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Abstract. We investigate the structure of a large precision matrix in Gaussian
graphical models by decomposing it into a low rank component and a remain-
der part with sparse precision matrix. Based on the decomposition, we pro-
pose to estimate the large precision matrix by inverting a principal orthogonal
decomposition (IPOD). The IPOD approach has appealing practical interpre-
tations in conditional graphical models given the low rank component, and it
connects to Gaussian graphical models with latent variables. Specifically, we
show that the low rank component in the decomposition of the large precision
matrix can be viewed as the contribution from the latent variables in a Gaus-
sian graphical model. Compared with existing approaches for latent variable
graphical models, the IPOD is conveniently feasible in practice where only in-
verting a low-dimensional matrix is required. To identify the number of latent
variables, which is an objective of its own interest, we investigate and justify
an approach by examining the ratios of adjacent eigenvalues of the sample co-
variance matrix. Theoretical properties, numerical examples, and a real data
application demonstrate the merits of the IPOD approach in its convenience,
performance, and interpretability.
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1 Introduction

Exploring how subjects and/or variables are connected to each other in various
systems is one of the most common and important problems in practical applica-
tions. Examples of such investigations are regularly seen in scenarios including
regression analysis, Gaussian graphical models, classification, principal compo-
nent analysis and many more. Investigations of this kind are encountered even
more often in practical applications in recent popular areas such as finance, bi-
ological and medical studies, meteorological and astronomical research, among
others. Because of the general interest on the connections between individuals,
the scale of these investigations can easily grow beyond a practical and manage-
able scope — for example, considering the complexity of possible associations a-
mong human genes. Therefore, parsimonious modeling approaches are critically
important for generating practical, feasible, and interpretable statistical analyses
when exploring the association structures of the target systems in many contem-
porary studies.

For studying the connections between subjects/variables, precision matrix,
the inverse of a covariance matrix, is a crucial device in many statistical analy-
ses including Gaussian graphical models [12], discriminant analysis, dimension
reduction, and investment portfolio analysis. There has been an increasing in-
terest in penalized likelihood approaches for estimating large precision matrices
in recent literature; see, for example, [7, 8, 10, 13, 15–17, 19] and references there-
in. In Gaussian graphical models, the precision matrix has the interpretation that
each of its zero elements implies the conditional independence of the correspond-
ing pair of individuals given the information from all other individuals. In the
corresponding graph consisting of a vertex set and an edge set, such condition-
al independence means that there is no edge between the corresponding pair of
vertices representing the individuals.

With latent variables, analyzing Gaussian graphical models becomes substan-
tially more difficult; see [4] in which a penalized likelihood approach is investi-
gated. More specifically, the interpretation of the graphical model becomes less
clear if the impact of latent variables is not incorporated in the large precision
matrix. Additionally, the unknown number of the latent variables also poses new
challenges, both computationally in optimizing the penalized likelihood function
and practically in developing most appropriate interpretations of the graphical
models. A remarkable feature of the Gaussian graphical model with latent vari-
ables is that although the underlying the true precision matrix is sparse indicat-
ing small number of connected vertices in the corresponding graph, latent vari-
ables generally cause a non-sparse observable precision matrix of the variables
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excluding those latent ones. Because a fundamental assumption of many exist-
ing penalized likelihood based methods for Gaussian graphical models is that
the underlying true precision matrix is sparse, they are expected to fail to consis-
tently estimating the precision matrix without incorporating the latent variables.
Moreover, non-sparse precision matrices between observed variables are often
seen in data collected in many problems in finance, biomedical studies, gene-
environment associations, and so forth.

In this study, we demonstrate that the precision matrix of the observable vari-
ables in a Gaussian graphical model with latent variables can be decomposed into
two components — a low rank matrix associated with the latent variables and the
remainder independent of latent variables. With this device, we show that if it is
a sparse large precision matrix is associated with the combined observable and
latent variables, then the precision matrix associated with the remainder compo-
nent is sparse. This device also enable us to develop a new approach for estimat-
ing the large precision matrix of the observable variables by inverting a principal
orthogonal decomposition (IPOD) of the covariance matrix that disentangling
these two components. More specifically, the contribution from the latent vari-
ables is captured by a low rank matrix, which can be effectively recovered from
data by using the principal component analysis (PCA), a popular approach in fac-
tor analysis. After removing the impact due to the latent variables, we show that
the sparse precision matrix of the remainder part can be consistently estimated
by applying the constrained l1 minimization (CLIME) method of [3]. Moreover,
we observe that the large precision matrix of the observed variables, though be-
ing non-sparse, depends on the remainder component only through its precision
matrix. Hence, upon obtaining an estimation by using our IPOD approach, only
inverting a small matrix is required to estimate the large and non-sparse precision
matrix of observable variables.

The number of unknown latent variables is unknown a priori in practice, lead-
ing to a challenging problem of its own importance. To identify it, we examine
the ratios between adjacent ordered eigenvalues of the sample covariance matrix
of the observable variables. We show that the maximum of the ratios is effective
for estimating the number of the latent variables, which is also the rank of the
low rank component in the aforementioned decomposition. As an independent
interest of its own, our method for identifying the number of latent variables is
also useful for identifying the number of factors in a factor model with high data
dimensionality.

Our investigation contributes to the area of large precision matrix estimation
in the following two aspects. First, our IPOD approach for estimating large Gaus-
sian graphical models with latent variables is convenient and adaptive. When
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there is no latent variable, our approach reduces to the estimation of sparse Gaus-
sian graphical models. With few latent variables, the IPOD approach provides a
useful structural device for parsimoniously modeling and practically interpret-
ing a large precision matrix. From a practical perspective, such a benefit can pro-
vide additional insights for statistical analyses of real data when solving practical
problems. Two concrete examples are elaborated in Section 3. By applying the
IPOD approach for investigating the dynamic structure of stock returns, we are
able to reveal some interesting and sensible association structure of the idiosyn-
cratic component that may not be adequately explained by a systematic compo-
nent of the factor model. In another application, for example, exploring the as-
sociations of university webpage content, reasonable and interpretable structure
can also be detected by the IPOD approach even after removing the systematic
component. Second, our theoretical analysis also reveals some appealing prop-
erties of the IPOD approach. Our theory shows that the IPOD approach enjoys
similar asymptotic properties as the POET approach in [6]. More specifically, the
estimation error of the IPOD approach is shown to converge to zero under both
the Frobenius norm and spectra norm, as the dimensionality of precision matrix
and the sample size go to infinity. In addition, the impact of unobservable factors
on the estimation error vanishes as the dimensionality of the precision matrix
diverges. In the absence of latent variables, our IPOD approach reduces to the
CLIME approach in [3], and the corresponding estimation error bounds coincide
with the ones therein.

The rest of this paper is organized as follows. In Section 2 we present our
model setting, the proposed approach, and the main theoretical results. In Sec-
tion 3, we first use two real-life data examples to demonstrate the appealing per-
formance of the IPOD approach and then conduct extensive simulation studies
to compare our approach with some existing ones. Finally, technical conditions
are summarized in Appendix A and proofs are outlined in Appendix B.

2 The IPOD approach and main results

2.1 Model setting and method

Let us consider a sequence of multivariate random vectors (y′
t,f

′
t)
′ (t= 1,··· ,T),

where yt ∈ R
p is observable and ft ∈ R

K collects unobservable variables. For a
Gaussian graphical model, we assume that for each t=1,··· ,T,

(y′
t,f

′
t)
′∼N(0,Θ−1), (2.1)
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where Θ is the precision matrix of size p+K. Here, we take the mean vector as 0
without loss of generality. The above framework includes multivariate time series
with t standing for time, and general multivariate models with t representing the
index of independent observations. Write

Θ=

(
Ωε Φ

Φ
′

Ω f

)
,

where Ωε is of size p×p, and Φ and Ω f are of appropriate sizes. Conditioning on

ft, the observable vector yt has the distribution yt|ft ∼N(−Ω
−1
ε Φft,Ω

−1
ε ), which

suggests the following regression model for yt:

yt=Bft+εt, (2.2)

where B=−Ω
−1
ε Φ∈R

p×K, and εt ∼N(0,Ω−1
ε ) is independent of ft. When Ωε is

diagonal, (2.2) becomes a classical factor model with loading matrix B and factor
score ft. Using matrix notation, (2.2) becomes

Y=FB′+E, (2.3)

where Y=(y1,··· ,yT)
′, F=(f1,··· ,fT)

′ and E=(ε1,··· ,εT)
′.

We aim at estimating Ω, the precision matrix of yt, via exploiting model (2.1)
with latent component ft. From (2.2), it is seen that the covariance matrix

Σ=cov(yt)=Bcov(ft)B
′+Ω

−1
ε . (2.4)

Since the matrix B and the latent component ft are generally not identifiable with-
out extra constraints, we make the same normalization assumption as in [6]:
Ω f = IK and B′B is diagonal, where IK is the K-dimensional identity matrix.
Hence, (2.4) is simplified as

Σ=BB′+Ω
−1
ε . (2.5)

By (2.5) and the Sherman-Morrison-Woodbury formula [9],

Ω=Σ
−1=Ωε−ΩεB(IK+B′

ΩεB)
−1B′

Ωε. (2.6)

Therefore the large precision matrix Ω is decomposed as the sum of a sparse
matrix Ωε and a low rank matrix, and it depends on ε only through its precision
matrix Ωε. We note that estimating Ωε is of its own interest, by observing that it
is the block in Θ corresponding to yt.

We now introduce some notations to ease the future presentation. For a ma-
trix A = (aij) ∈ R

p×q, the elementwise ℓ1-norm is |A|1 = ∑
p
i=1∑

q
j=1 |aij|, the el-

ementwise ℓ∞-norm is |A|∞ = max1≤i≤p,1≤j≤q|aij|, the matrix spectral norm is
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‖A‖2= sup‖x‖2=1‖Ax‖2, the matrix 1-norm is ‖A‖1=max1≤j≤q∑
p
i=1 |aij|, and the

Frobenius norm is ‖A‖F =
√

∑ij a
2
ij.

We assume that Ωε=(ωij) is sparse and belongs to the following class of ma-
trices:

U=U (q,sp)=

{
Ωε : Ωε≥0, ‖Ωε‖1≤M, max

1≤i≤p

p

∑
j=1

|ωij|q≤ sp

}
, (2.7)

where M is a positive constant, 0≤q<1, sp is a positive sequence depending only
on p, and Ωε≥0 means that Ωε is positive semidefinite. Specification (2.7) charac-
terizes a family of sparse precision matrices. Similar specifications for precision
matrices can be found in [3] and analogous specifications for sparse covariance
matrices are considered in [2] and [6] among others.

We propose a two-step method that we call Inverse Principle Orthogonal De-
composition (IPOD) for estimating the precision matrix Ω in (2.6). Specifically, in
the first step we estimate the matrices B and F in (2.3). This is done by solving a
regression problem with the least squares:

min
B,F

‖Y−FB′‖2 subject to F′F= IK and B′B is diagonal. (2.8)

Denote by B̂ and F̂ the resulting estimators. It was shown in [6] that the columns

of F̂ are the eigenvectors corresponding to the K largest eigenvalues of matrix

T−1Y′Y, and B̂= T−1Y′F̂. That is, B̂B̂
′
=∑

K
i=1 λ̂i ξ̂iξ̂

′
i, where λ̂1 ≥ λ̂2 ≥ ···≥ λ̂K are

the K largest eigenvalues and ξ̂1,··· , ξ̂K are the corresponding eigenvectors of the
matrix T−1Y′Y.

We now elaborate on how to specify K, the rank of B. We propose to estimate
K by examining the ratios of adjacent sample eigenvalues, that is,

K̂=argmax1≤j≤(T−1)λ̂j/λ̂j+1. (2.9)

The validity of the ratio based method for identifying K will be justified in the
next subsection. Similar method has been used in [11] to identify the number of
factors K in the lower dimensional setting of p<T.

In the second step, we focus on the estimation of the precision matrix Ωε.

Upon estimating B with B̂, the covariance matrix Σε =Ω
−1
ε can be estimated as

Σ̂ε = Σ̂−B̂B̂
′
= Σ̂−

K

∑
i=1

λ̂i ξ̂i ξ̂
′
i. (2.10)



74 C. Y. Tang, Y. Fan and Y. Kong / Commun. Math. Res., 36 (2020), pp. 68-92

Due to high dimensionality and singularity of Σ̂ε, it is not feasible to estimate Ωε

by directly inverting Σ̂ε. In addition, even if Σ̂ε is nonsingular, the inverse Σ̂
−1
ε is

generally nonsparse and thus may perform poorly as an estimator of Ωε. To ob-
tain a sparse estimator of Ωε, we propose to use the constrained l1 minimization
(CLIME) method in [3]:

min
Ωε∈Rp×p

|Ωε|1 subject to |Σ̂εΩε− Ip|∞ ≤ λ̃n, (2.11)

where λ̃n>0 is the regularization parameter. We denote by Ω̂ε the resulting esti-

mator of the precision matrix. By substituting Ω̂ε and B̂ into (2.6), we obtain the

estimator Ω̂ for Ω.

2.2 Main results

We first justify the validity of K̂ defined in (2.9) as an estimate of K. The propo-
sition below shows that if there exists a gap in the ratios of adjacent population
eigenvalues, then correspondingly, there is a gap in the ratios of adjacent sample
eigenvalues.

Proposition 2.1. Under Conditions 1-3 in Appendix A, if log p = o(Tγ/(2−γ)) with

γ = γ1/(1+γ1), where γ1 is defined in Condition B.1, then with probability at least

1−O(T−c1), we have

1≤ λ̂j/λ̂j+1≤ c2, for j=1,··· ,K−1, (2.12)

λ̂K/λ̂j+1≥ c3

√
T/(log p)→∞, for j=K,··· ,T−1, (2.13)

where c1, c2 and c3 are some positive constants.

Proposition 2.1 ensures that with probability at least 1−O(T−c1), the first K−1
ratios λ̂j/λ̂j+1 are bounded from above by some constant independent of p, while

the Kth ratio λ̂K/λ̂K+1 diverges to infinity as p → ∞. Thus, by examining the
ratios of adjacent sample eigenvalues, we are able to identify the number of latent
variables K consistently. In fact, in light of Proposition 2.1, the value of K can be
identified as the index j where the first sudden increment in λ̂j/λ̂j+1 is observed.
With some additional assumption such as that p/T is bounded away from both
zero and infinity, it has been proved in [18] that the eigenvalue ratio method (2.9)
can consistently estimate K. Since we are interested in the higher dimensional
setting of p≫T, we provide a new theoretical result below showing that (2.9) can
also consistently estimate K even when p increases exponentially with T, if the
observations are independently observed across t.
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Theorem 2.1. Assume that conditions of Proposition 2.1 hold and additionally that

(y′
t,f

′
t)
′ with t=1,··· ,T are independently observed, then as T→∞,

P(K̂=K)≥1−O(T−c4),

where c4 is some positive constant.

We next present a lemma on the properties of the covariance matrix estimator
defined in (2.10) for the idiosyncratic component.

Lemma 2.1. Assume max{(log p)6/γ−1,K4(log(pT))2}= o(T) and T1/4K3= o(
√

p)

with γ defined in Proposition 2.1. Under Conditions 1-3 in Appendix A, we have |Σ̂ε−
Σε|∞=Op

(
δT

)
where

δT =
K3

√
logK+K

√
logp+K2

√
T

+
K3

√
p
+

√
log p

T
.

The properties of the precision matrix estimator obtained by (2.11) is summa-
rized in the following theorem.

Theorem 2.2. Assume that Ωε ∈U (q,sp) and conditions in Lemma 2.1 are satisfied, if

λ̃n ≥‖Ωε‖1|Σ̂ε−Σε|∞, then

|Ω̂ε−Ωε|∞≤Op(δT), ‖Ω̂ε−Ωε‖2= spOp(δ
1−q
T ),

p−1‖Ω̂ε−Ωε‖2
F≤ spOp

(
δ

2−q
T

)
,

where δT is given in Lemma 2.1.

It is seen that δT determines the convergence rates of the estimation error un-
der various losses. The terms involving K in the definition of δT reflect the esti-
mation error caused by estimating the latent variables ft.

The following theorem presents the asymptotic properties of the IPOD esti-

mator Ω̂ for the large precision matrix Ω.

Theorem 2.3. Under the assumptions of Theorem 2.2, we have

‖Ω̂−Ω‖2=Op(sqδ
1−q
T ), (2.14)

p−1‖Ω̂−Ω‖2
F =Op

(
spδ

2−q
T +

Ks2
p

p
δ

2−2q
T +

K5

p2
+

log p+K3

pT

)
, (2.15)

where δT is the same as that in Theorem 2.2.
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When model (2.2) involves no latent variables — i.e., K = 0 — we have δT =√
(log p)/T, and the results in Theorem 2.3 become the following:

‖Ω̂−Ω‖2=Op

(
sq

( logp

T

)(1−q)/2)
, p−1‖Ω̂−Ω‖2

F =Op

(
sp

( logp

T

)(2−q)/2)
,

which are consistent with the results in [3]. We also see that as the dimension-
ality p of the precision matrix diverges, the terms involving K on the right-hand
sides of (2.14) and (2.15) converge to zero, which means that the impact of latent
variables on the estimation errors vanishes.

3 Numerical examples

3.1 University webpages

In this example, we consider the data set collected in 1997 from the “World Wide
Knowledge Base” project at Carnegie Mellon University. The full data set is
available from the Machine Learning Repository at the University of Californi-
a, Irvine. We consider the same subset of the data as studied in [8]. The da-
ta set includes Webpages from computer science departments at Cornell Uni-
versity, the University of Texas, the University of Washington, and the Univer-
sity of Wisconsin. In our study, we use the data set of the four largest cate-
gories – student, faculty, course and project – with 544, 374, 310, and 168 Web-
pages, respectively. The data after some standard pre-processing are available at
http://web.ist.utl.pt/~acardoso/datasets/.

The log-entropy weighting method was used to calculate the so-called term-
document matrix X=(xij)n×p where n and p represent the number of Webpages
and the number of distinct words, respectively. Here for i=1,··· ,n and j=1,··· ,p,
xij = ej log(1+ fij) where fij is the number of times that the jth term appears
in the ith webpage, ej = 1+∑

n
i=1 pij log(pij) is the log-entropy weight, and pij =

fij/∑
n
i=1 fij. Each column of X is normalized to have unit ℓ2 norm.

We apply our method to this data set for the n= 1,396 Webpages in the four
largest categories, where p=200 terms with the highest log-entropy weights are
considered. We also assume that εt follows the normal distribution in this exam-
ple. By pooling the data of the four categories together without distinguishing
their characteristics, we estimate K=2 as the number of factors. The two factors
explain in total 18.1% variability of the sample covariance matrix. This portion
can be understood as that of the underlying common features of the Webpages,
which are substantial but not dominating. By examining the loadings of the first
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Figure 1: Graph indicating the conditional dependence structures of the Webpage example for all
categories.

factor, we can see that large loadings happen for words like “system,” “devel-
op,” “applic,” “comput,” and so forth, suggesting the computer science nature of
the Webpages, and we may also understand these terms as common among all
Webpages. The second factor is much more interesting as shown by the observa-
tion of large loadings with different signs on two kinds of terms. The first kind
of term includes “research,” “univers,” “intern,” “confer,” “ieee,” “workshop,”
“symposium,” “proceed,” “journal,” and so forth, which clearly shows associa-
tions of a research nature; while the second kind includes “solut,” “due,” “home-
work,” “instructor,” “class,” “final,” “hour,” “exam,” “grade,” “assign,” and so
forth, which clearly indicates features of courses Webpages. Therefore the second
factor can be interpreted as the contrast between the teaching and research com-
ponents of all Webpages. We also examine the possibility of using more factors,
but no clear interpretations of the factors are observed.

We then estimate the precision matrix Ωε. The estimated precision matrix
is very sparse with only 616 nonzeros. For clarity in presenting the conditional
dependence structure, we only plot the graph corresponding to the 100 most pop-
ular terms with the highest log-entropy weights in Fig. 1. First, after removing
the common factors, the precision matrix of the idiosyncratic component takes a
much simpler structure than that found in [8]. Second, some high-degree nodes
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can be identified such as “exam,” “algorithm,” and many segments are discon-
nected. All connected segments seem sensible.

We then examine the structure of Webpages within the student and faculty cat-
egories. For the student category with 544 Webpages, (2.9) suggests K=3 factors.
After examining the loading matrix, we find that the first factor displays a similar
pattern to the first factor identified without distinguishing the categories. Inter-
estingly, the second factor has large values of loadings on two kinds of terms, with
the first kind similar to the one found without distinguishing the categories. But
the second kind has large loadings on terms such as “world,” “site,” “page,” “in-
ternet,” “web,” and so forth. Because the course Webpages belong to the teaching
category and are not included here, we can see the difference between the second
factor and the one found when all categories are pooled together. It may be in-
terpreted as the contrast between the research component and other Webpage
resources. The third factor has large values of loadings on terms like “techniqu,”
“interfac,” “orient,” “level,” “object,” and may be understood as programming-
related component.

For the faculty category, the eigenvalues also suggest K= 3 factors. The first
factor is again very similar to previous cases with a strong leaning toward com-
puter science. In addition, the second factor has large loadings on two kinds of
terms with the first kind similar to that of the student category, while the sec-
ond kind being “servic,” “implement,” “memori,” “support,” “perform,” “high,”
“oper,” “share,” and so forth, showing a substantial difference from that of the
student category. The comparison of the graphical features of the idiosyncratic
components of the student and faculty categories are given in Fig. 2. From there
we can observe some similar features such as a few common high-degree nodes
such as “graphic,” “final,” and “address.” However, the conditional correlation
structures are seen to be different between the two categories.

3.2 Simulations

We conduct simulation studies to demonstrate the performance of the proposed
approach. We first generate data from model (2.2) with p= 100 and T= 500 and
1000 respectively. We use K= 3 in the data-generating scheme, and components
in the loading matrix B are independently generated from standard normal dis-
tribution and are then fixed throughout the simulations. In all experiments, we
repeat the simulations 500 times. In each run, components of the factor vector
ft are generated independently from the standard normal distribution. More-
over, we consider three cases of the sparse idiosyncratic component Ωε, which
are similar to those in [8]. More specifically, in Case 1, we consider the chain net-
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(a) Student (b) Faculty

Figure 2: Graph indicating the conditional dependence structures of the Webpage example for different
categories: left panel, student; right panel, faculty.

work corresponding to the tridiagonal Ωε as considered in [5] and [8], which is
associated with the auto-regressive covariance structure of order 1. We choose
Σu=(σij) with σij=exp(−|si−sj|/4) in which s1< ···<sp are generated such that

si−si−1 ∼Unif(0.5,1) (i= 2,··· ,p). Then we set Ωε =Σ
−1
ε . In Case 2, we consid-

er the nearest neighbor networks as in [8]. To generate Ωε, we first simulate p
points from a unit square and calculate all pairwise distances. Then m= 3 near-
est neighbors of each point in Ωε are assigned nonzero values, with each of the
exact values generated independently from Unif(0.5,1). In Case 3, we generate
scale-free networks by using the Barabasi-Albert algorithm [1] for a power-law
network, and the nonzero components in the Ωε are generated from Unif(0.5,1).

Two loss functions are considered for assessing the performances, the en-

tropy loss (EL) and the Frobenius loss (FL) as follows: EL = tr(Ω−1
Ω̂)−

log{det(Ω−1
Ω̂)}−p, FL=‖Ω−Ω̂‖2

F/‖Ω‖2
F. Two methods for selecting the tun-

ing parameters are applied, the BIC and cross-validation. The following criteria
are calculated for measuring the model selection performances:

FP=

∑
1≤j<k≤p

I(ωjk=0,ω̂jk 6=0)

∑
1≤j<k≤p

I(ωjk =0)
, FN=

∑
1≤j<k≤p

I(ωjk 6=0,ω̂jk=0)

∑
1≤j<k≤p

I(ωjk 6=0)
.

We compare our methods to the naive estimator by simply inverting the sam-
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ple covariance matrix, and the one obtained by directly applying the CLIME
method of [3] without removing the systematic component. In our simulations,
the ratio based method is applied to select the number of factors K. In all simula-
tions, the method turns out to work very well with K estimated as 3 consistently.

The results are summarized in Table 1. From Table 1, we can see that using
the proposed approach has substantial improvement when compared with other
approaches. The BIC and cross-validation has comparable performances under
the two losses defined earlier, but BIC performs better in model selection than the
cross-validation. As expected, for the two methods that do not exploit the struc-
ture in the data model, the one by inverting the sample covariance matrix and
the one by directly applying the CLIME method of [3], perform poorly compared
with the IPOD approach.
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Appendices

A Technical conditions

Let F 0
−∞ and F∞

T be the σ-algebras generated by {(y′
t,f

′
t)
′:−∞≤t≤0} and {(y′

t,f
′
t)
′:

T≤ t≤∞}, respectively. Define the mixing coefficient

α(T)= sup
A∈F 0

−∞,B∈F∞
T

|P(A)P(B)−P(A and B)|.

Condition 1. The stochastic process (y′
t,f

′
t)
′ is stationary and strong mixing with

the mixing coefficient satisfying that for all T∈Z
+,

α(T)≤exp(−CTγ1),

for some constant γ1>0.

Let Σ=U′
ΛU be the eigen-decomposition of the covariance matrix of yt, where

Λ=diag{λ1,··· ,λp} is a diagonal matrix with λ1≥λ2≥···λp ≥0 the eigenvalues

of Σ. Define Ỹ=(ỹ1,··· ,ỹT)=Λ
−1/2U′Y′. Then the columns of Ỹ have identical

distribution N(0, Ip).
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Table 1: Simulation results where Ω̂ is for the proposed approach, S−1 is the inverse of the sample

covariance matrix, Ω̂1 is the regularized approach of [3] without estimating the systematic component.
The sample standard errors are in parentheses.

Case T EL FL FP ×102 FN ×102

1

500

Ω̂
BIC 3.9(0.51) 0.31(0.06) 0.02(0.02) 6.8(0.03)

CV 3.7(0.43) 0.29(0.04) 43(16) 6.1(0.04)

S−1 38.1(1.4) 0.87(0.09) - -

Ω̂1
BIC 19.6(0.9) 0.63(0.04) - -

CV 17.6(0.8) 0.72(0.06) - -

1000

Ω̂
BIC 2.6(0.45) 0.24(0.04) 0.01(0.01) 4.6(0.02)

CV 2.5(0.38) 0.23(0.03) 45(15) 4.2(0.06)

S−1 21.3(0.8) 0.62(0.05) - -

Ω̂1
BIC 18.9(0.6) 0.59(0.03) - -

CV 18.1(0.6) 0.69(0.05) - -

2

500

Ω̂
BIC 3.2(0.46) 0.28(0.04) 0.03(0.02) 6.0(0.02)

CV 3.1(0.33) 0.25(0.03) 50(18) 6.0(0.04)

S−1 32.6(1.1) 0.91(0.05) - -

Ω̂1
BIC 18.5(0.7) 0.60(0.04) - -

CV 17.5(0.9) 0.71(0.05) - -

1000

Ω̂
BIC 2.6(0.5) 0.24(0.04) 0.01(0.01) 4.2(0.02)

CV 2.5(0.5) 0.23(0.03) 45(15) 4.1(0.06)

S−1 19.3(0.8) 0.87(0.03) - -

Ω̂1
BIC 18.2(0.7) 0.57(0.03) - -

CV 17.2(0.7) 0.68(0.04) - -

3

500

Ω̂
BIC 4.5(0.51) 0.35(0.05) 0.02(0.02) 4.3(0.02)

CV 4.4(0.31) 0.33(0.05) 52(19) 3.9(0.04)

S−1 32.3(1.2) 0.81(0.06) - -

Ω̂1
BIC 18.8(0.9) 0.66(0.04) - -

CV 17.9(0.7) 0.69(0.05) - -

1000

Ω̂
BIC 2.6(0.53) 0.24(0.04) 0.01(0.01) 3.5(0.02)

CV 2.7(0.48) 0.23(0.03) 46(17) 3.1(0.06)

S−1 19.2(0.7) 0.59(0.04) - -

Ω̂1
BIC 18.2(0.7) 0.59(0.03) - -

CV 17.2(0.8) 0.64(0.04) - -

Condition 2. There exist some positive constants dj, j = 1,··· ,K, and M1 with

M1 ≥ d1 ≥ ···≥ dK ≥ M−1
1 such that as p→∞, ∑

K
k=1 |λk/p−dk|= o((log p)−1), for

any K< j≤T, it holds M−1
1 ≤λj ≤M1, and for j> p−T, it holds 0≤λj≤M1.
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Condition 2 assumes that the first K eigenvalues of Σ have magnitudes of
order p, the next T−K eigenvalues are bounded from both below and above,
and the remaining p−T eigenvalues are bounded from above. This assumption
is supported by Proposition 1 in [6], which characterizes the orders of λj under
mild conditions of B and Σε.

Condition 3. There exists a constant M0>0 such that |B|∞≤M0.

B Supplementary material by C. Y. Tang and Y. Fan

The supplementary material in this appendix contains technical proofs for the
main theorems of this paper.

B.1 Lemma B.1 and its proof

Lemma B.1. Assume conditions of Proposition 2.1 hold. If logp = o(Tγ/(2−γ)) with

γ=γ1/(1+γ1), then there exist positive constants c4 and c5 such that

P
(
|Ŝ− Ip|∞> c4

√
T−1 logp

)
≤ o(p−c5),

where Ŝ=T−1Ỹ
′
Ỹ is the sample covariance matrix.

Proof. We first prove that for any i, j∈{1,2,··· ,p},

P(|Ŝij− Ip,ij|> c4

√
T−1logp)≤ o(p−c5−2), (B.1)

where Ŝij and Ip,ij are the (i, j) entries of the sample covariance matrix Ŝ and the

identity matrix Ip, respectively. Then noting that P(|Ŝ−Ip|∞>x)≤p2maxij P(|Ŝij−
Ip,ij|> x) for any x> 0 completes the proof of the theorem. In the following, we

use C1,C2,··· to denote positive generic constants whose values may change from

line to line.

We now proceed to prove (B.1). To this end, note that Ŝij = e′p,iŜep,j, where

ep,j is a p-dimensional unit vector with j-th covariate 1 and all other covariates

0. Let ỹi = (ỹ1i,··· ,ỹTi)
′ = Ỹ

′
ep,i. Then Ŝij = T−1ỹ′

iỹj and ỹi is a T-dimensional

random vector whose elements ỹti have standard norm distribution. Moreover,

for each t=1,··· ,T, the random variables ỹti and ỹtj, i 6= j are independent. Then

by Gaussian tail probability, we know that for any u>0,

P(|ỹti ỹsj|>u)≤P(|ỹti |>
√

u)+P(|ỹsj|>
√

u)≤C1exp(−C2u).
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By Condition 1, applying the Bernstein’s inequality for weakly dependent se-

quence (Theorem 1 of [14]) yields

P
(
|T−1ỹ′

iỹj− Ip,ij|≥u
)

≤Texp
(
− (Tu)γ

C1

)
+exp

(
− T2u2

C2(1+TC3)

)
+exp

(
− (Tu)2

C4T
exp

( (Tu)γ(1−γ)

C5(log(Tu))γ

))
,

where γ=γ1/(1+γ1). Let u=c4

√
(log p)/T with c4 some large positive constant,

then it follows from the above inequality that if logp= o(Tγ/(2−γ)),

P(|T−1ỹ′
iỹj− Ip,ij|≥ c4

√
(log p)/T)= o(p−c5−2).

This proves (B.1) and thus completes the proof of the lemma.

B.2 Lemma B.2 and its proof

Lemma B.2. Assume Conditions 2-3 hold. Then we have

|Σ̂−Σ|∞ =Op

(
K2

√
logK

T
+K

√
logp

T

)
.

Proof. Using model (2.2), we have the decomposition

Σ̂−Σ=D1+D2+D3+D′
3, (B.2)

where D1 = T−1B
(

∑
T
t=1ftf

′
t− IK

)
B′, D2 = T−1∑

T
t=1(εtε

′
t−Σε), and D3 =

T−1B∑
T
t=1ftε

′
t. In the following, we use C1,C2,··· to denote generic positive con-

stants whose values may change from line to line.

We first consider D1. Let ep,j be a p-dimensional unit vector with j-th covariate

1 and all other covariates 0. Since ft ∼ N(0, IK) and T−1∑
T
t=1ftf

′
t is the sample

covariance matrix estimate of IK, by Condition 1 and using similar proof as for

Lemma B.1 we obtain that with probability at least 1−o(T−C1),

∣∣∣T−1
T

∑
t=1

ftf
′
t− IK

∣∣∣
∞
≤C2

√
(logT)/T.

Thus by the Cauchy-Schwarz inequality and Condition 3, we have

|D1|∞= max
1≤i,j≤p

|e′p,iD1ep,j|≤
∥∥∥T−1

T

∑
t=1

ftf
′
t− IK

∥∥∥
2

max
1≤i,j≤p

‖B′ep,i‖2‖B′ep,j‖2

≤O(K)
∥∥∥T−1

T

∑
t=1

ftf
′
t− IK

∥∥∥
2
=Op

(
K2

√
(logT)/T

)
, (B.3)
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where the last step is because of

∥∥∥T−1
T

∑
t=1

ftf
′
t− IK

∥∥∥
2
≤K

∣∣∣T−1
T

∑
t=1

ftf
′
t− IK

∣∣∣
∞
=Op

(
K
√
(logT)/T

)
.

Next we consider D2. Since εt = yt−Bft, by Condition 1 and using similar

proof as that for Lemma B.1 we obtain that with probability at least 1−o(p−C3),

|D2|∞ ≤C4

√
(log p)/T. (B.4)

Finally, we study D3. First, following the similar proof as that for Lemma B.1

we obtain that

max
1≤i≤K,1≤j≤p

∣∣∣T−1
T

∑
t=1

fitujt

∣∣∣=Op

(√
(log p)/T

)
.

Thus, by the Cauchy-Schwarz inequality and Condition 3, we have

|D3|∞ ≤ max
1≤i,j≤p

‖B′ep,i‖2

∥∥∥T−1
T

∑
t=1

ftε
′
tep,j

∥∥∥
2
≤
√

K max
1≤j≤p

∥∥∥T−1
T

∑
t=1

ftε
′
tep,j

∥∥∥
2

≤K max
1≤l,j≤p

∣∣∣T−1e′K,l

T

∑
t=1

ftε
′
tep,j

∣∣∣≤Op(K
√
(log p)/T). (B.5)

Combining (B.2)-(B.5) and comparing and collecting the terms complete the

proof of the lemma.

B.3 Proof of Proposition 2.1

The key idea is to consider the dual matrix SD =T−1YY′, whose eigenvalues are

the same as the nonzero eigenvalues of the sample covariance matrix Σ̂=T−1Y′Y.

Recall that Ỹ = (ỹjt) = Λ
−1/2U′Y′, whose columns have identical distribution

N(0, Ip). Then the dual matrix can be written as SD = T−1Ỹ
′
ΛỸ. In the proof

below, we use C1,C2,··· to denote some generic positive constants. For each i, we
define φi(·) as the function which takes out the ith largest eigenvalue of a matrix.

Let D be a p×p diagonal matrix with the first K diagonal elements being equal

to dj, and the rest being 1. We decompose Ỹ, D and Λ as

Ỹ=(Ỹ
′
1,Ỹ

′
2)

′, D=diag{D1, Ip−K}, Λ=diag{Λ1,Λ2},
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where Ỹ1,D1 and Λ1 all have K rows. Then it follows that

p−1SD =(Tp)−1Ỹ
′
ΛỸ=(Tp)−1Ỹ

′
1Λ1Ỹ1+(Tp)−1Ỹ

′
2Λ2Ỹ2. (B.6)

By Weyl’s inequality [9] we have for any j=1,··· ,T,

φj(p−1T−1Ỹ
′
1Λ1Ỹ1)+φT(p−1T−1Ỹ

′
2Λ2Ỹ2)≤φj(p−1SD)

≤φj(p−1T−1Ỹ
′
1Λ1Ỹ1)+φ1(p−1T−1Ỹ

′
2Λ2Ỹ2).

The above inequality together with φT(Ỹ
′
2Λ2Ỹ2)≥0 entails that for j=1,··· ,T,

φj(p−1T−1Ỹ
′
1Λ1Ỹ1)≤φj(p−1SD)

≤φ1(p−1T−1Ỹ
′
2Λ2Ỹ2)+φj(p−1T−1Ỹ

′
1Λ1Ỹ1). (B.7)

Applying Weyl’s inequality [9] one more time we obtain for any j=K+1,··· ,T,

φj(p−1SD)≥φT(p−1T−1Ỹ
′
1Λ1Ỹ1)+φj(p−1T−1Ỹ

′
2Λ2Ỹ2)

=φj(p−1T−1Ỹ
′
2Λ2Ỹ2), (B.8)

where the last step is because Ỹ
′
1Λ1Ỹ1 is positive semidefinite and has rank K,

which is much smaller than T.
We will prove that with probability at least 1−O(T−C3), for j=1,··· ,K,

2

3
M−1

1 <φj

(
T−1p−1Ỹ

′
1Λ1Ỹ1

)
<

7

3
M1. (B.9)

And with probability at least 1−O(p−C4),

φ1(T
−1p−1Ỹ

′
2Λ2Ỹ2)≤2M1 p−1+C5M1

√
T−1logp . (B.10)

Since φj(Ỹ
′
1Λ1Ỹ1) = 0 for j = K+1,··· ,T and λ̂j = φj(Σ̂) = φj(SD) for j = 1,··· ,T,

combining (B.7)-(B.10) proves that with probability at least 1−O(T−C3),

2

3
M−1

1 ≤ p−1λ̂j≤
7

3
M1, for j=1,··· ,K, (B.11)

p−1λ̂j≤2M1p−1+C5M1

√
T−1logp, for j=K+1,··· ,T. (B.12)

This completes the proof of Proposition 2.1.
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We now proceed to prove (B.9). Define event E =∩T
t=1∩

p
j=1{|ỹjt|≤C1

√
logp}

with C1 > 0 some large enough positive constant. Since ỹjt ∼ N(0,1), it follows
from Gaussian tail probability that

P(E c)≤
T

∑
t=1

p

∑
j=1

P(|ỹjt|>C1

√
logp)≤ o(p−C2).

This together with the assumption ∑
K
k=1 |λk/p−dk|= o((log p)−1) ensures that

with probability at least 1−o(p−C2),

|Ỹ′
1(p−1

Λ1−D1)Ỹ1|∞= max
1≤j,ℓ≤T

∣∣∣
K

∑
k=1

(λk/p−dk)ỹjkỹkℓ

∣∣∣

≤C2
1(log p)

K

∑
k=1

|λk/p−dk|→0.

Since for any T×T matrix A, we have ‖A‖F ≤T|A|∞, it follows that

‖T−1Ỹ
′
1(p−1

Λ1−D1)Ỹ1‖F≤|Ỹ′
1(p−1

Λ1−D1)Ỹ1|∞→0. (B.13)

Further, by Corollary 6.3.8 of [9] we obtain

max
1≤i≤K

∣∣∣φi

(
(Tp)−1Ỹ

′
1Λ1Ỹ1

)
−φi

(
T−1Ỹ

′
1D1Ỹ1

)∣∣∣≤‖T−1Ỹ
′
1(p−1

Λ1−D1)Ỹ1‖F→0.

(B.14)

Meanwhile, for 1≤ i≤K, similar to (B.7) we can prove

φT

(
T−1Ỹ

′
1(D1−dK IK)Ỹ1

)
≤φi

(
T−1Ỹ

′
1D1Ỹ1

)
−dKφi

(
T−1Ỹ

′
1Ỹ1

)

≤φ1

(
T−1Ỹ

′
1(D1−dK IK)Ỹ1

)
.

Since the matrix T−1Ỹ
′
1(D1−dK IK)Ỹ1 is positive semidefinite and has rank K,

it follows that φT

(
T−1Ỹ

′
1(D1−dK IK)Ỹ1

)
= 0. Meanwhile, since φ1

(
T−1Ỹ

′
1(D1−

dK Ik)Ỹ1

)
≤max1≤j≤K |dj−dK|φ1

(
T−1Ỹ

′
1Ỹ1

)
≤M1φ1

(
T−1Ỹ

′
1Ỹ1

)
and M−1

1 ≤di≤M1,
we have

M−1
1 φi

(
T−1Ỹ

′
1Ỹ1

)
≤φi

(
T−1Ỹ

′
1D1Ỹ1

)
≤2M1φ1

(
T−1Ỹ

′
1Ỹ1

)
. (B.15)

So the key is to study the first K eigenvalues of matrix T−1Ỹ
′
1Ỹ1, which are the

same as eigenvalues of its K×K dual matrix T−1Ỹ1Ỹ
′
1. Notice that the columns
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of Ỹ1 have identical distribution N(0, IK). Then using similar proof to that for
Lemma B.1, we can prove that with probability at least 1−O(T−C3),

|T−1Ỹ1Ỹ
′
1− IK|∞≤C4

√
T−1 logT.

This ensures that if K = o(
√

T/logT), by Corollary 6.3.8 of [9], we have with

probability at least 1−O(T−C3),

max
1≤i≤T

|φi(T
−1Ỹ1Ỹ

′
1)−1|≤‖T−1Ỹ1Ỹ

′
1− IK‖F

≤K|T−1Ỹ1Ỹ
′
1− IK|∞≤C4K

√
T−1logT→0.

Combing the above results with (B.14) and (B.15) and noting φj(T
−1Ỹ1Ỹ

′
1) =

φj(T
−1Ỹ

′
1Ỹ1) for j=1,··· ,K completes the proof of (B.9).

Next we prove (B.10). Similar to (B.15) we can prove for j=1,··· ,T,

M−1
1 φT(T

−1p−1Ỹ
′
2Ỹ2)≤φj(T

−1p−1Ỹ
′
2Λ2Ỹ2)≤2M1φ1(T

−1p−1Ỹ
′
2Ỹ2). (B.16)

So the key is to study the eigenvalues of matrix T−1p−1Ỹ
′
2Ỹ2. Similar to the previ-

ous j=1,··· ,K case, we only need to study the eigenvalues of T−1p−1Ỹ2Ỹ
′
2. Notice

that the columns of Ỹ2 have identical distribution N(0, Ip−K). Thus, by Lemma
B.1, we obtain that with probability at least 1−O(p−c4),

|T−1Ỹ2Ỹ
′
2− Ip−K|∞≤ c3

√
T−1 logp, (B.17)

where c3 and c4 are defined in Lemma B.1. Therefore, we can derive that if√
T−1 logp→0,

‖T−1p−1Ỹ2Ỹ
′
2‖F ≤ p−1‖T−1Ỹ2Ỹ

′
2− Ip−K‖F+p−1‖Ip−K‖F

≤ c3

√
T−1 logp+p−1/2→0.

By Corollary 6.3.8 of [9], we have

φ1(T
−1p−1Ỹ

′
2Ỹ2)≤‖T−1p−1Ỹ

′
2Ỹ2‖F≤ c3

√
T−1 logp+p−1/2→0.

This together with (B.16) entails that (B.10) holds with C4 = c4 and C5 = c3. This
completes the proof of the proposition. �
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B.4 Proof of Theorem 2.1

Proof. We only need to prove that with probability at least 1−O(p−C6), for j =
1,··· ,T,

1/2≤φj(p−1Ỹ
′
2Ỹ2)≤2. (B.18)

Then this together with (B.16) ensures that for j=1,··· ,T,

(2M1T)−1≤φj(T
−1p−1Ỹ

′
2Λ2Ỹ2)≤4M1T−1.

In view of (B.7) and (B.8), for j=K+1,··· ,T,

(2M1T)−1≤ λ̂j=φj(p−1SD)≤4M1T−1. (B.19)

Note that λ̂j=φj(Σ̂)=φj(SD) for j=1,··· ,T. Combining (B.19) with (B.11) proves

that in addition to (2.13), it also holds that for j=K+1,··· ,T,

λ̂j/λ̂j+1< c̃9,

and for j=K,

λ̂K/λ̂K+1≥ c10T→∞,

where c̃9 and c10 are two positive constants. This completes the proof of the the-

orem.

It remains to prove (B.18). In the following, we use C̃1,C̃2 to denote some

positive generic constants. Since {yt}1≤t≤T are independent across t, the rows

of Ỹ2 are independent. Recall that the columns of Ỹ2 have identical distribution

N(0, Ip−K). Thus, the entries of matrix Ỹ2 are independent standard normal ran-

dom variables. This ensures that (p−K)−1Ỹ
′
2Ỹ2 is the sample estimate of the co-

variance matrix IT. By Lemma B.1 we have with probability at least 1−O(T−C̃1),

|(p−K)−1Ỹ
′
2Ỹ2− IT|∞≤ C̃2

√
p−1 logT.

Thus, by Corollary 6.3.8 of [9], we have

max
1≤j≤T

|φj((p−K)−1Ỹ
′
2Ỹ2)−1|≤‖φj((p−K)−1Ỹ

′
2Ỹ2)−1‖F ≤ C̃2T

√
p−1 logT→0.

It follows from the above inequality that for T large enough, with probability at

least 1−O(T−C̃1),

1/2≤φj((p−K)−1Ỹ
′
2Ỹ2)≤2.

This together with p/(p−K)→ 1 completes the proof of (B.18). This concludes

the proof of Theorem 2.1.
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B.5 Proof of Lemma 2.1

By (2.5), (2.10) and the Cauchy-Schwarz inequality, we have

|Σ̂ε−Σε|∞≤|B̂B̂
′−BB′|∞+|Σ̂−Σ|∞.

The first term B̂B̂
′

on the right-hand side has been studied in [6] in the proof of
Theorem 3.2 (page 43 therein). It was proved that

|B̂B̂
′−BB′|∞=Op

(
K3

√
(logK)/T+δ∗T

)
, (B.20)

where

δ∗T =
K
√

logp+K2

√
T

+
K3

√
p
+

√
logp

T
.

The second term has been studied in Lemma B.2. Thus, combining these two
results completes the proof of the lemma.

B.6 Proof of Theorem 2.2

The results follow directly from Theorem 6 of [3].

B.7 Proof of Theorem 2.3

The proof is similar to the one for Theorem 3.2 in [6]. Note that

Ω̂−Ω=L1+L′
2+L3+L′

4+L5+L6,

where the Li’s are defined as follows:

L1= Ω̂ε−Ωε,

L2=(Ω̂ε−Ωε)B̂[IK+B̂
′
Ω̂εB̂]

−1B̂
′
Ω̂ε,

L3=(Ω̂ε−Ωε)B̂[IK+B̂
′
Ω̂εB̂]

−1B̂
′
Ωε,

L4=Ωε(B̂−BH−1)[IK+B̂
′
Ω̂εB̂]

−1B̂
′
Ωε,

L5=Ωε(B̂−BH−1)[IK+B̂
′
Ω̂εB̂]

−1(H′)−1B′
Ωε,

L6=ΩεBH−1
(
[IK+B̂

′
Ω̂εB̂]

−1−[H′H+(H′)−1B′
ΩεBH−1]−1

)
(H′)−1B′

Ωε,

with H= 1
T U−1F̂

′
FB′B and U=diag{λ̂1,··· ,λ̂K}.
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Let δ̃T = spδ
1−q
T . Then, by Theorem 2.2, we have ‖Ω̂ε−Ωε‖2 =Op(δ̃T). Using

the same proof as the one for Theorem 3.2 in [6], we have

‖L1‖2=‖Ω̂ε−Ωε‖2=Op(δ̃T), ‖L2‖2=Op(‖L1‖2), ‖L3‖2=Op(‖L1‖2),

‖L4‖2=Op(
√

K5p−1+

√
logp+K3

T
), ‖L5‖2=Op(‖L4‖2), ‖L6‖2=Op(δ̃T).

Combining the above results and comparing the orders of terms we have

‖Ω̂−Ω‖2≤Op(δ̃T+
√

K5p−1+
√
(log p+K3)/T)=Op(δ̃T), (B.21)

which completes the proof of the first result.
Finally we study the estimation error under the Frobenius norm. We will

repeatedly use the following inequality stated in exercise 20 on page 313 of [9]:

‖A1A2‖F ≤‖A1‖2‖A2‖F and ‖A1A2‖F≤‖A1‖F‖A2‖2, (B.22)

for all matrices A1 and A2 of the proper sizes. In addition, it has been shown
in [6] that

‖(IK+B̂
′
Ω̂εB̂)

−1‖2=Op(p−1), ‖B̂‖2=Op(
√

p),

‖B̂−BH−1‖2
F =Op(K

5+T−1plogp+T−1pK3),

max{‖H‖2,‖H−1‖2}=Op(1).

By Theorem 2.2, ‖L1‖2
F ≤ ps0(p)Op(δ

2−q
T ). Similarly to the proof of Theorem

3.2 (p.40) in [6], we can prove that

‖L2‖2
F ≤‖L1‖2

F‖B̂[IK+B̂
′
Ω̂εB̂]

−1B̂
′
Ω̂ε‖2

2=Op(‖L1‖2
F), (B.23)

‖L3‖2
F ≤‖L1‖2

F‖B̂[IK+B̂
′
Ω̂εB̂]

−1B̂
′
Ωε‖2

2=Op(‖L1‖2
F), (B.24)

‖L4‖2
F ≤‖Ωε‖2

2‖B̂−BH−1‖2
F‖[IK+B̂

′
Ω̂εB̂]

−1B̂
′
Ωε‖2

2

≤‖Ωε‖2
2‖B̂−BH−1‖2

F‖[IK+B̂
′
Ω̂εB̂]

−1‖2
2‖B̂

′‖2
2‖Ωε‖2

2

≤Op(K
5/p+(log p+K3)/T), (B.25)

‖L5‖2
F ≤‖Ωε‖2

2‖B̂−BH−1‖2
F‖[IK+B̂

′
Ω̂εB̂]

−1‖2
2‖(H′)−1B′

Ωε‖2
2,

≤Op(K
5/p+(log p+K3)/T). (B.26)

Finally we study ‖L6‖2
F. Let G = [IK+B̂

′
Ω̂εB̂]

−1 and G1 = [H′H+

(H′)−1B′
ΩεBH−1]−1. Then similar to the proof of Theorem 3.2 in [6] (p.40)
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‖G‖2=Op(p−1)=‖G1‖2, and

‖G−G1‖F ≤
√

K‖G−G1‖2≤Op(
√

Kp−1δ̃T).

Therefore,

‖L6‖2
F≤‖ΩεBH−1‖4

2‖G−G1‖2
F =Op(Kδ̃2

T). (B.27)

Combining (B.23)-(B.27) we obtain

p−1‖Ω̂−Ω‖2
F ≤Op

(
spδ

2−q
T +

K5

p2
+

log p+K3

pT
+

Kδ̃2
T

p

)

=Op

(
spδ

2−q
T +

Ks2
pδ

2−2q
T

p
+

K5

p2
+

log p+K3

pT

)
,

which concludes the proof of the theorem.
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