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1 Introduction

The literature contains much analysis on the study of eigenvalues for elliptic equations,
but work on systems of equations is much more scarce. Many of the estimates used for e-
quations do not hold for systems and thus analysis for systems requires something differ-
ent. Moreover, we use the reverse Hölder technique frequently to achieve our estimates.
In this paper, we look at the behavior of eigenvalues and eigenfunctions on perturbed
domains and compare them to ones on the unperturbed domain. We give a simple char-
acterization of families of perturbed domains, which include dumbbell shaped domains,
but these families may be quite general. We work in Lipschitz domains and assume that
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the coefficients of the operator are bounded and symmetric. Furthermore, we assume
that the Dirichlet set D satisfies a corkscrew condition, which allows for a rather gener-
al decomposition of the boundary. A term which lies in a Sobolev space or Lp space is
imposed on the Neumann set N.

There are many results on the study of eigenvalues for equations on perturbed do-
mains when we have Dirichlet boundary conditions. A classic paper by Babuska and
Výborný [1] shows continuity of Dirichlet eigenvalues for elliptic equations under a reg-
ular variation of the domain. Work by Davies [2] and Pang [3] studies the relationship
between Dirichlet eigenvalues and corresponding eigenfunctions in a domain Ω and
eigenvalues and eigenfunctions in sets of the form R(ε) = {x ∈ Ω : dist(x,∂Ω)≥ ε}. T-
wo papers by Chavel and Feldman [4] and Anné and Colbois [5] examine eigenvalues
on compact manifolds with a small handle and Dirichlet conditions on the ends of the
handle. More recent work for Dirichlet conditions includes work by Daners [6], which
shows convergence of solutions to elliptic equations on sequences of domains. Burenkov
and Lamberti [7] prove spectral estimates for higher-order elliptic operators on domains
in certain Hölder classes. Kozlov [8] gives asymptotics of Dirichlet eigenvalues for do-
mains in Rn and Grieser and Jerison [9] also give asymptotics for Dirichlet eigenvalues
and eigenfunctions on plane domains.

When a Neumann condition is placed on part of the boundary, the eigenvalue prob-
lem is much more difficult to analyze. A classic example by Courant and Hilbert [10]
shows that continuity of eigenvalues is not generally obtained for Neumann eigenvalues
if the domain is only C0. In fact, Arrieta, Hale, and Han [11] show that if the domain
is not sufficiently smooth, none of the Neumann eigenvalues {λε

m} converge for m≥ 3.
However, if one places more regularity on the domains, rates of convergence are achiev-
able. This is illustrated in work by Jimbo [12], Jimbo and Kosugi [13], and Brown, Hislop,
and Martinez [14].

As mentioned earlier, there seems to be a lot less work on the study of perturbed
domains with systems of equations. Fang [15] studied the behavior of the second eigen-
value in a perturbed domain for a system of equations in R2. Taylor [16] provided rates
of convergence for Dirichlet eigenvalues involving elliptic systems on domains with low
regularity. More recent work by Collins and Taylor [17] showed convergence of eigenval-
ues for the mixed problem with homogeneous Dirichlet and Neumann boundary condi-
tions. The contribution in this paper continues the study of eigenvalues for these types
of operators for the mixed problem when the Neumann term is nontrivial.

2 Preliminaries and main results

We will be working on a bounded Lipschitz domain Ω. This means that locally on the
boundary, Ω is a domain which lies above the graph of a Lipschitz function. In order
to give a formal definition, we introduce coordinate cylinders. Given a constant M> 0,
x ∈ ∂Ω, and r > 0, we define a coordinate cylinder Zr(x) = {y : |y′−x′| < r,|yn−xn| <
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(2+4M)r}. Here, we use coordinates (x′,xn)∈Rn−1×R and assume that this coordinate
system is a translation and rotation of the standard coordinates. Ω is said to be a Lipschitz
domain if for each x∈∂Ω, there exists a coordinate cylinder Zr(x) and a Lipschitz function
ϕ :Rn−1→R with Lipschitz constant M so that

Ω∩Zr(x)={(y′,yn) : yn >ϕ(y′)}∩Zr(x),

∂Ω∩Zr(x)={(y′,yn) : yn =ϕ(y′)}∩Zr(x).

Since the boundary ∂Ω is compact, there exists a small constant r0 so that we may
cover it with a finite collection of coordinate cylinders {Zr0(xi)}N

i=1 and so that for each i,
Z100r0

√
1+M2(xi) is also a coordinate cylinder.

We define our local domains as follows: For x∈∂Ω and r∈ (0,100r0), we define surface
cylinders ∆r(x)=Zr(x)∩∂Ω. When x∈Ω and r∈(0,100r0), if dist(x,∂Ω)>r, then Sr(x)=
Br(x) and ∆r(x)=∅. Otherwise, if dist(x,∂Ω)≤r, then from the definition of a coordinate
cylinder, x lies in one of the cylinders Z100r0

√
1+M2(xi). If x = (x′,xn) in the coordinate

system for this cylinder, then we put x̂ = (x′,ϕ(x′)) and define Sr(x) = Zr(x̂)∩Ω and
∆r(x)= Zr(x̂)∩∂Ω. We note that with our choice of r0 and definitions of cylinders, our
local domains are star-shaped domains which will allow us to use Sobolev and Korn
inequalities.

We let D1 and D2 be two nonempty, open, disjoint, connected, and bounded Lipschitz
domains in Rn and form the domain Ω0=D1∪D2. Decompose the boundary ∂Ω0=D∪N
and D∩N=∅ where D is nonempty and relatively open with respect to ∂Ω0. We assume
the corkscrew condition on D. To define this condition, let Λ denote the boundary of D
in ∂Ω0.

Definition 2.1. We say that D satisfies the corkscrew condition if for all x∈Λ and r∈(0,100r0),
there exists xr ∈D so that |xr−x|< r and dist(xr,Λ)>M−1r.

The corkscrew condition allows for a quite general decomposition of the boundary. It
follows that if D satisfies the corkscrew condition, then we have the following lemma
shown in Taylor et al. [18]:

Lemma 2.1. If x∈D and r∈ (0,100r0), then there exists xr ∈D and a constant c= c(M), only
depending on M, so that |x−xr|< r and ∆cr(xr)⊂D. Furthermore,

σ(∆r(x)∩D)≥ crn−1. (2.1)

In the above lemma, σ denotes the surface measure. We again note that the local domains
mentioned earlier are star-shaped domains. Thus with the aid of Lemma 2.1, we may
apply Sobolev and Poincaré estimates later.

We define the family of perturbations for a suitable ε0, {Tε}0<ε<ε0 to be a family of
open sets with Lipschitz boundary such that

Tε̃ ⊂Tε if ε̃≤ ε
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and if |Tε| denotes the Rn Lebesgue measure of Tε, then

|Tε|≤Cεd (2.2)

where C and 0< d ≤ n are independent of ε. This allows the perturbations to be quite
general. We fix two points p1∈∂D1, p2∈∂D2, and define ∆1

ε =Zε(p1)∩∂Ω0, ∆2
ε =Zε(p2)∩

∂Ω0. We require the connections from Tε to D1 and D2 to be contained in ∆1
ε and ∆2

ε ,
respectively. That is, Tε∩D1 = ∅ and Tε∩D1 ⊂ ∆1

ε . We also require that for each ε <
ε0, we have ∆1

ε ∩D ̸= ∅. In other words, the connection is always touching D in some
sense, but may also touch N. We define a similar condition for D2 and ∆2

ε . Then for
any ε, define Ωε to be the interior of the set Ω0∪Tε. So, you may think of Tε as a “tube”
connecting each of the two domains. We now have the family of domains {Ωε}0≤ε<ε0 .
Let D̃= ∂Ωε∩[∂Tε∪D] and Ñ = ∂Ωε∩N. We let (W1,p(Ωε))m =W1,p(Ωε)×...×W1,p(Ωε)

be the vector-valued Sobolev space taking values in Rm and define (W1,p
D̃

(Ωε))m to be the

closure of (W1,p(Ωε))m in {u∈(C∞(Ωε))m :u=0 in a neighborhood of D̃}. We also define

(Lp(∂Ωε))
m =Lp(∂Ωε)×...×Lp(∂Ωε), (W

1/2,p
D̃

(∂Ωε))
m

to be the image of (W1,p
D̃

(Ωε))m under the trace map, and (W−1/2,p′

D̃
(∂Ωε))m to be the dual

of (W1/2,p
D̃

(∂Ωε))m. Since we are dealing with vector-valued functions u∈ (W1,p(Ωε))m,
the gradient ∇u should be interpreted as a matrix Bij =

∂
∂xj

ui and |∇u| is the Frobenius
norm of ∇u.

Since D satisfies the corkscrew condition for any ε, and Ωε is a bounded Lipschitz
Domain, Lemma 2.1 implies the Poincaré inequality for any 1≤ p<∞,∫

Ωε

|u|pdy≤C
∫

Ωε

|∇u|pdy, u∈ (W1,p
D̃

(Ωε))
m. (2.3)

Consequently, we have the trace inequality as given in Cianchi et al. [19],∫
∂Ωε

|u|pdy≤C
∫

Ωε

|∇u|pdy, u∈ (W1,p
D̃

(Ωε))
m. (2.4)

Define

ux,r :=


0, if dist(Sr(x),D)=0

−
∫

Sr(x)
u(y)dy, if dist(Sr(x),D)>0.

We also have Sobolev-Poincaré inequalities for our local domains, taken from Ott and
Brown [20].

Lemma 2.2. Suppose 1≤ p<n and 1
q =

1
p −

1
n . Then we have(∫

Sr(x)
|u−ux,r|qdy

)1/q

≤C
(∫

S2r(x)
|∇u|pdy

)1/p

, u∈ (W1,p
D̃

(Ωε))
m. (2.5)
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Lemma 2.3. Let 1≤ p<n and choose q so that 1
q =

1
p −(1− 1

p )(
1

n−1 ). Then we have(∫
∆r(x)

|u−ux,r|qdσ(y)
)1/q

≤C
(∫

S2r(x)
|∇u|pdy

)1/p

, u∈ (W1,p
D̃

(Ωε))
m. (2.6)

The previous lemmas hold with Sr(x) as the domain of integration on the right side if
dist(Sr(x),D)>0. Otherwise, we must expand Sr(x) in order to use the corkscrew condi-
tion. The inequalities (2.5) and (2.6) imply the Poincaré inequalities for any 1≤ p<∞,(∫

Sr(x)
|u−ux,r|pdy

)1/p

≤Cr
(∫

S2r(x)
|∇u|pdy

)1/p

, u∈ (W1,p
D̃

(Ωε))
m, (2.7)

(∫
∆r(x)

|u−ux,r|pdσ(y)
)1/p

≤Cr
p−1

p

(∫
S2r(x)

|∇u|pdy
)1/p

, u∈ (W1,p
D̃

(Ωε))
m. (2.8)

Now we define the eigenvalue problem. Let L=− ∂
∂xj

(Aij
∂

∂xi
) where the Aij are coeffi-

cient m×m matrices which have measurable and bounded entries, aαβ
ij which also satisfy

the symmetry condition aαβ
ij = aβα

ji for i, j=1,...,n and α,β=1,...,m. We consider the mixed
eigenvalue problem 

Lu=λu, in Ωε,

u=0, on D̃,

Aij
∂u
∂xi

νj = fN , on Ñ,

(2.9)

where fN ∈ (W−1/2,p′
D (∂Ω0))m∩(W−1/2,p′

D̃
(∂Ωε))m for p′>2 and ν is the outward unit nor-

mal vector. L may also be viewed in coordinate form

(Lu)β =−
m

∑
α=1

n

∑
i,j=1

∂

∂xj

(
aαβ

ij
∂uα

∂xi

)
, β=1,...,m.

Above in (2.9) and throughout the rest of this paper we use the convention of summing
over repeated indices, where i and j will sum from 1 to n and α, β, and γ will sum from 1
to m. Letting uα

j := ∂uα

∂xj
, define the bilinear form on (W1,2

D̃
(Ωε))m×(W1,2

D̃
(Ωε))m,

Bε(u,v) :=
∫

Ωε

aαβ
ij (x)uα

i (x)vβ
j (x)dx.

We say that the number λ is an eigenvalue of L with eigenfunction u∈ (W1,2
D̃

(Ωε))m, if u ̸≡0
and

Bε(u,v)=λ
∫

Ωε

uγ(x)vγ(x)dx+⟨ fN ,v⟩∂Ωε
for any v∈ (W1,2

D̃
(Ωε))

m, (2.10)
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where ⟨·,·⟩∂Ωε
denotes the pairing of duality on (W−1/2,p′

D̃
(∂Ωε))m×(W1/2,p

D̃
(∂Ωε))m. We

define the Rayleigh quotient Rε on (W1,2(Ωε))m as

Rε(u) :=
Bε(u,u)−⟨ fN ,u⟩∂Ωε

∥u∥2
L2(Ωε)

(2.11)

for u ̸≡0. It easily follows that if λ is an eigenvalue with eigenfunction u, then

λ=Rε(u).

We point out that if fN is a function on N, then we may identify it with an element of
(W−1/2,p′

D̃
(∂Ωε))m by

⟨ fN ,v⟩∂Ωε
=

∫
Ñ

fNvdσ for any v∈ (W1/2,p
D̃

(∂Ωε))
m. (2.12)

Sobolev trace embedding implies (W1/2,2
D̃

(∂Ωε))m ⊂ (Lq(∂Ωε))m for q= 2(n−1)
n−2 when n≥3

or 1≤q<∞ when n=2. Thus for any test function v from (2.10), the integral on the right

side of (2.12) is finite if fN ∈ (L
2(n−1)

n (∂Ωε))m when n≥3 or fN ∈ (Lq(∂Ωε))m for any q>1
when n= 2. Therefore, the weak formulation is properly defined when fN is a function
in the space (Lp′(∂Ωε))m for p′>2.

Throughout this paper, we will assume that for any u∈(W1,2
D̃

(Ωε))m, we have Gårding’s
inequality

C1

∫
Ωε

|∇u|2dx≤
∫

Ωε

aαβ
ij (x)uα

i (x)uβ
j (x)dx+C2

∫
Ωε

|u|2dx. (2.13)

This inequality will be true if L satisfies certain ellipticity conditions and if we assume
certain smoothness conditions on the coefficients, such as uniform boundedness. In par-
ticular, we say that L satisfies a strong Legendre condition or a strong ellipticity condition if
there exists θ>0 so that

aαβ
ij (x)ξα

i ξ
β
j ≥ θ|ξ|2, ξ∈Rm×n, a.e. x∈Ωε. (2.14)

If L satisfies (2.14), then it is clear that Gårding’s inequality holds for any u∈(W1,2
D̃

(Ωε))m.
We also say that L satisfies the Legendre-Hadamard condition if there exists θ>0 so that

aαβ
ij (x)ξαξβψiψj ≥ θ|ξ|2|ψ|2, ξ∈Rm, ψ∈Rn, a.e. x∈Ωε. (2.15)

It is well-known that if L satisfies the Legendre-Hadamard condition with continuous co-
efficients in Ω, then Gårding’s inequality holds for any u ∈ (W1,2

D̃
(Ωε))m. Please see

Treves [21] for details.
The Lamé system is defined as Lu=−divζ(u), where ζ(u) denotes the stress tensor

ζ
β
j (u) := aαβ

ij uα
i .
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Here, the Lamé moduli υ(x) and µ(x) are given by

aαβ
ij (x)=υ(x)δiαδjβ+µ(x)δijδαβ+µ(x)δiβδjα, (2.16)

where δij is the Kronecker delta. The functions υ(x) and µ(x) are both assumed to be
bounded and measurable and satisfy the conditions

υ(x)≥0 µ(x)≥b>0.

Using Korn’s 1st Inequality as given in [22], it is easy to see that for the Lamé system,
Gårding’s inequality is satisfied for all u∈ (W1,2

D̃
(Ωε))m.

The aim of this paper is to relate eigenvalues and eigenfunctions on the unperturbed
domain to eigenvalues and approximated eigenfunctions on the perturbed domain. In
particular, we show that if an eigenfunction is in a certain class, the relationship to its
corresponding eigenvalue on Ωε is similar to the relationship between an eigenfunction
and corresponding eigenvalue on Ω0. That is, an eigenvalue on Ωε acts as an eigenvalue
on Ω0 and the approximated eigenfunction on Ωε acts as an eigenfunction on Ω0. These
relationships are illustrated in the main results of our work, namely Theorems 4.1 and
4.2.

3 A reverse Hölder estimate

A key ingredient in our work will involve the reverse Hölder argument introduced by
Gehring [23] and refined by Giaquinta and Modica [24, 25]. The proof of the following
Caccioppoli estimate is similar to the one given in Collins and Taylor [17], but some
modifications are needed since we have a boundary term. For any f ∈ (L1

loc(∂Ω))m and
r>0, define a local version of the Hardy-Littlewood maximal function Pr f : Ω→R by

Pr f (x) := sup
r>s>0

−
∫

∆s(x)
| f (y)|dσ(y).

Theorem 3.1. Let u be an eigenfunction with eigenvalue λ associated to the operator L. If fN is a
function in (L2(∂Ωε))m, there exists r̃ such that when r̃≥ r>0, x∈Ωε, and Sr =Sr(x), we have

−
∫

Sr(x)
|∇u|2dy≤C

(
−
∫

S4r(x)
|∇u| 2n

n+2 dy
) n+2

n

+C|λ|−
∫

S4r(x)
u2dy

+C−
∫

S4r(x)
P4r f 2

N dy+χ−
∫

S4r(x)

|∇u|2dy. (3.1)

Here, χ can be chosen to be any number less than one and C>0 depends on max
i,j,α,β

∥aαβ
ij ∥L∞(Ωε), n,

m, M, and the constants from (2.13). Moreover, r̃ depends on the choice of χ and the coefficients
aαβ

ij .
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Proof. Since there are 3 ellipticity conditions, there are 3 cases to consider. We note that
in Collins and Taylor [17, Theorem 3.1], all cases are proven with the exception of the
boundary term. Following along their proof by using the same procedure, for any fixed
constant χ< 1

2 , we may arrive at the inequality∫
Sr

|∇u|2dy≤ C
r2

∫
S2r

|u−ux,2r|2dy+C|λ|
∫

S2r

|u|2dy+χ
∫

S2r

|∇u|2dy

+C
∫

∆2r

| fN ||u−ux,2r|dσ(y). (3.2)

To deal with the boundary term, we choose any ρ>0 so that

C
∫

∆2r

| fN ||u−ux,2r|dσ(y)≤Cρ
∫

∆2r

| fN |2dσ(y)+
C
ρ

∫
∆2r

|u−ux,2r|2dσ(y). (3.3)

Next, apply the Poincaré inequality (2.8) to get

C
ρ

∫
∆2r

|u−ux,2r|2dσ(y)≤ Cr
ρ

(∫
S4r

|∇u|2dy
)

. (3.4)

Now divide both sides of (3.3) by |Sr| and use (3.4) to obtain

C
|Sr|

∫
∆2r

| fN ||u−ux,2r|dσ(y)≤ Cρ

|Sr|

∫
∆2r

| fN |2dσ(y)+
Cr

ρ|S4r|

∫
S4r(x)

|∇u|2dy. (3.5)

If we now choose ρ= Cr
χ we have that

C
|Sr|

∫
∆2r

| fN ||u−ux,2r|dσ(y)≤C−
∫

∆2r

| fN |2dσ(y)+χ−
∫

S4r

|∇u|2dy

≤CP2r f 2
N(x)+χ−

∫
S4r

|∇u|2dy≤C−
∫

S2r

P4r f 2
Ndy+χ−

∫
S4r

|∇u|2dy, (3.6)

where we have used [26, Lemma A.2.] on the last line. Now if we divide (3.2) by |Sr|,
apply the Sobolev-Poincaré inequality (2.5) to the first term on the right side, and use
(3.6), we obtain the result (3.1).

The next lemma taken from Ott and Brown [27] gives an Lq estimate on Pr f .

Lemma 3.1. Let p>1 and choose q so that 1≤q≤ pn
n−1 . If f ∈(Lp

loc(∂Ωε))m, then for any x∈∂Ω
and any 0< r< r0, we have(

−
∫

Sr(x)
|Pr f |q dy

) 1
q

≤C
(
−
∫

∆2r(x)
| f |p dσ

) 1
p

,

where C is a constant only depending on M and the dimension n.
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To prove the reverse Hölder estimate given in Theorem 3.3, we introduce the maximal
functions below and a theorem taken from [24].

Definition 3.1. Given f ∈ (L1
loc(R

n))m and a number R, we define the Hardy-Littlewood maxi-
mal functions by

M( f )(x) :=sup
r>0

−
∫

Br(x)
| f (y)| dy,

MR( f )(x) := sup
R>r>0

−
∫

Br(x)
| f (y)| dy.

Theorem 3.2. Let r > q > 1, and QR be a cube in Rn with sidelength R centered at 0. Also,
define d(x)= dist(x,∂QR). If f and g are measurable functions such that f ∈ (Lr(QR))

m, g∈
(Lq(QR))

m, f = g=0 outside QR, and with the added condition that

M d(x)
2
(|g|q)(x)≤bMq(g)(x)+M(| f |q)+aM(|g|q)(x)

for almost every x in QR where b≥0 and 0≤ a<1, then g∈ (Lp(Q R
2
))m, for p∈ [q,q+ϵ) and

(
−
∫

QR/2

|g|p(y) dy
) 1

p

≤C

[(
−
∫

QR

|g|q(y) dy
) 1

q

+

(
−
∫

QR

| f |p(y) dy
) 1

p
]

(3.7)

where ϵ and C depend on b,q,n,a and r.

We now state and prove the main theorem in this section.

Theorem 3.3. Let u be an eigenfunction with eigenvalue λ associated to the operator L. If fN is
a function in (Lp′(∂Ωε))m for p′>2 with fN =0 on D̃, then there exists p̃>2 so that

(
−
∫

Ωε

|∇u| p̃dy
)
≤C

(−∫
Ωε

|∇u|2dy
) p̃

2

+|λ|
p̃
2

(
−
∫

Ωε

|u| p̃dy
)+C

(
−
∫

Ñ
| fN | p̃dσ

)
. (3.8)

Here, p̃ and C depend on max
i,j,α,β

∥aαβ
ij ∥L∞(Ωε), n, m, M, and the constants from (2.13). Moreover, p̃

and C are independent of ε.

Proof. Now if u is an eigenfunction with eigenvalue λ, we have u ∈ (W1,2
D̃

(Ωε))m, and
thus we may employ the Sobolev inequality to get that |u| ∈ (Lt(Ωε))m for some t > 2.
We choose a cube QR, centered at 0, with sidelength R such that Ωε ⊂Q R

2
, uniformly in

ε. Using (3.1) and (3.7) by setting g= |∇u| 2n
n+2 , f =C

n
n+2 (|λ||u|2+(P4r f 2

N))
n

n+2 , q= n+2
n , and

u=0 outside QR, we obtain by a standard covering argument that(
−
∫

Ωε

|∇u|
2np
n+2 dy

) 1
p
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≤C

[(
−
∫

Ωε

|∇u|2dy
) n

n+2

+

(
−
∫

Ωε

(|λ||u|2+(P4r f 2
N))

np
n+2 dy

) 1
p
]

≤C

[(
−
∫

Ωε

|∇u|2dy
) n

n+2

+|λ| n
n+2

(
−
∫

Ωε

|u|
2np
n+2 dy

) 1
p

+

(
−
∫

Ωε

(P4r f 2
N)

np
n+2 dy

) 1
p
]

.

Here, n+2
n ≤ p≤ n+2

n +ϵ, and ϵ from Theorem 3.2 is independent of ε and any eigenvalue.
Now setting p̃= 2np

n+2 , and applying Lemma 3.1 with another covering argument, we have
the result.

4 Eigenvalue and eigenfunction analysis

In this section, we will look at estimates on the eigenvalues and corresponding eigen-
functions. Because of the nonhomogeneity of the Neumann boundary condition, there
is no reason to expect that we have a countable set of eigenvalues nor do we expect
that each eigenfunction is bounded or can even be integrated. However, if we only look
at eigenvalues contained in an interval which have corresponding eigenfunctions with
bounded L2 norms, then we can say a lot about the relationship between the eigenvalues
and eigenfunctions on different perturbations. For the remainder of the paper we assume
fN is a function in (Lp′(∂Ωε))m for p′>2 with fN=0 on D̃. We define the following space:

Definition 4.1. Let a,b∈R such that a< b. Given B>0, we define B(a,b,B,ε0) to be the space
of functions ϕ∈ (W1,2

D̃
(Ωε))m such that

i. There exists λ∈ [a,b] such that Lϕ=λϕ in Ωε in the weak sense for some ε≤ ε0.

ii.
1
B
≤

∫
Ωε

|ϕ(y)|2 dy≤B.

From this point, we denote an eigenvalue of L with respect to Ωε as λε and ϕε
λ as a corre-

sponding eigenfunction. The next lemma gives a uniform bound on the L p̃ norm of the
gradient of an eigenfunction. The proof uses the reverse Hölder estimate (3.8).

Lemma 4.1. If ϕε
λ ∈B(a,b,B,ε0), then

∥∇ϕε
λ∥L p̃(Ωε)

≤C. (4.1)

Here, p̃ > 2 is from (3.8) and C depends on |Ω0|, ∥ fN∥L p̃(N), max
i,j,α,β

∥aαβ
ij ∥L∞(Ωε), n, m, M,

max{|a|,|b|}, B, and the constants from (2.13). Moreover, C is independent of ε.

Proof. The reverse Hölder estimate (3.8) implies(∫
Ωε

|∇ϕε
λ| p̃dy

)
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≤C

(∫
Ωε

|∇ϕε
λ|2dy

) p̃
2

+|λε|
p̃
2

(∫
Ωε

|ϕε
λ| p̃dy

)+C
(∫

Ñ
| fN | p̃dσ

)
. (4.2)

Also, Gårding’s inequality (2.13) gives the estimate

C1

∫
Ωε

|∇ϕε
λ|2dy≤

∫
Ωε

aαβ
ij (ϕ

ε
λ)

α
i (ϕ

ε
λ)

β
j dy+C2

∫
Ωε

|ϕε
λ|2dy

=λε
∫

Ωε

|ϕε
λ|2dy+⟨ fN ,ϕε

λ⟩∂Ωε
+C2

∫
Ωε

|ϕε
λ|2dy

≤ (λε+C2)
∫

Ωε

|ϕε
λ|2dy+

C
ρ

∫
Ñ
| fN |2dσ+ρ

∫
∂Ωε

|ϕε
λ|2dσ,

where ρ> 0 is any constant. Therefore, applying the Poincaré estimate (2.4) on the last
term and choosing ρ appropriately, we obtain the estimate∫

Ωε

|∇ϕε
λ|2dy≤ 2

C1

[
(max{|a|,|b|}+C2)B+C∥ fN∥2

L2(Ñ)

]
=C. (4.3)

We next use the interpolation inequality(∫
Ωε

|ϕε
λ| p̃dy

) 1
p̃

≤
(∫

Ωε

|ϕε
λ|qdy

) 1−t
q
(∫

Ωε

|ϕε
λ|q

∗
dy

) t
q∗

, (4.4)

where t satisfies
1
p̃
=

1−t
q

+
t

q∗
,

and q∗ is the Sobolev conjugate of q ≤ 2. It follows from (4.3) and Sobolev’s inequality
that (∫

Ωε

|ϕε
λ| p̃dy

) 1
p̃

≤C. (4.5)

The inequalities (4.2), (4.3), and (4.5) now give the result.

Recall that the connections from Tε to Ωε are contained in ∆1
ε =Zε(p1)∩∂Ω0 and ∆2

ε =
Zε(p2)∩∂Ω0. Let S1

ε = Zε(p1)∩Ω0 and S2
ε = Zε(p2)∩Ω0. We define a cutoff function ηε :

Ωε→R to be such that 0≤η≤1, ηε=0 in Tε, ηε=1 outside S1
ε ∪S2

ε ∪Tε, and |∇ηε|≤ C
ε . The

next lemma states that the eigenfunction ϕε
λ may be approximated by the function ηεϕ

ε
λ

in L2.

Lemma 4.2. If ϕε
λ ∈B(a,b,B,ε0), then

∥ϕε
λ−ηεϕ

ε
λ∥L2(Ωε)≤Cε

d( p̃−2)
2p̃ . (4.6)

Here, p̃ > 2 is from (3.8) and C depends on |Ω0|, ∥ fN∥L p̃(N), max
i,j,α,β

∥aαβ
ij ∥L∞(Ωε), n, m, M,

max{|a|,|b|}, B, and the constants from (2.13). Moreover, C is independent of ε.
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Proof. Hölder’s inequality and Poincaré’s inequality (2.3) imply

∥ϕε
λ−ηεϕ

ε
λ∥2

L2(Ωε)
=
∫

Ωε

(1−ηε)
2|ϕε

λ|2dy=
∫

Tε∪S1
ε∪S2

ε

(1−ηε)
2|ϕε

λ|2dy

≤C∥∇ϕε
λ∥2

L p̃(Ωε)
|Tε∪S1

ε ∪S2
ε |

p̃−2
p̃ .

The estimate (4.6) now follows from (4.1) and (2.2).

We also may approximate the scalar product of 2 eigenfunctions as in the next lemma.

Lemma 4.3. If ϕε
λ1

,ϕε
λ2
∈B(a,b,B,ε0), then

∥ϕε
λ1
·ϕε

λ2
−(ηεϕ

ε
λ1
)·(ηεϕ

ε
λ2
)∥L1(Ωε)≤Cε

d( p̃−2)
p̃ . (4.7)

Here, p̃ > 2 is from (3.8) and C depends on |Ω0|, ∥ fN∥L p̃(N), max
i,j,α,β

∥aαβ
ij ∥L∞(Ωε), n, m, M,

max{|a|,|b|}, B, and the constants from (2.13). Moreover, C is independent of ε.

Proof. Hölder’s inequality implies

∥ϕε
λ1
·ϕε

λ2
−(ηεϕ

ε
λ1
)·(ηεϕ

ε
λ2
)∥L1(Ωε)

=
∫

Ωε

(1−η2
ε )|ϕε

λ1
·ϕε

λ2
|dy≤

∫
Tε∪S1

ε∪S2
ε

|ϕε
λ1
||ϕε

λ2
|dy

≤∥ϕε
λ1
∥L p̃(Ωε)

∥ϕε
λ2
∥L p̃(Ωε)

|Tε∪S1
ε ∪S2

ε |
p̃−2

p̃ .

Now Poincaré’s inequality (2.3), (4.1), and (2.2) give the result (4.7).

The next theorem states that eigenvalues, which are Rayleigh quotients of eigenfunc-
tions, may be approximated with Rayleigh quotients of approximated eigenfunctions on
Ω0. That is, λε acts as an eigenvalue on Ω0 with corresponding eigenfunction ηεϕ

ε
λ.

Theorem 4.1. Given ϕ=ϕε
λ∈B(a,b,B,ε0), there exists q>0 depending on n, p̃, and d such that

|R0(ηεϕ)−λε|≤Cεq. (4.8)

Here, C depends on |Ω0|, ∥ fN∥L p̃(N), max
i,j,α,β

∥aαβ
ij ∥L∞(Ωε), n, m, M, max{|a|,|b|}, B, and the

constants from (2.13). Moreover, C is independent of ε.

Proof. We have

R0(ηεϕ)−λε =
B0(ηεϕ,ηεϕ)−

∫
N

fNηεϕ dσ∫
Ω0

η2
ε |ϕ|2dy

−
Bε(ϕ,ϕ)−

∫
Ñ

fNϕ dσ∫
Ωε

|ϕ|2dy
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=R0(ηεϕ)

1−

∫
Ω0

η2
ε |ϕ|2dy∫

Ωε

|ϕ|2dy

+

B0(ηεϕ,ηεϕ)−Bε(ϕ,ϕ)∫
Ωε

|ϕ|2dy



+


∫

Ñ
fNϕ dσ−

∫
Ñ

fNηεϕ dσ∫
Ωε

|ϕ|2dy


=:R0(ηεϕ)I+II+III. (4.9)

Since I = (
∫

Ωε

|ϕ|2dy−
∫

Ω0

η2
ε |ϕ|2dy)/

∫
Ωε

|ϕ|2dy and ϕ ∈B(a,b,B,ε0), Lemma 4.3 im-

plies

|I|≤Cε
d( p̃−2)

p̃ . (4.10)

Following a similar argument from part of the proof of Lemma 4.2 in [17], we obtain

|II|≤Cε
d( p̃−2)

p̃ . (4.11)

Next from Hölder’s inequality, we have∫
Ñ

fNϕ dσ−
∫

Ñ
fNηεϕ dσ

≤
∫

Ñ
| fN ||ϕ|(1−ηε) dσ≤

∫
Ñ∩∆1

ε∩∆2
ε

| fN ||ϕ| dσ

≤C
(∫

Ñ∩∆1
ε∩∆2

ε

| fN | p̃+|ϕ| p̃ dσ

) 2
p̃

|Ñ∩∆1
ε ∩∆2

ε |
p̃−2

p̃ .

From the definition of ∆1
ε and ∆2

ε , we now apply the Poincaré estimate (2.4) and use (4.1)
to obtain ∫

Ñ
fNϕ dσ−

∫
Ñ

fNηεϕ dσ≤Cε
(n−1)( p̃−2)

p̃ .

Therefore since ϕ∈B(a,b,B,ε0),

|III|≤Cε
(n−1)( p̃−2)

p̃ . (4.12)

We also have that

R0(ηεϕ)=(II+III+λε)

∫
Ω0

|ϕ|2∫
Ωε

η2
ε |ϕ|2dy

.
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Thus if we choose ε so that Cε
d( p̃−2)

p̃ ≤ 1
2B , we may apply (4.7) to achieve

|R0(ηεϕ)|≤C
(

ε
d( p̃−2)

p̃ +ε
(n−1)( p̃−2)

p̃ +max{|a|,|b|}
)

2B2. (4.13)

It follows that (4.9)-(4.13) now give the estimate (4.8).

The next theorem says that ηεϕ
ε
λ acts as an eigenfunction on Ω0 with corresponding

eigenvalue λε.

Theorem 4.2. Given ϕ=ϕε
λ ∈B(a,b,B,ε0) and w∈ (W1,2

D (Ω0))m, we have that∣∣∣∣∫Ω0

aαβ
ij (ηεϕ)

α
i wβ

j dy−λε
∫

Ω0

(ηεϕ)
αwα dy−

∫
N

fNw dσ

∣∣∣∣
≤Cε

(n−1)( p̃−2)
2p̃ ∥w∥(W1,2

D (Ω0))m . (4.14)

Here, C depends on |Ω0|, ∥ fN∥L p̃(N), max
i,j,α,β

∥aαβ
ij ∥L∞(Ωε), n, m, M, max{|a|,|b|}, B, and the

constants from (2.13). Moreover, C is independent of ε.

Proof. We first note that since Ω0 is Lipschitz, we may extend w to Ew by even reflection
into Ωε such that ∥Ew∥(W1,2

D̃
(Ωε))m ≤C∥w∥(W1,2

D (Ω0))m . Such an extension is discussed in [20,

Appendix A]. With this in mind, we have∣∣∣∣∫Ω0

aαβ
ij (ηεϕ)

α
i wβ

j dy−λε
∫

Ω0

(ηεϕ)
αwα dy−

∫
N

fNw dσ

∣∣∣∣
≤
∣∣∣∣∫Ω0

aαβ
ij [(ηε)iϕ

αwβ
j −(ηε)jϕ

αwβ] dy
∣∣∣∣

+

∣∣∣∣∫Ωε

aαβ
ij ϕα

i (ηεEw)
β
j dy−λε

∫
Ωε

ϕα(ηεEw)α dy−
∫

Ñ
fNηεEw dσ

∣∣∣∣
+

∣∣∣∣∫Ñ
fNηεw dσ−

∫
N

fNw dσ

∣∣∣∣
=:|I|+|II|+|III|. (4.15)

First, we may use (2.7), Hölder’s inequality, and (4.1) to get

|I|≤C
ε
∥ϕ∥L2(S1

ε∪S2
ε )

(
∥∇w∥L2(S1

ε∪S2
ε )
+∥w∥L2(S1

ε∪S2
ε )

)
≤Cε

n( p̃−2)
2p̃ ∥∇ϕ∥L p̃(Ωε)

∥w∥(W1,2
D (Ω0))m

≤Cε
n( p̃−2)

2p̃ ∥w∥(W1,2
D (Ω0))m . (4.16)
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Also, since ϕ solves Lϕ=λεϕ,
II=0. (4.17)

Finally, by Hölder’s inequality and the Poincaré estimate (2.4),

III≤
∫

N∩∆1
ε∩∆2

ε

| fN ||w||ηε−1| dσ

≤
(∫

N∩∆1
ε∩∆2

ε

| fN | p̃ dσ

)1/ p̃(∫
N∩∆1

ε∩∆2
ε

|w|2 dσ

)1/2

|N∩∆1
ε ∩∆2

ε |
p̃−2
2p̃

≤ Cε
(n−1)( p̃−2)

2p̃ ∥w∥(W1,2
D (Ω0))m . (4.18)

The estimate (4.14) now follows from (4.15)-(4.18).

5 Conclusion

This paper adds to study of eigenvalue problems for systems on perturbed domains.
Some problems to consider in the future are below:

• Can we study problems with perturbations that have Neumann boundary data if
we impose more regularity on the domains?

• If we allow the perturbation to be less general, can we achieve more results?

• Can we allow our domains to satisfy a Robin type boundary condition?
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[1] Babuska I., Výborný R., Continuous dependence of eigenvalues on the domain. Czechoslovak
Math. J. 15 (1965), 169-178.

[2] Davies E. B., Eigenvalue stability bounds via weighted Sobolev spaces. Math Z. 214 (2)
(1993), 357-371.

[3] Pang M. M. H., Approximation of ground state eigenvalues and eigenfunctions of Dirichlet
Laplacians. Bull. Lond. Math. Soc. 29 (1997), 720-730.

[4] Chavel I., Feldman E. A., Spectra of manifolds with small Handles. Comment. Math. Helv. 56
(1) (1981), 83-102.
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