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Abstract. In this paper we first present a CG-type method for inverse eigenvalue
problem of constructing real and symmetric matrices M, D and K for the quadratic
pencil Q(A) = A2M + AD + K, so that Q(A) has a prescribed subset of eigenval-
ues and eigenvectors. This method can determine the solvability of the inverse
eigenvalue problem automatically. We then consider the least squares model for
updating a quadratic pencil Q(A). More precisely, we update the model coefficient
matrices M, C and K so that (i) the updated model reproduces the measured data,
(ii) the symmetry of the original model is preserved, and (iii) the difference be-
tween the analytical triplet (M, D, K) and the updated triplet (Mnew, Dnew, Knew ) is
minimized. In this paper a computationally efficient method is provided for such
model updating and numerical examples are given to illustrate the effectiveness of
the proposed method.
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1 Introduction

The times-invariant second order differential system
Mi + Dx + Kx = f(t), (1.1)
where x€R" and M, C, KER"*", arises frequently in a wide scope of important appli-
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cations, including applied mechanics, electrical oscillation, vibro-acoustics, fluid me-
chanics, signal processing, and finite element discretization of PDEs. It is well known
that if x(t) = ve represents a fundamental solution to (1.1), then the scalar A and the
vector v must solve the quadratic eigenvalue problem (QEP)

(A* M + AD + K)o = 0. (1.2)

The scalars A€C and the nonzero vectors veC" are called, respectively, eigenvalues
and eigenvectors of quadratic matrix polynomial Q(A). Together, (A, v) is called an
eigenpair of Q(A). It is well known that the Q(A) has 2# finite eigenvalues over the
complex field, provided the leading coefficient matrix M is nonsingular.

There are two aspects of the QEP, namely the direct problem and the inverse prob-
lem deserve attention. The direct problem analyzes and computes the spectral infor-
mation, hence deducing the dynamical behavior of the system from a priori known
physical parameters such as mass, elasticity, inductance and capacitance. The inverse
problem determines or estimates the parameters of the system from its observed or
expected eigen-information. Both problems are of significant importance in appli-
cation. In this article, we consider a special inverse quadratic eigenvalue problem
(IQEP) which is quite common in practice-construct the quadratic pencil with only a
few eigenvalues and their corresponding eigenvectors. The IQEP that is of interest to
us can be formulated as follows:

(IQEP) (Inverse Quadratic Eigenvalue Problem) Construct a nontrivial quadratic pen-
cil
Q(A) = A2M + AD +K,
so that its matrix coefficients (M, D, K) are of all symmetry structure and Q(A) has a
specified set {(A;, ¢;) } ; as its eigenpairs.
Since we are only interested in real matrices, it is natural to expect that the pre-
scribed eigenpairs are closed under complex conjugation. To facilitate the discussion,

we shall described the partial eigeninformation via the pair (A, ®)eR"™*™ x R"*™ of
matrices where

i r P ap P mxm
A = dia FEREN JA2i41, 0, Am ) € R
g( [—51 “1] {—ﬁl “l] a m)

D = [¢1R/ 4)1[/ e /¢lR/ (P]I/ (PZH-l/ T /Qbm] S ]Rnxm~

Bi
i % : : . :
of store the complex conjugate pairs of eigenvalues «; & i; and the corresponding
eigenvectors ¢;r + ¢j;. The IQEP therefore amounts to solving the algebraic equation

Here a 2 x 2 block [_oc]- ] and the corresponding columns [¢;r, ¢;;] in P represent

M®A? + DPA + KD =0, (1.3)

for the matrices M, D and K subject to symmetry structure.
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By a model updating for the quadratic pencil Q(A), we mean to replace a por-
tion of its original eigenstructure by some newly measured eigeninformation. It is
well-known that the dynamical behavior of a vibrating system modeled by (1.2) is
determined by its natural frequencies and mode shapes, that is, the eigenvalues and
eigenvectors of Q(A). The undesired phenomenons such as instability and resonance
are caused by some “troublesome” eigenvalues and the corresponding eigenvectors
of Q(A). Therefore, in order to combat or avoid the undesired phenomenons, one way
is to update the quadratic model Q(A) so that these “troublesome” or unfavorable
eigenvalues and eigenvectors are replaced by some suitable ones. Among current
developments for finite element model updating, one challenge that is of practical
importance is to update the model with minimal changes. Because the solution to
a MUP is not unique, therefore the notion is optimizing the adjustment or the ro-
bustness is highly plausible. Such an updating problem, which are usually faced by
vibration engineers and designers, if possible, is known as the least squares model
updating [1,2,4]. Moody T. Chu in [4] also pointed out that such updating problem
is an area for further research. In this paper, we consider this special model updating

and can be stated as follows:

(LSMUP) (Least squares Model Updating Problem) Given a symmetric quadratic
pencil (Mo, Dy, Ko) and a few of its associated eigenpairs (A;, qu);.":l with m<n, as-
sume that new eigenpairs (}1]', 4~>j);.11:1 have been measured. Update the quadratic pen-

cil (My, Do, Ko) to a new quadratic pencil (Myew, Crew, Knew) 0f the same structure such
that

i. the newly measured ((p]',yj);":l form m eigenpairs of the new model (Myew, Chew, Knew);

ii. minimizing the different between the updated symmetric quadratic pencil (Mnew, Dnew, Knew)
and the analytical symmetric quadratic pencil (Mg, Dy, Kp).

Similarly, let the real representation of the new measured eigenvalues {7\]'}}”:1 is
A ; & P & El] 3 3 ) mxm
A = dia P = T A, A eR .
g([_ﬁl 061:| |:_ﬁl il 21+1 m
Let the real representation of the eigenvectors corresponding to the new measured

eigenvalues be ®.
Using the notations above, it is easy to derive that the LSMUP amounts to known
the following matrix equality

MyPA? + Dy®A + Kg® = 0,

we want to find a real symmetric matrix triplet (Mnew, Dnew, Knew) With Mpew nonsin-
gular satisfying the following optimization problem

minimize || Mnew — Mol|> + || Dnew — Do||* + || Knew — Ko||*, (1.4)
subjectto  Mnew®A? + DyewPA + Knew® = 0. (1.5)

Finite element model updating has emerged in the 1990s as a significant subject to
the design, construction, and maintenance of mechanical systems. This technical has
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widely application in damage detection and health-monitoring of the structures, such
as bridges, highways, etc., and in controlling resonance vibrations in the above struc-
tures (see e.g., [22]). The application intends to correct errors in a finite element model
by incorporating the measured modal data into the analytical finite element model,
producing an adjusted model on the mass, damping and stiffness whose resulting be-
havior closely matches the experimental data. Over the years, a number of approaches
has been proposed and a complete book [9] has been devoted to the subject.

The existing methods can be broadly classified into three class: (i) direct matrix
model updating methods (see [3,5-8, 10-12, 18-21]), (ii) iterative methods (see [23])
and (iii) frequency response methods. All the existing methods proposed in [11,12,20]
aim at updating directly the mass, stiffness, and damping matrices in such a way
that the updated model remains symmetric and reproduces the measured data as ac-
curately as possible, but cannot guarantee that the updating with minimal changes.
The method proposed in [3,5] have the additional important feature that the eigen-
values and eigenvectors which are not updated remain unchanged by the updating
procedure. This guarantees that “no spurious modes appear in the frequency range
of interest”. Recently a novel iterative scheme was suggested in [23] to reassign one
eigenvalue at a time preserving both symmetry and no spurious in the process. The
trouble is that the algorithm can break down prematurely and cannot guarantee that
all desirable eigenvalues are updated.

In this paper we are concerned only with iterative matrix updating methods. We
first convert the IQEP to an equivalent linear matrix equation problem, then construct
a computationally efficient and symmetry preserving iterative algorithm, based on
the Conjugate Gradient (CG) method, to solve the equivalence problem completely.
We show that with the proposed algorithm, a desired quadratic pencil (M, D, K) of
IQEP can be obtained within finitely many steps in the absence of roundoff errors. We
then prove that the unique updated quadratic pencil (Mpew, Dnew, Knew) of LSMUP
is just the unique least norm solution of another matrix equation, which can also be
obtained within finitely many steps by choosing a special kinds of initial symmetric
matrix triplet. Some numerical examples are presented to show the efficiency and
reliability of the proposed method for IQEP and LSMUP.

Our contribution is innovative in three areas: (i) the solvability of the IQEP can be
determined automatically, which is the most significant characteristic of the proposed
method, (ii) both the solution of the IQEP and the the unique solution of the LSMUP
can be compute with little work and low storage requirements per iteration. In fact,
it is only required to compute a residual matrix and update the iterative solution and

gradient matrices linearly in each iteration.
The following partial notations and definitions are used throughout this paper.

o R™*™ _ the set of all real nn x m matrices;
o 5" — the set of all real n X m symmetric matrices;

n m
o (A,B) = trace(BT A) = trace(BAT) = Y ) AiB

jBij; where A, B € R"*™,
i=1i=1

ijr
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e (A, A) = ||A||?; the symbol|| - |[denotes the Frobenius norm of a matrix or the Eucli
-dean norm of a vector;

e AT = the transpose of A;
e A ® B — denotes the Kronecker product of matrices A and B;
e % (M) — the column space of matrix M.

2 A new method for solving IQEP

To answer whether a quadratic pencil can be updated, a more fundamental question
is whether a quadratic pencil can have arbitrary k prescribed eigenpairs, which is the
essence of the IQEP. In order to find a quadratic pencil (M, D, K) of IQEP, we first
discuss a related matrix equation problem, which can be described as follows:

Problem 2.1. Given matrices ACR™*™, BeR"*", CeR"™*™ and EER"*™. Find X&S"*",
YeS"* " and Ze€S"*" such that

XA+YB+ZC=E. (2.1)
Noting that if we denote
A=®A’, B=®A, and C=09,
then find a quadratic pencil (M, D, K) of IQEP such that
M®A? + COA + K® =0,

is equivalent to find a symmetric triplet (X, Y, Z) such that (2.1) holds when E = 0.
We should point out, for the general cases of linear matrix equation (2.1), such as

(@) AXB+CYD =E,
(b) A1XiB1+ AXpBy+ -+ A X;By =,

several schemes have been proposed. For small size problems (see [16,17]), we have
the novel factorization techniques-Generalized Singular Value Decomposition (GSVD)
and Canonical Correlation Decomposition (CCD); for large-scale problems, we have
the gradient projection and hierarchical identification principle (see [13-15]). How-
ever, the real-life analytical model aries in vibration industries, including automobile,
space and aircraft industries are generally very large, direct factorization method is
not computationally feasible. Ding et al. [13-15] used the hierarchical identification
principle to construct iterative solutions to the linear matrix equation (b). However,
because of several serious computational difficulties, including the inversion of a pos-
sible ill-conditioned coefficient matrix and the complete loss of the exploitable struc-
tures of the unknown matrices, such as the symmetry, this approach is not practical
for IQEPR.
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For overcoming the difficulty above-mentioned, it motivates us to construct a new
iterative method to gain faster convergence and low storage requirement per itera-
tion. The main idea is based on the classic Conjugate Gradient (CG) method. The CG
method is an effective method for solving symmetric positive definite systems. The
method proceeds by generating vector sequences of iterates (i.e., successive approxi-
mations to the solution), residuals corresponding to the iterates, and search directions
used in updating the iterates and residuals.

The iterates x(7) are updated in each iteration by a multiple &; of the search direction
vector p(/) :

x0 = x4 g p),

Correspondingly the residuals

r) =p— Ax"),
are updated as
r) = p(71) 4 ocq(i), where q(i) = Ap(i). (2.2)
The choice .
r(i_l) r(i_l)
A== T,
p(l) Ap(l)

minimizes " A~1r() over all possible choices for « in Eq. (2.2).
The search directions are updated using the residuals

p(z) — r(l) _|_ ﬁl‘—lp(iil)/

where the choice
A7)

A=) Tpi-1)”

ensures that p{!) and Ap~D-or equivalently, 7)) and r(/~V)-are orthogonal. In fact, one
can show that this choice of f; makes p'") and r!) orthogonal to all previous Ap') and
1) respectively.

CG method converges within at most 7 iterations if exact arithmetic could be per-
formed, where 7 is the order of the coefficient matrix. In practice the iteration numbers
may be larger than n because of the computational errors.

pi =

i-1)

21 An extended CG method for solving Problem 2.1

In this subsection we first construct an iterative algorithm, which called the extended
CG algorithm, for Problem 2.1. We then characterize its some basic properties. Finally
we prove it is convergence within finitely many steps. We show that, for any arbi-
trary initial symmetric matrix triplet (Xo, Yo, Zo), a desired solution can be obtained
in finitely many steps and the optimal (least norm) solution can also be obtained by
choosing a special kinds of initial symmetric matrix triplet.
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Extended CG Algorithm 1. Input matrices AcR"*", BER"™", CER™", EER"™*™ and initial
matrices Xo€S™*", YoeS"*", ZoeS"*". Calculate

1. Ry=E— (XoA+YoB+ZoC); Qux= 3(RoAT + ARY),
1
2

Qoy = 3(RoBT + BR{), Qoz = 3(RiCT +CRf);  k:=0;
2. If Ry = 0, then stop; else compute
_ [Re]l? ) _
3 & = g QPR Xk = Xet aQi
Yir1 = Xi + axQxys Ziy1 = Xi + 05 Qg

Riy1 = Rg — ap(QrA + QiyB + QkC);
R 2
ABk = ”H;;:ﬁﬂ ; Qk+1,x = %(Rk-&-lAT + AR]?.H) + ,Bka,xr

Quity = 3(RepaBT + BRI ,) + BeQuy,  Qir1z = 3(ReaCT + CRL, ) + BiQ
4. Let k :=k+1and go to Step 2.

Remark 2.1. Since Qo €5"*" by assumption and Ry;1 AT + AR, €5"*" for all k, the
third equation from button in Step 3 and induction imply that Q1 ,€5"*". Since
Xo€eS™" by assumption and Q. ,€5"*" for all k, the second equation in Step 3 and in-
duction imply that X;,1€5"*". Analogously, we have Qy ,€5"*", Qi ,€5"*", Y, €5"*",
and Z;,€5"*", for all k. Ry is the residual of Eq. (2.1), wherek =0,1,2,- - - .

Lemma 2.1. Suppose Eq. (2.1) is consistent over symmetric matrix triplet, and [X., Y., C,] is
an arbitrary solution. Then for any initial symmetric matrix triplet [Xo, Yo, Zo), the sequences
Xi, Yi, Zi Ri, Qiyx, Qiy and Q; . generated by Algorithm 1 satisfy

(Qis X = Xi) +(Qiy, Yo = i) +{Qiz Zo — Zi) = |Rill*, i=0,1,2,---.

Proof. We prove the conclusion by induction. When i = 0, we have

(Qoyx, Xi — Xo) + (Qoy, Yi — Yo) + (Qoz Zs — Zo)

1 1
:<§<R0AT + AR}, X, — Xo) + (E(ROBT + BRY), Y. — Yp)
1
+ <§(R0CT +CRY), Z. — 7o)

=(Ro, (X« — Xo0)A) + (Ro, (Y« —Y0)B) + (Ro, (Z« — Zo)A)
=(Ro, X, A+Y.B+Z.C— (XoA+ YoB+ Z,C))

:<R0, E— (X()A + YoB + Z()C)>

=|[Ro[*.

Suppose that the conclusion holds for i = v,v > 0, that is,

<Qv,xr Xy — Xv> + <Qv,y/ Y — Yv> + <Qv,z/ Zy — Zv> = ||R0H2~
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Then, when i = v + 1, we have

<Qv+l,xr X* - Xv+1> + <Qv+1,y/ Y* - Yv+l> + <Qv+1,z/ Z* - Zv+l>

1 1
=(5(Ro1A" + ARy 1) = BoQux Xo = Xot1) + (5(Roi1B" + BRy.y)

—BoQuys Yo~ Your) + {5 (RocrCT 4 CRT, 1) = BoQus Ze — Zo)
=(Ry11, XiA+ Y B+ Z,C — (Xp11A+ Yy 1B+ Z,11C))
+ Bo{(Quxr Xu — Xog1) + (Quys Yo — Yoi1) + (Qozr Zi — Zypi1) }
=(Rot1, E— (Xo41A+ Yo1B+ Z11C))
+ .Bv{<Qv,xz Xy — (Xv + “va,x» + <Qv,y/ Yy — (Yv + “va,y»
+(Quzr Zi = (Zo + 40Quz2)) }
=[Ros1l* + Bo{ Qo Xu = Xo) + (Quys Yo = Yo) +(Quz Zs — Zo)
— to([| Qo lI* + | Qo1 + [Quz?) }
=[Ros1[*> = Bo(IRo[* = |Ro[1?) = [|Ro1 />

By the principle of induction, the desired conclusion is obtained ]

Remark 2.2. From the formula of Qy x, Qo and Q,; in Algorithm 1 and Lemma 2.1,
we know that if Eq. (2.1) is consistent, then, R; = 0 if and only if

Qv,x = 0/ Qv,y = O/ and Qv,z =0.

In other words, ||R;|| # 0 if and only if

1Qox 1% + 1QuylI* + 1 Qoz I # 0.

This results implies that if there exists a positive number k such that

Qv,x == 0/ Qz},y - O, and Qy,z - O, but Rk # O,

then Eq. (2.1) is inconsistent. Hence, the solvability of Eq. (2.1) can be determined
automatically by Algorithm 1 in the absence of round-off errors.

Lemma 2.2. Assume that Eq. (2.1) is consistent and the sequences R;, Qu,x, Quy and Qo ,
where R; #0,i =0,1,2,-- -, k, are generated by Algorithm 1. Then
(Ri,Rj) =0,
<Qi,XI Q]',x> + <Qi,yl Q],y> + <Qi,z/ Qj,2> - 0/ Z/] — 0/ 1/ 2/ e /k/ l ?é j/
Proof. Since (A, B) = (B, A) for all matrices A and B in R"*™, we only prove the

conclusion hold for all 0 < i < j < k. To this end, using induction and two steps are
required.
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1. Show that
<Ri/ Ri+1> = 0/ and <Qi,xr Qi+1,x> + <Qi,y/ Qi+l,y> + <Qi,zr Qi+1,z> = 0/

foralli =0,1,2,--- k. To prove this conclusion, we also use induction. For i = 0, we
have

(Ro, R1) =(Ro, Ro — a0 (QoxA + QoyB + QoC))
=[|Roll* — a0 ((RoAT, Qox) + (RoB", Qo) + (RoCT, Quy2))

—[IRo 1% - g ((%(ROAT + ART), Qo) + <%(ROBT 4 BRT), Qo)
+ (3 (RoCT +CRE), Qo))
=[IRol[? = o (I1Qo,¢/I2 + 11Qo I + | QuylI2) =0,
and
(Qo,x, Q1) + (Qo,y, Quy) + (Qo,zr Qu,z)
=(Qus 5 (RAT + ART) = BoQ0,1) + (Quy 3 (RiBT + BRT) = Qo)
+ Qo2 5 (RiCT +CRT) = o)
=(QoxA + QoyB + Qo:C, Ri) — Bo([[ QoI + [ Qoyll + 1 Qoyll*)
L (Ry— Ry, Ry) - Bo(l1Qol* + [1QoylI* + [ QoyI%) = 0.

"
Assume that the conclusion holds foralli <s, 0 < s < k. Then

<R51 Rs+1> :<Rs/ Rs — lxs(Qs,xA + Qs,yB + Qs,zc)>
:HRSH2 — Qs (<R5ATr Qs,x> + <R5BT/ Qs,y> + <RSCT/ Qs,z>)

=R — s ({5 (ReAT + ARD), Qi) + (5 (RBT + BRT), Quy)
+ <%(RSCT +CRI), Q)

=R |2 = s ((Qux = Bs-1Qs1,0 Qo) + (Qsy — Bs-1Qs 1,5 Qo)
+(Quz ~ B1Qs1,2Qs2))

=R |2 = s (1Qsx]12 + 1Quy 12 + 1Qsyl12) = 0,

and

<Qs,x; Qs+1,x> + <Qs,y/ Qs+1,y> + <Qs,z: Qs+1,z>
1 1
=(Qs,xs E(Rs+1AT + ARS,T+1) + BsQs,x) + (Qs,y/ E(Rs+1BT + BRsT+1) + BsQsy)
1
+ (Qs 2 E(RsHCT + CRSTH) + BsQs,z)

=(QurA + QoyB + QszC, Rast) + B (11Qual? + Qs 2 + 11Qsy 117
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1

:IX_S<RS — Roy1,Repq) + ﬁs(”Qs,tz + HQs/yHZ 4 HQS’sz) —o.

By the principle of induction,

(RiyRiz1) =0, and (Qix, Qit1,x) + (Qiy Qiv1y) + (Qiz Qir1,2) =0,
hold true foralli =0,1,2,--- , k.
2. Assume that
(RiyRiz1) =0, and (Qix, Qisix) + (Qiy, Qivty) +(Qiz Qiviz) =0,

forall0 <i<kand1 <! <k, we will show that

(Ri)Riyi+1) =0, and  (Qix, Qitrv1,x) +(Qiy Qivivty) +(Qiz Qitit1z) =0,

The proof is as follows:

(Riy Riz141) =(Ri, Riys — @i (Qiy1x A+ Qiy1yB + Qig12C))
= — ;i ((RiAT, Qisrx) + (RiBT, Qiipy) + (RiCT, Qiv12))

1 1
= — iy (<§ (RiAT + AR]), Qiyix) + <§(RiBT +BR]), Qit1y)

1
+ (5 (RCT +CR), Qi) )

= — i1 ((Qix — Bi-1Qi—1,0, Qitrx) + (Qiy — Bi—1Qi-1,y, Qit1y)
4+ (Qiz — Bi—1Qi-1,2, Qiv1z))
= — @i 1 {(Qixs Qigrx) + (Qiyys Qigry) + (Qizr Qiviz)
— Bi—1({Qi—1,0 Qivix) + (Qiz1,y, Qivry) + (Qiz1,2 Qiziz) }
—0,

and
(Qipes Qisiv1,x) + (Qiys Qigiv1,y) + (Qizs Qi)
=(Qixs % (Rixi1AT + ARY, ) + Bis1Qisiz)
+(Qiys %(RmﬂBT + BR], 1) + Bis1Qisiy)

1
+(Qiz > (Rit1+1CT + CR:‘T+I+1) + Bit1Qit1z)

=(Qix A+ QiyB+ QizC Riyry1) + Bis1({Qixs Qitix)

+(Qiys Qitty) + (Qiz Qiv12))

1
:E<Ri — Riy1,Riyg41) = 0.
1
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From Steps 1 and 2, we have by induction that

<Ri/ R]> = 0/ and <Qi,xr Qj,x> + <Qi,y/ Qj,y> + <Qi,zr Qj,z> = O/
hold foralli,j=0,1,2,--- ,k, i #]. O
Remark 2.3. Lemma 2.2 implies that if Eq. (2.1) is consistent, then, for any initial sym-
metric matrix triplet (Xo, Yo, Zo), a solution can be obtained within at most nm itera-

tion steps. Since Ry, R1, Ry, - - -, are orthogonal each other in a finite dimension matrix
space R"*™, it is certain that there exists a positive number k < nm such that Ry = 0.

To facilitate the statement of our main results, we introduce the following lemma.

Lemma 2.3. Suppose that the consistent system of linear equations Mx = b has a solution
x€Z(MT). Then x* is an unique least Frobenius norm solution of the system of linear equa-
tions.

Proof. We decompose the matrix McR™*" by singular value decomposition (SVD):

M:LI<Z O>VT,

0 0
where
U = (U, Uy) € OR™™, V =(1,V,) €OR™, U € R™,
X =diag(oy,00,--- ,0¢) >0, r=rank(M), Vi € R™.

Then the Moore-Penrose generalized inverse of the matrix M is
Mt =vizuf,
and the general solution of the system of linear equation Mx = b is
x=M"b+(I-M"M)z,
where z is an arbitrary vector of suitable dimension. Since
Mt =wvizuf ez(vy), (I1-M"M)z=WVIec%z),

V; and V; are orthogonal to each other, then M b is the unique least Frobenius norm
solution of the system of linear equations Mx = b. On the other hand, since

M =vizuf,

and the solution x*€%(MT), then x*€R(V;). Therefore, x* is the least Frobenius norm
solution of the system of linear equations Mx = b, that is,

x* = MTb,
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so the proof is complete. O

For any matrix MeR"*", denoted by vec(A), the following mn-vector containing
all the entries of matrix M:

where M(:,i) denotes ith column of matrix M (i.e., Matlab style). For vector y¢R™",
denoted by vec,, ,(x) the following m x n matrix containing all the entries of vector y:

veCyn(x) = (0(1:m) g(m+1:2m) --- y[(n —1)m+1: mn]) € R™*",

where y(i : j) denotes a vector containing the elements i to j of vector y.
We know the solvability of Eq. (2.1) over symmetric matrix triple is equivalent to
the following linear system

XA+YB+ZC=E,
ATX+BTY +CTZ = ET.

Then the above system of matrix equations is equivalent to the systems of linear equa-
tions

<AT® I, BTol, CT® In) Zii%; B <vec(E) )
— )
L A I,®B I[,®C vec(Z) vec(E")
Note that
vec(HAT + AHT) A®I, I,® AT\ [vec(H)
vec(HBT + BHT) | = | B® I, I,®BT vec(H)
vec(HCT 4+ CHT) C®l, I,®C') \vec(H)

_<AT®In BT ® I, CT®I,1>T Ziiggg

E%(<AT®In BT ® I, CT®1n>T>_
LA I,®B [,®C
We see that if we let initial matrices
Xo = HAT" + AH", Y,=HB"+BH', and Z,= HCT+ CHT,
where HER"*™ is arbitrary, then all X}, Yy and Z;, generated by Algorithm 1, satisfy

Zeei(();")) €%<<AT®I,1 BT ® I, CT®In>T>
k .
?JEC(Zk) I, ®A I, ®B I, ®C
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Hence, from Lemma 2.3 we obtain thatif (X*, Y*, Z*), generated by Algorithm 1, is the
solution triplet of the matrix equation (2.1), then it is its least Frobenius norm solution
pair. In this case, X*, Y* and Z* can be expressed as

X* = vec, ,[Wa(1:n?)], (2.3a)
Y* = vec,  [W,(n* +1:2n%)], (2.3b)
Z* = vecy u[W.(2n* +1,3n%)], (2.3c)

where

w o (ATel B'el, CTel, [ vec(E)
T \L®A ,&B I,®C vec(ET) )"

The above conclusions on the solution of the linear matrix equation (2.1) can be col-

lected in the following theorem. Its proof is omitted.

Theorem 2.1. Assume that Eq. (2.1) is consistent. Then for any initial guess symmetric
matrix triplet (Xo, Yo, Zo), the matrix triplet sequence (X, Yx, Zy), generated by Algorithm
1, converges to its solution within at most n? iteration steps. Furthermore, if we choose the
initial guess matrices

Xo=HA" + AHT, Yy=HB" +BH', and Zy,= HCT +CHT,
with H is arbitrary, or more specifically, if we let
XOZO, YOIO, and ZOZO,

then the solution triplet [X*,Y*,Z*] obtained by Algorithm 1 is the least Frobenius norm
solution of the matrix equation (2.1). In this case, X*, Y* and Z* can be expressed as (2.3).

Remark 2.4. If E = 0, we know that the homogeneous linear matrix equation
XA+YB+CZ =0,
is always solvable. In this case we say the IQEP is unsolvable if it has an unique null
solution. Since
vec(X)
XA+YB+CZ=0% (AT®l, B'® L,CT®1I,) | vec(Y) | =0.
vec(Y)

Therefore, if
rank( (AT® 1, B'® I,CT®@I,)) =3n,

the IQEP is unsolvable.
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2.2 Numerical experiments for IQEP

In this subsection we illustrate the feasibility and efficiency of the proposed algorithm
by using some numerical examples. All numerical implementations were performed
on a personal computer of the Intel P4 2.4 GHz processor family with 512M memory
using Matlab 7.0.

Example 2.1. Consider the IQEP where the partial eigenstructure (A, ®)€R>*° x R>*°
is randomly. Assume

[—0.2168 —4.3159 0 0 0
43159 —0.2168 0 0 0
A= 0 0 2.0675 —0.9597 0 ,
0 0 0.9597 2.0675 0
0 0 0 0 —0.3064
[—0.4132 5.2801 29437 —6.6098 —9.6715
—4.3518 3.2758 —5.1656 9.1024 —9.1357
o = |-0.1336 —4.0588 2.5321 3.3049 —4.4715
—5.1414 44003 —2.2721 52872  6.9659
| 8.6146 —4.0112 —-6.9380 1.4345 —4.4708

We firstlet A = ®A2, B = PA, C = ® and E = 0€R*%, and the initial matrix Xy = I,
Yo = Is and Zy = Is. Using Algorithm 1 and iterate 42 steps, we have the quadratic
pencil (M, D, K) of IQEP as follows:

03635 0.0841 0.2671 —0.0256 0.0943
0.0841  0.3427 —0.0391 —0.4227 —0.0642
M= | 02671 —0.0391 03843 0.0722  0.1013 |,
—0.0256 —-0.4227 0.0722  0.6217  0.1567
0.0943 —0.0642 0.1013  0.1567  0.1268
[0.5696 0.4942 0.4271 0.1148  0.2090
0.4942 04286 0.1481 —-0.4788 —0.0298
C= 04271 0.1481 0.1903 0.1508  0.2615 |,
0.1148 —0.4788 0.1508 0.6867  0.1426
10.2090 —0.0298 0.2615 0.1426 —0.0456
[ 0.6354  0.0541 —0.1566 0.3655 —0.0596
0.0541 04321 —-0.0742 —-0.0519 —0.2808
K= 1-0156 -0.0742 0.7288  0.0898  0.2619
0.3655 —0.0519 0.0898  0.7057  0.0192
| —0.0596 —0.2808 0.2619  0.0192  0.5835

In Fig. 1 we characterize the convergence curve for the Frobenius norm of the residual
and the iterative variable (||Qk,x||2 + ||Qk,y|\2 + HQk,yHZ)l/Z.
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Table 1: The residual for Example 2.1.

(A, ¢)) (A1, 1) (A2, o) (A3, ¢3) (Ag, Pa) (As, ¢5)
res(A;, ¢;) | 4.8122e-011 | 4.8122e-011 | 1.3726e-011 | 1.3726e-011 | 1.1801e-013

It is easy to compute
|[M®A? + COA + KP||> = 8.3630 10 >2.
We define the residual as
res(Ai, ¢i) = |[(AZM + A;D + K) i,

and the numerical results shown in Table 1.
Therefore, the prescribed eigenvalues (the diagonal elements of the matrix A) and
eigenvectors (the column vectors of the matrix ®) are embedded in the model

(A*M +AC +K)v = 0.

Example 2.2. In this experiment, the prescribed eigenvalue matrix A and eigenvector
matrix ® are randomly constructed as follows:

T =rand(8), G =rand(r); A =diag(T); [P,L] =eig(G); ® = P(:,1:8);

where r are a constant that determine the magnitudes of the quadratic pencil Q(A).
In Table 2, we list our numerical results as the matrix size is variant from » = 100
to r = 400. We set the initial iterative matrices be Xo = I,, Yo = I,, Zo = I,. Then a
symmetric matrix triplet (M, D, K) can be obtained by using Algorithm 1. In this table,
we list CPU times(s), iteration numbers (k), residual norm ||R;||?> and the iterative

Y axis

—+—log IRl

/
-10} | —o— log, (IIQ JF+IQ, JIP+IQ 1A

. . . . . . . .
0 5 10 15 20 25 30 35 40 45
iteration number k

Figure 1: Convergence curve for the Frobenius norm of the residual and the iterative variable (||Qy .[* +
HQk,sz + HQk,sz)l/z'
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Table 2: CPU times, etc for Example 2.2.

r=100 r=200 r=300 r=400
iteration number k 407 484 340 344
elapsed times(s) 20.596916 96.949634 | 167.819220 | 320.679199
residual ||R|? 9.9635e-021 | 9.7405e-021 | 4.6034e-021 | 2.1334e-021
HQk,tz + HQk,yﬂz + HQk/yﬂz 7.1043e-021 | 4.7163e-021 | 2.1680e-021 | 1.5487¢-021
Table 3: The residual for Example 2.2.
r=100 r=200 r=300 r=400
eigenpairs | [[Q1(A)¢ill | 1Q2(A)¢;ll | 1Q3(A)@ill | 1Qa(A})¢;ll
(A1, ¢1) 3.3096e-011 | 3.0144e-011 | 2.1793e-011 | 1.5976e-011
(A2, ¢2) 3.8608e-011 | 2.5528e-011 | 2.3769¢-011 | 2.8385e-011
(A3, ¢3) 2.6605e-011 | 1.3448e-011 | 3.1068e-011 | 1.4543e-011
(Mg, da) 3.4524e-011 | 2.9526e-011 | 2.9004e-011 | 1.2856e-011
(As, ¢s5) 3.8570e-011 | 3.6197e-011 | 2.2360e-011 | 5.2986e-012
(Ao, d6) 3.0067e-011 | 2.6161e-011 | 2.0759¢-011 | 1.2493e-011
(A7, ¢7) 4.1647e-011 | 5.1522e-011 | 1.9335e-011 | 1.5576e-011
(As, ds) 3.6767e-011 | 4.9783e-011 | 2.1266e-011 | 1.6400e-011

variable (||Qgq[|? + [|Qxyll* + [|Qryl?)!/? for different values of r with the stopping
criteria || Ry|| < 10710

In Table 3, we show the residual ||Q(A;)¢;|| for different values of r, where (A;, ¢;)
are the computed eigenpairs of Q(A), forj=1,---,8.

3 The extended CG algorithm for solving LSMUP

3.1 Numerical method for LSMUP

Recall that a least squares model updating with no spill-over is mathematically equiv-
alent to a optimal approximation problem and a IQEP with prescribed eigenvalue A
and eigenvector ®, with the pair (A, ®)eR™*™ x R"*™ representing the portion of
eigenstructure that has been modified.

Denote A% = A, ®A = B,and® = C. Then Eq. (1.5) is equivalent to the algebraic
equation

(Mnew - ZVIO)A~ + <Dnew -
=— (MoA + DoB + K()C)

DO)B + (Knew - KO)C (3-1)

(3.2)
We also let

Mnew - MO = X/
Knew - KO - Z/

Dnew - DO - Y/
E= —(M()A + DoB + K()C).
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Then finding the updated symmetric matrix triplet (Mnew, Dnew, Knew) for the op-
timization problem (1.4)-(1.5) is equivalent to finding the unique symmetric matrix
triplet (X, Y, Z) for the following new optimization problem

minimize || X|?+ ||Y|*+ [|Z]]%, (3.3)
subjectto XA+ YB+ ZC = E. (3.4)

By using Algorithm 1 and Theorem 2.1, and letting the initial matrices
Xy :Oeanxn’ YOIOE]Rnxn, and Z():OE]Rnxn,

we can obtain the unique least norm symmetric solution triplet (X*,Y*,Z*) of
Eq. (3.4). Once (X*,Y*, Z*) is known, the unique updated symmetric solution triplet
(Mnew, Dnew, Knew) of the optimization problem (1.4)-(1.5) can be computed. In this
case,

Mnew - X* + Mo, Dnew = Y* + D(), and Knew = Zj< + KQ.

3.2 Numerical experiments for LSMUP

Example 3.1. A mass-spring system of 10 DoF.

Consider the example of a mass-spring system of 10 DoF, as depicted in Fig. 2. In
this example all rigid bodies have a mass of 1kg,and all springs have stiffness 1 kN/m.
The analytical model is given by

My = eye(10),

0.4810  —8.3809 0 0 0 0 0 0
—8.3809  8.3809  —1.0254 0 0 0 0 0
0 —1.0254  1.0254  —7.2827 0 0 0 0
0 0 —7.2827  7.2827  —4.4050 0 0 0
D 0 0 0 —4.4050  4.4050 —9.9719 0 0
0= 0 0 0 0 —-9.9719 99719  -5.6247 0
0 0 0 0 0 —5.6247  5.6247  —4.6585
0 0 0 0 0 0 —4.6585  4.6585
0 0 0 0 0 0 0 —4.1901
0 0 0 0 0 0 0 0
0 0
0 0
0 0
0 0
0 0
0 0 ’
0 0
—4.1901 0
41901  —2.1160

—2.1160  2.1160



82

J.E Liand X. Y. Hu / Adv. Appl. Math. Mech., 3 (2011), pp. 65-86
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Figure 2: Mass-spring system.

2000  —1000 0 0 0 0 0 0 0 0
—1000 3000  —1000 0 —1000 0 0 0 0 0
0 —1000 2000  —1000 0 0 0 0 0 0
0 0 —1000 3000  —1000 0 0 —1000 0 0
Ko — 0 —1000 0 —1000 3000  —1000 0 0 0 0
0= 0 0 0 0 —1000 2000  —1000 0 0 0
0 0 0 0 0 —1000 2000  —1000 0 0
0 0 0 —1000 0 0 —1000 3000  —1000 0

0 0 0 0 0 0 0 —1000 2000  —1000

0 0 0 0 0 0 0 0 —1000 2000

The measured data for our experiment was simulated by reducing stiffness of the
spring between masses 2 and 5 to 600 N/ m and adding Gaussian noise with s 6§ = 2%.
The analytical eigenvalue and eigenvector matrices are:

0142 0001 —0.161 —0.001
—0438 0020 0372  —0.050
0288 0065 —0.056 0.031
-623 711 0 0 —0502 —0206 —0.191  0.087
A= | 711 —623 0 0 @ — | 0479 0148 029 -—0034
—1 o 0 367 659 |’ — | -013 -0011 0263  0.091
0 0 —659 -367 —0.066 0011 —0346 —0.145
0339 0003 0599  0.063
—0.122  —0.007 —0296 —0.093
0.040 0010 0115  0.075
The measured eigenvalue and eigenvector matrices are:
0102 0026 —0172 —0.023
—0283 —0.061 0401  0.023
0282 0115 —0195 —0.005
616 698 0 0 —0579 —0240 0074  0.068
A= |68 —616 0 0 H | 034 0292 0354 —0.202
— 1 o 0  -47 649 )7 — | -0067 -0054 0286 0242
0 0 —649 -47 —0.168 0036  —0.249 —0.340
0508 —0.042 0362 0382
—0207 0009 —0.183 —0.246
0.077 0011  0.060  0.130

We first form matrices

A =dA?

B=®A, C=9,

and E = —(MOA + DyB + K()C).

Then applying Algorithm 1 proposed in Section 2, letting the initial iterative matrices

Xo = zeros(4),

Yo = zeros(4),

Zy = zeros(4),
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Table 4: The residual for Example 3.1.

(Ai, 4312 (A, 1) (A2, 2) (A3, ¢3) (Ag, 1)
res(hy, 1) | 34864e-011 | 3.4864¢-011 | 6.8775¢-011 | 6.8775¢-011

and iterating for 11 steps, we obtain the least norm solution (X*,Y*, Z*) of the linear
matrix equation
XA+YB+2zC=E.

Finally the coefficients of the updated system can be expressed as
Mpew = X*+ Mo, Dnew =Y+ Do, Knew = Z" + K.

To save the space, we shall not report the data of these resulting updated matrices
Mhew, Dnew, Knew, but will make them available upon request. We merely show the
bar graphs of the magnitude of the components of the matrices Dy — Dnew, Ko — Knew-
Similar graph exists for the matrix My — Mpew.

We also define the residual as

1’65(}\1', q~>z) = H (7\1‘2Mnew + XiDnew + KneW)J)iH'

Table 4 shows the residual res(A;, ¢), where (A;, ) is the computed eigenpairs of Q(A),
forj=1,2,3,4
Therefore, the prescribed eigenvalues and eigenvectors are embedded in the model

<12Mnew + iDnew + Knew)v = O/

and the updated matrices Mnew, Dnew, Knew, which implies that the structural connec-
tivity information of the analytical is preserved. Moreover, from Theorem 1, we know
that (Mnew, Dnew, Knew) is the optimal updated quadratic pencil.

Example 3.2. Updating of a statistically condensed oil rig model. Consider the model
(M, D, K), where

e The matrices MER®®*% and K€R®*% come from the statistically condensed
oil model of the Harwell-Boeing set BCSSTRUCT1 [24]. For simplicity, we let the
analytical mass matrix M, = M, the analytical stiffness matrix K, = K * 1074,
the two matrices are all symmetric positive-definite. The Frobenius norms of M,
and K, are 66.0249 and 9.2845, respectively.

e The damping matrix D, is defined by D, = plss, with p = 0.5.

Because M, > 0, the quadratic pencil A>2M, + AD, + K, has 132 eigenpairs. Consider
the given measured eigenvalues

{A1, Ao, Az, Ay} = {—0.4628, —0.5709, 0.3584, 0.2761}.
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Updated in stiffness matrix K

Updated in damping matrix D
Lo

7
8
Degrees of Freedom 9 10 1 Degrees of Freedom

Figure 3: Magnitudes of the entries of the matrices Dy — Dpew, and Ky — Kpew-

Updated in stiffness matrix

Figure 4: Magnitudes of the entries of the matrix K; — Kpew-

The eigenpairs of the experimental model are used to created the experimental modal
date. It is assumed that only the fundamental mode characteristics are experimentally
determined and only s (s<66) components of eigenvector are measured. Suppose now
we are given the measured mode shapes <I>]-€1R66, j =1,2,3,4. According to the pro-
posed method in this paper, we can obtain the unique solution to the Model Updating
Problem II, and it is easy to verify

| My®A? 4 Dpew PA + Kpew®@|| = 2.5497 x 1014,

Therefore, the prescribed eigenvalues and eigenvectors have been embedded in the
new model

(A2M, 4 ADpew + Kpew )x = 0.

Fig. 4 shows the bar graphs of the magnitude of the components of the matrix
K — Knew. Similar graphs exist for the matrix D — Dpew.
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4 Conclusions

Solving quadratic inverse eigenvalue problems for some partially prescribed eigenin-
formation is a challenging task in many applications. Many efforts have been made,
theoretically and computationally. In the first part of this paper, we construct a new
computationally efficient and symmetry preserving iterative method, based on the
classical CG method, for the partially prescribed quadratic inverse eigenvalue prob-
lem. With the proposed algorithm the solvability of the problem can be determined
automatically. If it is solvable, a desired solution can be obtained within finitely many
steps. Some numerical examples show that the proposed algorithm is quite efficient.

Finite model updating has been a longstanding open problem for its many critical
applications. To our knowledge, maintaining symmetry and reproduction of the mea-
sured data are the basic requirements for model updating. However, one of the most
fundamental challenges is to require that the updating is made with minimal changes.
Moody T. Chu called such updating the least squares model updating problem and
pointed out that this is an area open for further research. In the second part of this pa-
per, a new method, based on the algorithm proposed in the first part of this paper, for
such model updating problem is proposed. The results of numerical experiments on
updating a mass-spring system of 10 DoF and a statistically condensed oil rig model
are presented to show the accuracy of the proposed method.
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