our main results, we introduce the following lemma.

Lemma 2.3. Suppose that the consistent system of linear equations Mx = b has a solution
x∈R(MT). Then x∗ is an unique least Frobenius norm solution of the system of linear equa-
tions.

Proof. We decompose the matrix M∈Rm×n by singular value decomposition (SVD):

M = U

(
Σ 0
0 0

)
VT,

where

U = (U1, U2) ∈ OR
m×m, V = (V1, V2) ∈ OR

n×n, U1 ∈ R
m×r,

Σ = diag(σ1 , σ2, · · · , σr) > 0, r = rank(M), V1 ∈ R
n×r.

Then the Moore-Penrose generalized inverse of the matrix M is

M+ = V1Σ−1UT
1 ,

and the general solution of the system of linear equation Mx = b is

x = M+b + (I − M+M)z,

where z is an arbitrary vector of suitable dimension. Since

M+ = V1Σ−1UT
1 ∈ R(V1), (I − M+M)z = V2VT

2 ∈ R(V2),

V1 and V2 are orthogonal to each other, then M+b is the unique least Frobenius norm
solution of the system of linear equations Mx = b. On the other hand, since

MT = V1ΣUT
1 ,

and the solution x∗∈R(MT), then x∗∈R(V1). Therefore, x∗ is the least Frobenius norm
solution of the system of linear equations Mx = b, that is,

x∗ = M+b,
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so the proof is complete. �

For any matrix M∈Rm×n, denoted by vec(A), the following mn-vector containing
all the entries of matrix M:

vec(M) =




M(:, 1)
M(:, 2)

...
M(:, n)


 ∈ R

mn,

where M(:, i) denotes ith column of matrix M (i.e., Matlab style). For vector �∈R
mn,

denoted by ṽecm,n(�) the following m × n matrix containing all the entries of vector �:

ṽecm,n(�) = (�(1 : m) �(m + 1 : 2m) · · · �[(n − 1)m + 1 : mn]
)
∈ R

m×n,

where �(i : j) denotes a vector containing the elements i to j of vector �.
We know the solvability of Eq. (2.1) over symmetric matrix triple is equivalent to

the following linear system
{

XA + YB + ZC = E,

ATX + BTY + CTZ = ET.

Then the above system of matrix equations is equivalent to the systems of linear equa-
tions

(
AT ⊗ In BT ⊗ In CT ⊗ In

In ⊗ A In ⊗ B In ⊗ C

)


vec(X)
vec(Y)
vec(Z)


 =

(
vec(E)

vec(ET)

)
.

Note that



vec(HAT + AHT)
vec(HBT + BHT)
vec(HCT + CHT)


 =




A ⊗ In In ⊗ AT

B ⊗ In In ⊗ BT

C ⊗ In In ⊗ CT







vec(H)
vec(H)
vec(H)




=

(
AT ⊗ In BT ⊗ In CT ⊗ In

In ⊗ A In ⊗ B In ⊗ C

)T



vec(H)
vec(H)
vec(H)




∈R

((
AT ⊗ In BT ⊗ In CT ⊗ In

In ⊗ A In ⊗ B In ⊗ C

)T)
.

We see that if we let initial matrices

X0 = HAT + AHT, Y0 = HBT + BHT, and Z0 = HCT + CHT,

where H∈R
n×m is arbitrary, then all Xk, Yk and Zk, generated by Algorithm 1, satisfy




vec(Xk)
vec(Yk)
vec(Zk)


 ∈ R

((
AT ⊗ In BT ⊗ In CT ⊗ In

In ⊗ A In ⊗ B In ⊗ C

)T)
.
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Hence, from Lemma 2.3 we obtain that if (X∗, Y∗, Z∗), generated by Algorithm 1, is the
solution triplet of the matrix equation (2.1), then it is its least Frobenius norm solution
pair. In this case, X∗, Y∗ and Z∗ can be expressed as

X∗ = ṽecn,n[W∗(1 : n2)], (2.3a)

Y∗ = ṽecn,n[W∗(n
2 + 1 : 2n2)], (2.3b)

Z∗ = ṽecn,n[W∗(2n2 + 1, 3n2)], (2.3c)

where

W∗ =

(
AT ⊗ In BT ⊗ In CT ⊗ In

In ⊗ A In ⊗ B In ⊗ C

)+ (
vec(E)

vec(ET)

)
.

The above conclusions on the solution of the linear matrix equation (2.1) can be col-
lected in the following theorem. Its proof is omitted.

Theorem 2.1. Assume that Eq. (2.1) is consistent. Then for any initial guess symmetric
matrix triplet (X0, Y0, Z0), the matrix triplet sequence (Xk, Yk, Zk), generated by Algorithm
1, converges to its solution within at most n2 iteration steps. Furthermore, if we choose the
initial guess matrices

X0 = HAT + AHT, Y0 = HBT + BHT, and Z0 = HCT + CHT,

with H is arbitrary, or more specifically, if we let

X0 = 0, Y0 = 0, and Z0 = 0,

then the solution triplet [X∗, Y∗, Z∗] obtained by Algorithm 1 is the least Frobenius norm
solution of the matrix equation (2.1). In this case, X∗, Y∗ and Z∗ can be expressed as (2.3).

Remark 2.4. If E = 0, we know that the homogeneous linear matrix equation

XA + YB + CZ = 0,

is always solvable. In this case we say the IQEP is unsolvable if it has an unique null
solution. Since

XA + YB + CZ = 0 ⇔
(

AT ⊗ In BT⊗ In CT ⊗ In

)



vec(X)
vec(Y)
vec(Y)


 = 0.

Therefore, if

rank
( (

AT ⊗ In BT⊗ In CT ⊗ In

) )
= 3n,

the IQEP is unsolvable.
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2.2 Numerical experiments for IQEP

In this subsection we illustrate the feasibility and efficiency of the proposed algorithm
by using some numerical examples. All numerical implementations were performed
on a personal computer of the Intel P4 2.4 GHz processor family with 512M memory
using Matlab 7.0.

Example 2.1. Consider the IQEP where the partial eigenstructure (Λ, Φ)∈R
5×5 ×R

5×5

is randomly. Assume

Λ =




−0.2168 −4.3159 0 0 0
4.3159 −0.2168 0 0 0

0 0 2.0675 −0.9597 0
0 0 0.9597 2.0675 0
0 0 0 0 −0.3064




,

Φ =




−0.4132 5.2801 2.9437 −6.6098 −9.6715
−4.3518 3.2758 −5.1656 9.1024 −9.1357
−0.1336 −4.0588 2.5321 3.3049 −4.4715
−5.1414 4.4003 −2.2721 5.2872 6.9659
8.6146 −4.0112 −6.9380 1.4345 −4.4708




.

We first let A = ΦΛ2, B = ΦΛ, C = Φ and E = 0∈R
5×5, and the initial matrix X0 = I5,

Y0 = I5 and Z0 = I5. Using Algorithm 1 and iterate 42 steps, we have the quadratic
pencil (M, D, K) of IQEP as follows:

M =




0.3635 0.0841 0.2671 −0.0256 0.0943
0.0841 0.3427 −0.0391 −0.4227 −0.0642
0.2671 −0.0391 0.3843 0.0722 0.1013
−0.0256 −0.4227 0.0722 0.6217 0.1567
0.0943 −0.0642 0.1013 0.1567 0.1268




,

C =




0.5696 0.4942 0.4271 0.1148 0.2090
0.4942 0.4286 0.1481 −0.4788 −0.0298
0.4271 0.1481 0.1903 0.1508 0.2615
0.1148 −0.4788 0.1508 0.6867 0.1426
0.2090 −0.0298 0.2615 0.1426 −0.0456




,

K =




0.6354 0.0541 −0.1566 0.3655 −0.0596
0.0541 0.4321 −0.0742 −0.0519 −0.2808
−0.1566 −0.0742 0.7288 0.0898 0.2619
0.3655 −0.0519 0.0898 0.7057 0.0192
−0.0596 −0.2808 0.2619 0.0192 0.5835




.

In Fig. 1 we characterize the convergence curve for the Frobenius norm of the residual
and the iterative variable (‖Qk,x‖

2 + ‖Qk,y‖
2 + ‖Qk,y‖

2)1/2.
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Table 1: The residual for Example 2.1.

(λi, φi) (λ1, φ1) (λ2, φ2) (λ3, φ3) (λ4, φ4) (λ5, φ5)
res(λi, φi) 4.8122e-011 4.8122e-011 1.3726e-011 1.3726e-011 1.1801e-013

It is easy to compute

‖MΦΛ2 + CΦΛ + KΦ‖2 = 8.3630 ∗ 10−22.

We define the residual as

res(λi , φi) = ‖(λ2
i M + λiD + K)φi‖,

and the numerical results shown in Table 1.
Therefore, the prescribed eigenvalues (the diagonal elements of the matrix Λ) and

eigenvectors (the column vectors of the matrix Φ) are embedded in the model

(λ2M + λC + K)v = 0.

Example 2.2. In this experiment, the prescribed eigenvalue matrix Λ and eigenvector
matrix Φ are randomly constructed as follows:

T = rand(8), G = rand(r); Λ = diag(T); [P, L] = eig(G); Φ = P(:, 1 : 8);

where r are a constant that determine the magnitudes of the quadratic pencil Q(λ).
In Table 2, we list our numerical results as the matrix size is variant from r = 100
to r = 400. We set the initial iterative matrices be X0 = Ir, Y0 = Ir, Z0 = Ir. Then a
symmetric matrix triplet (M, D, K) can be obtained by using Algorithm 1. In this table,
we list CPU times(s), iteration numbers (k), residual norm ‖Rk‖

2 and the iterative
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Figure 1: Convergence curve for the Frobenius norm of the residual and the iterative variable (‖Qk,x‖
2 +

‖Qk,y‖
2 + ‖Qk,y‖

2)1/2.
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Table 2: CPU times, etc for Example 2.2.

r=100 r=200 r=300 r=400
iteration number k 407 484 340 344

elapsed times(s) 20.596916 96.949634 167.819220 320.679199

residual ‖Rk‖
2 9.9635e-021 9.7405e-021 4.6034e-021 2.1334e-021

‖Qk,x‖
2 + ‖Qk,y‖

2 + ‖Qk,y‖
2 7.1043e-021 4.7163e-021 2.1680e-021 1.5487e-021

Table 3: The residual for Example 2.2.

r=100 r=200 r=300 r=400
eigenpairs ‖Q1(λj)φj‖ ‖Q2(λj)φj‖ ‖Q3(λj)φj‖ ‖Q4(λj)φj‖
(λ1, φ1) 3.3096e-011 3.0144e-011 2.1793e-011 1.5976e-011
(λ2, φ2) 3.8608e-011 2.5528e-011 2.3769e-011 2.8385e-011
(λ3, φ3) 2.6605e-011 1.3448e-011 3.1068e-011 1.4543e-011
(λ4, φ4) 3.4524e-011 2.9526e-011 2.9004e-011 1.2856e-011
(λ5, φ5) 3.8570e-011 3.6197e-011 2.2360e-011 5.2986e-012
(λ6, φ6) 3.0067e-011 2.6161e-011 2.0759e-011 1.2493e-011
(λ7, φ7) 4.1647e-011 5.1522e-011 1.9335e-011 1.5576e-011
(λ8, φ8) 3.6767e-011 4.9783e-011 2.1266e-011 1.6400e-011

variable (‖Qk,x‖
2 + ‖Qk,y‖

2 + ‖Qk,y‖
2)1/2 for different values of r with the stopping

criteria ‖Rk‖ ≤ 10−10.

In Table 3, we show the residual ‖Q(λi)φi‖ for different values of r, where (λi, φi)
are the computed eigenpairs of Q(λ), for j = 1, · · · , 8.

3 The extended CG algorithm for solving LSMUP

3.1 Numerical method for LSMUP

Recall that a least squares model updating with no spill-over is mathematically equiv-
alent to a optimal approximation problem and a IQEP with prescribed eigenvalue Λ̃

and eigenvector Φ̃, with the pair (Λ̃, Φ̃)∈R
m×m × R

n×m representing the portion of
eigenstructure that has been modified.

Denote Φ̃Λ̃2 = Ã, Φ̃Λ̃ = B̃, andΦ̃ = C̃. Then Eq. (1.5) is equivalent to the algebraic
equation

(Mnew − M0)Ã + (Dnew − D0)B̃ + (Knew − K0)C̃ (3.1)

=− (M0A + D0B + K0C). (3.2)

We also let

Mnew − M0 = X, Dnew − D0 = Y,

Knew − K0 = Z, Ẽ = −(M0A + D0B + K0C).
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Then finding the updated symmetric matrix triplet (Mnew, Dnew, Knew) for the op-
timization problem (1.4)-(1.5) is equivalent to finding the unique symmetric matrix
triplet (X, Y, Z) for the following new optimization problem

minimize ‖X‖2 + ‖Y‖2 + ‖Z‖2, (3.3)

subject to XÃ + YB̃ + ZC̃ = Ẽ. (3.4)

By using Algorithm 1 and Theorem 2.1, and letting the initial matrices

X0 = 0 ∈ R
n×n, Y0 = 0 ∈ R

n×n, and Z0 = 0 ∈ R
n×n,

we can obtain the unique least norm symmetric solution triplet (X∗, Y∗, Z∗) of
Eq. (3.4). Once (X∗, Y∗, Z∗) is known, the unique updated symmetric solution triplet
(Mnew, Dnew, Knew) of the optimization problem (1.4)-(1.5) can be computed. In this
case,

Mnew = X∗ + M0, Dnew = Y∗ + D0, and Knew = Z∗ + K0.

3.2 Numerical experiments for LSMUP

Example 3.1. A mass-spring system of 10 DoF.

Consider the example of a mass-spring system of 10 DoF, as depicted in Fig. 2. In
this example all rigid bodies have a mass of 1kg,and all springs have stiffness 1 kN/m.
The analytical model is given by

M0 = eye(10),

D0 =




0.4810 −8.3809 0 0 0 0 0 0
−8.3809 8.3809 −1.0254 0 0 0 0 0

0 −1.0254 1.0254 −7.2827 0 0 0 0
0 0 −7.2827 7.2827 −4.4050 0 0 0
0 0 0 −4.4050 4.4050 −9.9719 0 0
0 0 0 0 −9.9719 9.9719 −5.6247 0
0 0 0 0 0 −5.6247 5.6247 −4.6585
0 0 0 0 0 0 −4.6585 4.6585
0 0 0 0 0 0 0 −4.1901
0 0 0 0 0 0 0 0

0 0
0 0
0 0
0 0
0 0
0 0
0 0

−4.1901 0
4.1901 −2.1160
−2.1160 2.1160




,
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Figure 2: Mass-spring system.

K0 =




2000 −1000 0 0 0 0 0 0 0 0
−1000 3000 −1000 0 −1000 0 0 0 0 0

0 −1000 2000 −1000 0 0 0 0 0 0
0 0 −1000 3000 −1000 0 0 −1000 0 0
0 −1000 0 −1000 3000 −1000 0 0 0 0
0 0 0 0 −1000 2000 −1000 0 0 0
0 0 0 0 0 −1000 2000 −1000 0 0
0 0 0 −1000 0 0 −1000 3000 −1000 0
0 0 0 0 0 0 0 −1000 2000 −1000
0 0 0 0 0 0 0 0 −1000 2000




.

The measured data for our experiment was simulated by reducing stiffness of the
spring between masses 2 and 5 to 600 N/ m and adding Gaussian noise with s δ = 2%.

The analytical eigenvalue and eigenvector matrices are:

Λ =




−6.23 71.1 0 0
−71.1 −6.23 0 0

0 0 −3.67 65.9
0 0 −65.9 −3.67


 , Φ =




0.142 0.001 −0.161 −0.001
−0.438 0.020 0.372 −0.050
0.288 0.065 −0.056 0.031
−0.502 −0.206 −0.191 0.087
0.479 0.148 −0.296 −0.034
−0.136 −0.011 0.263 0.091
−0.066 0.011 −0.346 −0.145
0.339 0.003 0.599 0.063
−0.122 −0.007 −0.296 −0.093
0.040 0.010 0.115 0.075




.

The measured eigenvalue and eigenvector matrices are:

Λ̃ =




−6.16 69.8 0 0
−69.8 −6.16 0 0

0 0 −4.7 64.9
0 0 −64.9 −4.7


 , Φ̃ =




0.102 0.026 −0.172 −0.023
−0.283 −0.061 0.401 0.023
0.282 0.115 −0.195 −0.005
−0.579 −0.240 0.074 0.068
0.341 0.242 −0.354 −0.202
−0.067 −0.054 0.286 0.242
−0.168 0.036 −0.249 −0.340
0.508 −0.042 0.362 0.382
−0.207 0.009 −0.183 −0.246
0.077 0.011 0.060 0.130




.

We first form matrices

Ã = Φ̃Λ̃2, B̃ = Φ̃Λ̃, C̃ = Φ̃, and E = −(M0Ã + D0B̃ + K0C̃).

Then applying Algorithm 1 proposed in Section 2, letting the initial iterative matrices

X0 = zeros(4), Y0 = zeros(4), Z0 = zeros(4),
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Table 4: The residual for Example 3.1.

(λ̃i, φ̃i) (λ̃1, φ̃1) (λ̃2, φ̃2) (λ̃3, φ̃3) (λ̃4, φ̃4)

res(λ̃i, φ̃i) 3.4864e-011 3.4864e-011 6.8775e-011 6.8775e-011

and iterating for 11 steps, we obtain the least norm solution (X∗, Y∗, Z∗) of the linear
matrix equation

XÃ + YB̃ + ZC̃ = E.

Finally the coefficients of the updated system can be expressed as

Mnew = X∗ + M0, Dnew = Y∗ + D0, Knew = Z∗ + K0.

To save the space, we shall not report the data of these resulting updated matrices
Mnew, Dnew, Knew, but will make them available upon request. We merely show the
bar graphs of the magnitude of the components of the matrices D0 − Dnew, K0 − Knew.
Similar graph exists for the matrix M0 − Mnew.

We also define the residual as

res(λ̃i , φ̃i) = ‖(λ̃2
i Mnew + λ̃iDnew + Knew)φ̃i‖.

Table 4 shows the residual res(λ̃i , φ̃), where (λ̃i, φ̃) is the computed eigenpairs of Q(λ),
for j = 1, 2, 3, 4.

Therefore, the prescribed eigenvalues and eigenvectors are embedded in the model

(λ̃2Mnew + λ̃Dnew + Knew)v = 0,

and the updated matrices Mnew, Dnew, Knew, which implies that the structural connec-
tivity information of the analytical is preserved. Moreover, from Theorem 1, we know
that (Mnew, Dnew, Knew) is the optimal updated quadratic pencil.

Example 3.2. Updating of a statistically condensed oil rig model. Consider the model
(M, D, K), where

• The matrices M∈R
66×66 and K∈R

66×66 come from the statistically condensed
oil model of the Harwell-Boeing set BCSSTRUC1 [24]. For simplicity, we let the
analytical mass matrix Ma = M, the analytical stiffness matrix Ka = K ∗ 10−4,
the two matrices are all symmetric positive-definite. The Frobenius norms of Ma

and Ka are 66.0249 and 9.2845, respectively.

• The damping matrix Da is defined by Da = ρI66, with ρ = 0.5.

Because Ma > 0, the quadratic pencil λ2Ma + λDa + Ka has 132 eigenpairs. Consider
the given measured eigenvalues

{λ1, λ2, λ3, λ4} = {−0.4628, −0.5709, 0.3584, 0.2761}.
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Figure 3: Magnitudes of the entries of the matrices D0 − Dnew, and K0 − Knew.

Figure 4: Magnitudes of the entries of the matrix Ka − Knew.

The eigenpairs of the experimental model are used to created the experimental modal
date. It is assumed that only the fundamental mode characteristics are experimentally
determined and only s (s<66) components of eigenvector are measured. Suppose now
we are given the measured mode shapes Φj∈R

66, j = 1, 2, 3, 4. According to the pro-
posed method in this paper, we can obtain the unique solution to the Model Updating
Problem II, and it is easy to verify

‖MaΦΛ2 + DnewΦΛ + KnewΦ‖ = 2.5497 ∗ 10−14.

Therefore, the prescribed eigenvalues and eigenvectors have been embedded in the
new model

(λ2Ma + λDnew + Knew)x = 0.

Fig. 4 shows the bar graphs of the magnitude of the components of the matrix
K − Knew. Similar graphs exist for the matrix D − Dnew.
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4 Conclusions

Solving quadratic inverse eigenvalue problems for some partially prescribed eigenin-
formation is a challenging task in many applications. Many efforts have been made,
theoretically and computationally. In the first part of this paper, we construct a new
computationally efficient and symmetry preserving iterative method, based on the
classical CG method, for the partially prescribed quadratic inverse eigenvalue prob-
lem. With the proposed algorithm the solvability of the problem can be determined
automatically. If it is solvable, a desired solution can be obtained within finitely many
steps. Some numerical examples show that the proposed algorithm is quite efficient.

Finite model updating has been a longstanding open problem for its many critical
applications. To our knowledge, maintaining symmetry and reproduction of the mea-
sured data are the basic requirements for model updating. However, one of the most
fundamental challenges is to require that the updating is made with minimal changes.
Moody T. Chu called such updating the least squares model updating problem and
pointed out that this is an area open for further research. In the second part of this pa-
per, a new method, based on the algorithm proposed in the first part of this paper, for
such model updating problem is proposed. The results of numerical experiments on
updating a mass-spring system of 10 DoF and a statistically condensed oil rig model
are presented to show the accuracy of the proposed method.
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