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Abstract. In this paper, we investigate the stability and convergence of a family of
implicit finite difference schemes in time and Galerkin finite element methods in
space for the numerical solution of the acoustic wave equation. The schemes cover
the classical explicit second-order leapfrog scheme and the fourth-order accurate
scheme in time obtained by the modified equation method. We derive general sta-
bility conditions for the family of implicit schemes covering some well-known CFL
conditions. Optimal error estimates are obtained. For sufficiently smooth solutions,
we demonstrate that the maximal error in the L2-norm error over a finite time inter-
val converges optimally as O(hp+1 + ∆ts), where p denotes the polynomial degree,
s=2 or 4, h the mesh size, and ∆t the time step.
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1 Introduction

The efficient and accurate numerical approximation of the wave equations involved
in modeling acoustic, elastic or electromagnetic wave propagation is of fundamen-
tal importance in many real-life problems. In geophysics, it helps for instance in the
interpretation of field data and to predict the damage patterns due to earthquakes.
Finite difference methods have been widely used for the simulation of time depen-
dent waves because of their simplicity and their efficiency on structured Cartesian
meshes [1, 9, 21, 33]. However, in the presence of heterogeneous media and complex
geometry or small geometric futures that require locally refined meshes, their useful-
ness is somewhat limited.
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Alternatively, finite element methods (FEMs) can easily handle complex geometry
and heterogeneous media, and it is easy to incorporate free surface boundary condi-
tions and nonmatching grids. They also have the advantage of local discretization
techniques using error indicators. Their extension to high order is straightforward,
even in the presence of curved boundaries or material interfaces. Attempts at wave
simulation using finite elements have used continuous Galerkin methods [3, 5, 8, 14,
15,24,30,31], discontinuous Galerkin methods [17,18,20,28], and mixed finite element
methods [11, 13, 16, 19].

In this paper, we are interested in the finite element approximation of the acoustic
wave equation

utt −∇ · (c2∇u) = f , in Ω × J, (1.1)

with boundary and initial conditions given by

u = 0, on ∂Ω × J, (1.2a)

u|t=0 = u0, in Ω, (1.2b)

ut|t=0 = v0, in Ω, (1.2c)

where J=(0, T) is a finite time interval, T>0, and Ω is a bounded, convex polygo-
nal domain in R2 or R3, with boundary ∂Ω. The (known) source term f (x, t) lies in
L2(J; L2(Ω)), while u0(x)∈H1

0(Ω) and v0(x)∈L2(Ω) are prescribed initial conditions.
We assume that the speed of propagation, c(x), is piecewise smooth and satisfies the
bounds

0 < cmin ≤ c(x) ≤ cmax < ∞, x ∈ Ω̄.

The standard weak formulation of problem (1.1)-(1.2c) is stated as follows:
find u∈L2(J; H1

0(Ω)), satisfying (1.2b) and (1.2c), with ut∈L2(J; L2(Ω)) and
utt∈L2(J; H−1(Ω)), such that

⟨utt, v⟩+ a(u, v) = ( f , v), ∀v ∈ H1
0(Ω), a.e. in J. (1.3)

Here, the time derivatives are understood in the sense of distributions, ⟨·, ·⟩ denotes
the duality pairing between H−1(Ω) and L2(Ω), (·, ·) is the usual inner product in
L2(Ω), and a(·, ·) is the elliptic bilinear form given by

a(u, v) = (c∇u, c∇v). (1.4)

Existence and uniqueness of a solution to the variational problem is proved, for in-
stance, in [23]. It is shown that the weak solution u is continuous in time; that is

u ∈ C0( J̄; H1
0(Ω)

)
, ut ∈ C0( J̄; L2(Ω)

)
.

This result implies in particular that the initial conditions (1.2b) and (1.2c) are well
defined; see Chapter 3 in [23] and Chapter 8 in [27] for more details. Additional reg-
ularity assumptions will be made throughout the paper to carry out the convergence
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analysis. We finally recall that because the bilinear form a(·, ·) is symmetric and coer-
cive, in the absence of forcing ( f≡0), the (continuous) energy

E(t) =
1
2
(ut, ut) +

1
2

a(u, u),

is conserved for all time.
A priori error estimates for continuous Galerkin approximations for problem (1.1)-

(1.2c) have been first derived by Dupont [14] using a standard energy argument. These
estimates were improved by Baker [3], who used a technique that can be interpreted as
a nonstandard energy arguments. Baker showed that optimal estimates for the error
can be obtained using L2-projections of the initial data as starting values, with min-
imal smoothness requirements on the exact solution. In [15], Gekeler analyzed gen-
eral multistep methods for the time discretization of second-order hyperbolic equa-
tions, with a Galerkin procedure in space. High-order accurate two-step approxima-
tions for second-order hyperbolic equations were derived in [4]. In [32], high-order
Taylor-Galerkin schemes combined with an adaptive h-p procedure were presented
for second-order hyperbolic problems.

Mixed finite element approximations to the acoustic wave equation have been con-
sidered in [11, 13, 16, 19]. In [16], Geveci derived L∞-in-time, L2-in-space error bounds
for the continuous-in-time mixed finite element approximations of velocity and stress.
In [11,13], a priori error estimates were obtained for the mixed finite element approxi-
mation of displacement requiring less regularity than was needed in [16]. Stability for
a family of discrete-in-time schemes was also demontratred in [11, 13]. In [19], an al-
ternative mixed finite element displacement formulation, that requires less regularity
on the displacement solution than the approach in [11, 13], was proposed.

Standard continuous (conforming) Galerkin methods generally impose significant
restrictions on the underlying mesh and discretization; in particular, they do not eas-
ily accomodate hanging nodes for local mesh refinement. In contrast, discontinuous
Galerkin (DG) methods offer greater flexibility in handling elements of various types
and shapes, irregular nonmatching grids, and even locally varying polynomial order.
The origin of the DG methods can be traced back to the 1970s, where they were pro-
posed for the numerical solution of hyperbolic neutron transport equations. Based
on discontinuous finite element spaces, DG methods weakly enforce continuity by
adding suitable bilinear forms, so-called numerical fluxes, to standard variational for-
mulations; see [6] for a review of the development of DG methods.

When applied to second-order hyperbolic problems, most DG methods reformu-
late the problem as a first-order hyperbolic system, for which various DG methods
are available [7, 25]. Recently, Rivière and Wheeler [28, 29] proposed a DG method for
the acoustic wave equation on its original second-order formulation. The method is
based on a nonsymmetric interior penalty formulation. In [18], a symmetric interior
penalty discontinuous Galerkin method was presented for the time dependent wave
equation. Optimal error bounds in the energy norm and in the L2-norm were derived
for the semidiscrete formulation. Recently, this error analysis was extended in [17]
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to the fully discrete numerical scheme, where a second-order scheme is used for the
time discretization. The aim of this paper is to extend the results of Grote et al. [17]
to the case of implicit time integration. Precisely, we investigate the stability and con-
vergence of a family of implicit finite difference schemes in time and DG methods in
space for the wave problem. Stability results and detailed error estimates are obtained.

The paper is organized as follows. In Section 2, we briefly review the discontin-
uous Galerkin finite element approach. We introduce the time-stepping procedure
and derive a family of fully discrete schemes. Stability analysis of the fully discrete
schemes is presented in Section 3. In Section 4, we state a priori error estimates which
are optimal in both time and space. Concluding remarks are presented in the last
section.

2 Fully discrete Galerkin schemes for the wave equation

We shall first discretize (1.1)-(1.2c) in space by using a discontinuous Galerkin dis-
cretization, while leaving time continuous. We will consider the symmetric interior
penalty method presented in [18] as an example of a discontinuous Galerkin method.
Standard notations from the finite element theory will be used. We consider regular
and quasi-uniform meshes Th={K} that partition the domain Ω into disjoint elements
{K}, such that

Ω̄ = ∪K∈Th K̄.

The elements are assumed to be triangles in two space dimensions and tetrahedra in
three space dimensions. The diameter of element K is denoted by hk and the mesh
size, h, is given by

h = max
K∈Th

hK.

The analysis carries out for quadrilaterals in two space dimensions and hexaedra in
three space dimensions as well.

2.1 Discontinuous Galerkin formulation

We briefly review the symmetric interior penalty DG formulation from [2] and [18].
For a given partition Th of Ω and an approximation of order p≥1, we define the dis-
continuous Galerkin finite element space

Vh =
{

v ∈ L2(Ω) : v|K ∈ Pp(K), ∀K ∈ Th
}

, (2.1)

where Pp(K) is the set of polynomials of total degree at most p on K. Then, we con-
sider the following semidiscrete discontinuous Galerkin approximation of (1.1)-(1.2c):
find uh : J̄ × Vh→R, such that

(uhtt, v) + ah(uh, v) = ( f , v), ∀v ∈ Vh, t ∈ J, (2.2a)

uh|t=0 = Phu0, (2.2b)

uht|t=0 = Phv0, (2.2c)
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where Ph denotes the L2-projection onto Vh. The discrete bilinear form ah is the stan-
dard symmetric interior penalty form for the Laplacian given by

ah(u, v) = ∑
K∈Th

∫
K

c2∇u · ∇vdx − ∑
F∈Fh

∫
F
[[u]] · {{c2∇v}}ds (2.3)

− ∑
F∈Fh

∫
F
[[v]] · {{c2∇u}}ds + ∑

F∈Fh

γh−1
F

∫
F

c2[[v]] · [[u]]ds.

The last three terms in (2.3) correspond to jump and flux terms at element boundaries,
with hF denoting the diameter of the edge or the face F; see [18] for further details.
The parameter γ>0 is the interior penalty stabilization parameter that has to be cho-
sen sufficiently large, independent of the mesh size. The bilinear form ah is clearly
symmetric:

ah(u, v) = ah(v, u).

The key properties of the bilinear form ah are given in [2]. If we consider the broken
norm

|||u|||2 = ∑
K∈Th

||∇u||20,K + ∑
K∈Th

h2
K||D2u||20,K + ∑

F∈Fh

h−1
K ||[[u]]||20,F,

where D2u denotes the matrix of the second derivatives of u, then there exists a thresh-
old value γ0>0, independent of the mesh size, such that for γ≥γ0 there holds

ah(u, u) ≥ CC|||u|||2, ∀u ∈ Vh, (2.4)

with a coercivity constant CC>0 independent of the mesh size. Moreover, we have

|ah(u, v)| ≤ CAc2
max max{1, γ}|||u||| |||v|||, ∀u, v ∈ H2(Ω) + Vh,

with a continuity constant CA>0 independent of the mesh size, c2 and γ. Finally, the
following spectral estimate will play a crucial role in our analysis: for quasi-uniform
meshes Th, there holds

ah(u, u) ≤ Mγh−2||u||20, ∀u ∈ Vh, (2.5)

where || · ||0 is the standard norm on L2(Ω) and

Mγ = CSc2
max max{1, γ},

with CS>0 a constant independent of the mesh size, c2 and γ. Inequality (2.5) results
from the fact that, for quasi-uniform meshes, the following inequality

|||u|||2 ≤ CCAc2
max max{1, γ}h−2||u||20,

holds, with a constant C>0 independent of the mesh size, c2 and γ; see [17].
Our analysis will be based on the four key assumptions on the bilinear form ah:

symmetry, continuity, coercivity, and adjoint-consistency in the sense of [2]. Hence, it
immediately extends to other spatial DG finite element methods as long as these four
assumptions on ah hold.
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2.2 Time discretization

We now describe the time discretization procedure applied to the semidiscrete prob-
lem (2.2a)-(2.2c) and formulate the fully discrete Galerkin finite element scheme. Sta-
bility and convergence will be analyzed in the next sections. We first introduce the
following notations. Let ∆t=T/N be the time step, where N is a positive integer, and
define the discrete times tn=n∆t, for n=0, · · · , N. For any function v of time, let vn

denote v(tn). We shall use this notation for functions defined for all times as well as
those defined only at discrete times.

For the time discretization, the simplest scheme consists of using the classical
leapfrog scheme with three time levels. The fully discrete numerical solution to the
wave equation (1.1)-(1.2c) is then defined by finding the sequence {Un}N

n=0 in Vh such
that

(∂̄ttUn, v) + ah(Un, v) = ( f n, v), ∀v ∈ Vh, n = 1, · · · , N − 1, (2.6)

where

∂̄ttUn =
Un+1 − 2Un + Un−1

∆t2 .

This scheme yields a second-order accuracy with respect to ∆t which is generally
not sufficient for a higher-order finite element method. As a stability constraint, the
scheme requires to choose

∆t = O(h).

To overcome this stability restriction, one can use a local time-stepping scheme allow-
ing small time steps precisely where small elements in the mesh are located; see for
instance [12] and the references therein. However, to preserve the accuracy provided
by the space discretization, one must use higher-order schemes with respect to time.
A convenient scheme can be obtained by using the so-called modified equation ap-
proach [9, 10, 33]. Such a scheme can be seen as an appropriate modification of the
leapfrog scheme (2.6) constructed by looking at the truncation error associated with
the leapfrog scheme.

In this paper, we define the discrete time Galerkin approximation to be a sequence
{Un}N

n=0 in Vh, such that

(∂̄ttUn, v) + ah(Un;θ , v) = ( f n;θ , v), ∀v ∈ Vh, n = 1, · · · , N − 1, (2.7)

where
Un;θ = θUn+1 + (1 − 2θ)Un + θUn−1,

f n;θ is analogously defined, and θ is a parameter to be chosen in [0, 0.5] so that the
weights used in the expression of Un;θ are nonnegative. The same one-parameter
scheme has been considered in [21, 22] in the context of finite difference methods in
space. We remark that (2.7) is implicit if θ ̸=0. The case θ=0 corresponds to the explicit
leapfrog scheme (2.6). The fourth-order accurate scheme in time derived by the mod-
ified equation approach turns out to be a special case of (2.7) obtained with θ=1/12;
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see [21]. The time-stepping algorithm (2.7) and its influence on temporal dispersion
and dissipation have been analyzed in the literature (see, e.g., [8, 9, 21]). It is found
in [21] that the implicit procedure results in less dispersive solutions than the explicit
one, which is advantageous for the numerical solution in very oscillatory media. Sim-
ilar observations have been made, for instance, in [8, 9].

The three-level scheme (2.7) requires appropriate initial conditions U0∈Vh and
U1∈Vh. We select the initial condition U0 to be the L2-projection of u0 onto Vh,

U0 = Phu0,

and we define the fictitious value U−1 satisfying

U1 − U−1

2∆t
= Phv0.

By considering (2.7) with n=0, we obtain(
2∆t−2(U1 − U0), v

)
+ 2θah(U1 − U0, v)

=2∆t−1(Phv0, v) + 2∆tθah(Phv0, v)− ah(U0, v) +
(

f 0;θ , v
)
. (2.8)

We remark that
f 0;θ = f 0 + θ( f 1 − 2 f 0 + f−1).

So, formally we can write

f 0;θ = f 0 + θ∆t2 f 0
tt +O(∆t4).

Substituting the expression for f 0;θ into (2.8), multiplying by ∆t2/2, and dropping
high-order terms in ∆t, we obtain

(
U1 − U0, v

)
+ ∆t2θah(U1 − U0, v) = ∆t(v0, v) +

∆t2

2
(Ũ0, v), (2.9)

where Ũ0∈Vh is defined by

(Ũ0, v) = ( f 0, v)− ah(u0, v), ∀v ∈ Vh. (2.10)

From the consistency of the method, it is clear that Ũ0 is the L2-projection of u0
tt onto

Vh.
For the special case θ=1/12, a higher-order approximation to the fictitious value

U−1 has to be considered. Assuming the exact solution has enough regularity, we
define U−1 as follows

U1 − U−1

2∆t
= Phv0 +

∆t2

6
Phu0

ttt.
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Considering (2.7) with n=0, performing calculations similar to the previous case, and
dropping high-order terms in ∆t, we then define U1∈Vh by requiring that(

U1 − U0, v
)
+

∆t2

12
ah(U1 − U0, v)

=∆t(v0, v) +
∆t2

2
(Ũ0, v)− ∆t3

12
ah(v0, v) +

∆t3

6
( f 0

t , v) +
∆t4

24
( f 0

tt, v), (2.11)

for all v∈Vh, where Ũ0 was previously defined. One has to notice that in the derivation
of (2.11) we substituted the term ah(Phv0, v) by ah(v0, v).

The fully discrete problem is now defined by (2.7) and (2.9) if θ ̸=1/12 and by (2.7)
and (2.11) for θ=1/12. In each case, the solution of a Galerkin elliptic problem is
required to start the time-stepping procedure using (2.7).

Existence and uniqueness of the numerical approximations are given in the fol-
lowing proposition.

Proposition 1. The fully discrete approximations {Un}N
n=0 are uniquely defined in Vh by

(2.7) and (2.9) if θ ̸=1/12 and by (2.7) and (2.11) for θ=1/12.

Proof. Clearly U0 and U1 are uniquely defined in Vh for any θ. By noticing that

Un;θ = Un + θ∆t2∂̄ttUn, (2.12)

and setting
Qn = ∂̄ttUn,

we deduce that Qn satisfies

ch(Qn, v) = ln(v), ∀v ∈ Vh, n ≥ 2,

where ch is the bilinear form given by

ch(u, v) = (u, v) + θ∆t2ah(u, v), ∀u, v ∈ Vh,

and ln is the linear operator given by

ln(v) = ( f n;θ , v)− ah(Un, v), ∀v ∈ Vh.

Clearly, the operator ln is continuous and the bilinear form ch is coercive on Vh. Hence,
Qn exists uniquely in Vh for each n=1, · · · , N − 1, which implies that Un+1 is uniquely
defined in Vh for n=1, · · · , N − 1. �

A general class of time discretization methods well-known in the engineering liter-
ature is given by the so-called Newmark scheme [26], which has been used extensively
in applications. The resulting fully discrete scheme is given by

(∂̄ttUn, v) + ah(Un,θ,γ, v) = ( f n,θ,γ, v), ∀v ∈ Vh, n = 1, · · · , N − 1, (2.13)

where

Un,θ,γ = θUn+1 +
(1

2
− 2θ + γ

)
Un +

(1
2
+ θ − γ

)
Un−1,

and γ≥0 is a free parameter. The scheme reduces to (2.7) if γ=1/2 and is only first-
order accurate when γ ̸=1/2.
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3 Stability analysis

In this section, we introduce further notations and investigate the stability of the fully
discrete scheme (2.7) in the absence of forcing. We let

vn+ 1
2 =

vn+1 + vn

2
,

and define the following terms for the discrete temporal derivatives:

∂̄tvn =
vn+1 − vn−1

2∆t
, ∂̄−t vn =

vn − vn−1

∆t
, ∂̄+t =

vn+1 − vn

∆t
.

We easily see that

∂̄tvn =
∂̄+t vn + ∂̄−t vn

2
=

vn+ 1
2 − vn− 1

2

∆t
, ∂̄ttvn =

∂̄+t vn − ∂̄−t vn

∆t
.

The following stability result holds.

Theorem 1. The fully discrete scheme (2.7) is stable if

∆t2
(1

4
− θ

)
sup

v∈Vh\{0}

ah(v, v)
(v, v)

≤ 1, (3.1)

and conserves the discrete energy

En+ 1
2

h =
1
2

[
(∂̄+t Un, ∂̄+t Un) + ∆t2

(
θ − 1

4

)
ah(∂̄

+
t Un, ∂̄+t Un)

+ ah
(
Un+ 1

2 , Un+ 1
2
)]

. (3.2)

The scheme is unconditionally stable when θ≥1/4.

Proof. By using (2.12), we first rewrite (2.7) in the following form

(∂̄ttUn, v) + ∆t2θah(∂̄ttUn, v) + ah(Un, v) = 0, ∀v ∈ Vh. (3.3)

By noticing that

Un +
∆t2

4
∂̄ttUn =

1
2
(
Un+ 1

2 + Un− 1
2
)
,

we rearrange (3.3) as

(∂̄ttUn, v) + ∆t2
(

θ − 1
4

)
ah(∂̄ttUn, v) +

1
2

ah
(
Un+ 1

2 + Un− 1
2 , v

)
= 0.

Now we choose ∂̄tUn as a test function for the previous equation to have

(∂̄ttUn, ∂̄tUn) + ∆t2
(

θ − 1
4

)
ah(∂̄ttUn, ∂̄tUn)

+
1
2

ah(Un+ 1
2 + Un− 1

2 , ∂̄tUn) = 0. (3.4)
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We next examine the three main terms in (3.4). We have

(∂̄ttUn, ∂̄tUn) =
1

2∆t
(∂̄+t Un − ∂̄−t Un, ∂̄+t Un + ∂̄−t Un)

=
1

2∆t
[
(∂̄+t Un, ∂̄+t Un)− (∂̄−t Un, ∂̄−t Un)

]
,

and similarly

ah(∂̄ttUn, ∂̄tUn) =
1

2∆t
[
ah(∂̄

+
t Un, ∂̄+t Un)− ah(∂̄

−
t Un, ∂̄−t Un)

]
.

The last term is

ah
(
Un+ 1

2 + Un− 1
2 , ∂̄tUn) = 1

∆t
ah
(
Un+ 1

2 + Un− 1
2 , Un+ 1

2 − Un− 1
2
)

=
1

∆t
[
ah
(
Un+ 1

2 , Un+ 1
2 )− ah(Un− 1

2 , Un− 1
2
)]

.

If En+ 1
2

h is the discrete energy defined by (3.2), then (3.4) is equivalent to

1
∆t

(
En+ 1

2
h − En− 1

2
h

)
= 0.

That is, the scheme conserves the discrete energy En+ 1
2

h , which guarantees stability if

and only if En+ 1
2

h is positive semidefinite. A sufficient condition for En+ 1
2

h to be positive
semidefinite is that the bilinear form

c(u, v) := (u, v) + ∆t2
(

θ − 1
4

)
ah(u, v),

is positive semidefinite on Vh, that is

(v, v) + ∆t2
(

θ − 1
4

)
ah(v, v) ≥ 0, ∀v ∈ Vh. (3.5)

It is easy to verify that (3.5) is equivalent to condition (3.1) in the theorem, which
completes the proof. �

Remark 3.1. Let Ãh denote the bounded operator on Vh associated with the bilinear
form ah(·, ·) and the inner product (·, ·):

(Ãhu, v) = ah(u, v), ∀u, v ∈ Vh.

The norm of the operator Ãh is defined by

||Ãh|| = sup
v∈Vh\{0}

ah(v, v)
(v, v)

.
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Hence, (3.1) can be written as

∆t2
(1

4
− θ

)
||Ãh|| ≤ 1. (3.6)

For θ=0, we then recover the well-known CFL condition of the leapfrog scheme
(see [10])

∆t2 ||Ãh||
4

≤ 1.

For θ=1/12, the stability condition reads

∆t2 ||Ãh||
6

≤ 1.

It is clear from (3.6) that, among all θ in the interval [0, 1/4), the leapfrog scheme has
the most restrictive stability condition. For θ≥1/4 the scheme becomes uncondition-
ally stable. The time truncation is minimized over this class by taking θ=1/4. This
latter case is particularly interesting because the form of the discrete energy it yields
is similar to that of the continuous problem.

4 Convergence analysis

In this section, we state our main results: optimal a priori error estimates for the fully
discrete finite element schemes (2.7)-(2.9) and (2.7)-(2.11). Some of the techniques used
in the proofs can be found in previous works [3,13] and in the recent work [17] where
the special case θ=0 has been considered. For u∈H2(Ω), the elliptic projection Πhu of
u onto Vh is defined by requiring that

ah(Πhu, v) = ah(u, v), ∀v ∈ Vh. (4.1)

We begin by recalling the main estimate that we shall use in our analysis: If
u∈Hp+1(Ω), p≥1 is the polynomial degree, then we have

||u − Πhu||0 ≤ Chp+1||u||p+1, (4.2)

where C>0 is a constant independent of the mesh size [17] and || · ||s denotes the
standard Sobolev norm on Hs(Ω). Moreover, since the operators ∂i

t and Πh commute,
there follows from (4.2) that

||∂i
t(u − Πhu)||0 ≤ Chp+1||∂i

tu||p+1, (4.3)

if ∂i
tu∈Hp+1(Ω).
In order to estimate the errors in the finite element approximations, we define the

auxiliary functions

ωn = Πhun, ϕn = ωn − Un, ηn = un − ωn,
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so that the error en at time tn,
en = un − Un,

can be written as
en = ϕn + ηn. (4.4)

We also define rn∈Vh by

(rn, v) = (∂̄ttω
n − un;θ

tt , v), ∀v ∈ Vh, n ≥ 1,

where

un;θ
tt = θun−1

tt + (1 − 2θ)un
tt + θun+1

tt ,
and

(r0, v) = ∆t−2(ϕ1 − ϕ0, v) + θah(ϕ
1 − ϕ0, v), ∀v ∈ Vh, n = 0.

We finally set

Rn = ∆t
n

∑
m=0

rm.

We suppose that the mesh size h and the time step ∆t satisfy the CFL condition

∆t2

h2

(1
4
− θ

)
<

1
Mγ

, (4.5)

where Mγ is given by (2.5). This CFL condition will naturally arise in the proofs of
the next results. We also assume that the solution u to the wave problem (1.1)-(1.2c)
satisfies the regularity properties

u ∈ C2( J̄; Hp+1(Ω)
)
, ∂3

t u ∈ C
(

J̄; L2(Ω)
)
, ∂4

t u ∈ L1(J; L2(Ω)
)
. (4.6)

For the error analysis with θ=1/12, we further require that

u ∈ C2( J̄; Hp+1(Ω)
)
, ∂5

t u ∈ C
(

J̄; L2(Ω)
)
, ∂6

t u ∈ L1(J; L2(Ω)
)
. (4.7)

We notice that under the regularity assumptions (4.6), the exact solution u to the wave
problem satisfies

(utt, v) + ah(u, v) = ( f , v), ∀v ∈ Vh, t ∈ J. (4.8)

This follows from the consistency of the bilinear form ah (cf [2], Sec. 3.3). Now, we
have the following error bound.

Proposition 2. Assume that the CFL condition (4.5) holds. Then we have

N
max
n=0

||en||0 ≤ C
(
||e0||0 +

N
max
n=0

||ηn||0 + ∆t
N−1

∑
n=0

||Rn||0
)

,

with a constant C>0 independent of h, ∆t and T.
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Proof. By the triangle inequality, we have that

N
max
n=0

||en||0 ≤ N
max
n=0

||ϕn||0 +
N

max
n=0

||ηn||0, (4.9)

and so we need to further bound
N

max
n=0

||ϕn||0. First, we notice that u satisfies

(un;θ
tt , v) + ah(un;θ , v) = ( f n;θ , v), ∀v ∈ Vh, n = 1, · · · , N − 1. (4.10)

To see this, average (4.8) at time tn+1, tn and tn−1 with weights θ, 1 − 2θ and θ, respec-
tively. We next subtract (2.7) from (4.10) and conclude that

(un;θ
tt − ∂̄ttω

n + ∂̄ttω
n − ∂̄ttUn, v) + ah(un;θ − ωn;θ + ωn;θ − Un;θ , v) = 0, (4.11)

for all v∈Vh and n=1, · · · , N − 1. Since

ah(un;θ − ωn;θ , v) = 0,

by the definition of the elliptic projection, we have that

(∂̄ttϕ
n, v) + ah(ϕ

n;θ , v) = (rn, v),

which can be rearranged in the form

(∂̄ttϕ
n, v) + ∆t2

(
θ − 1

4

)
ah(∂̄ttϕ

n, v) +
1
2

ah(ϕ
n+ 1

2 + ϕn− 1
2 , v) = (rn, v), (4.12)

for all v∈Vh and n= 1, · · · , N − 1.
Summing over time levels from n=1 to n=m, multiplying by ∆t and taking into

account cancelation, we readily obtain(ϕm+1 − ϕm

∆t
, v)−

(ϕ1 − ϕ0

∆t
, v
)
+ ∆t2

(
θ − 1

4

)
ah

(ϕm+1 − ϕm

∆t
, v
)

− ∆t2
(

θ − 1
4

)
ah

(ϕ1 − ϕ0

∆t
, v
)
+

∆t
2

m

∑
n=1

ah
(
ϕn+ 1

2 + ϕn− 1
2 , v

)
= ∆t

m

∑
n=1

(rn, v).

Upon defining

Φ0 = −1
2

ϕ0, Φm = −1
2

ϕ0 +
m−1

∑
n=0

ϕn+ 1
2 , (4.13)

we verify that

m

∑
n=1

ϕn+ 1
2 +

m

∑
n=1

ϕn− 1
2 +

1
2
(ϕ1 − ϕ0) = Φm+1 + Φm,
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and hence we have after rearrangements(ϕm+1 − ϕm

∆t
, v
)
+ ∆t2

(
θ − 1

4

)
ah

(ϕm+1 − ϕm

∆t
, v
)
+

∆t
2

ah(Φ
m+1 + Φm, v) = (Rm, v),

for all v∈Vh and 0≤m≤N − 1. We now choose

v = ϕm+1 + ϕm = 2
(
Φm+1 − Φm),

as a test function for the previous equation and multiply the resulting expression by
∆t. This results in

||ϕm+1||20 − ||ϕm||20 + ∆t2
(

θ − 1
4

)
ah(ϕ

m+1, ϕm+1)− ∆t2
(

θ − 1
4

)
ah(ϕ

m, ϕm)

+ ∆t2ah(Φm+1, Φm+1)− ∆t2ah(Φm, Φm) = ∆t(Rm, ϕm+1 + ϕm),

for 0≤m≤N − 1. Summation from m=0 to m=n − 1, for 1≤n≤ N, yields

||ϕn||20 − ||ϕ0||20 + ∆t2
(

θ − 1
4

)
ah(ϕ

n, ϕn)− ∆t2
(

θ − 1
4

)
ah(ϕ

0, ϕ0)

+ ∆t2ah(Φn, Φn)− ∆t2ah(Φ0, Φ0) = ∆t
n−1

∑
m=0

(Rm, ϕm+1 + ϕm).

Taking into account (4.13), we deduce that, for 1≤n≤ N,

||ϕn||20 + ∆t2
(

θ − 1
4

)
ah(ϕ

n, ϕn)

≤||ϕ0||20 + ∆t2θah(ϕ
0, ϕ0) + ∆t

n−1

∑
m=0

(Rm, ϕm+1 + ϕm).

If the CFL condition (4.5) holds, then we have

C̃||ϕn||20 ≤ (1 + θ∆t2h−2Mγ)||ϕ0||20 + ∆t
n−1

∑
m=0

(Rm, ϕm+1 + ϕm), (4.14)

where

C̃ = 1 − ∆t2

h2

(1
4
− θ

)
Mγ > 0.

From (4.14), we can now derive the following bound

N
max
n=0

||ϕn||0 ≤
[2(1 + θ∆t2h−2Mγ)

C̃

] 1
2 ||ϕ0||0 +

2∆t
C̃

N−1

∑
n=0

||Rn||0, (4.15)

based on arguments similar to those presented in [3] and [17]. The desired estimate in
the proposition follows now from (4.9), (4.15) and the fact that

||ϕ0||0 ≤ ||e0||0 + ||η0||0,
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which completes the proof. �
Now, we wish to bound the terms ||Rn||0 on the right-hand side of the inequality

in Proposition 2. To that end, we first estimate the L2-norms of the functions rn. We
distinguish the cases n=0 and n≥1. The corresponding results are given in Lemma 1
and Lemma 2, respectively.

Lemma 1. There holds

||r0||0 ≤ C
(

∆t−1hp+1||ut||C( J̄;Hp+1(Ω)) + ∆t||uttt||C( J̄;L2(Ω)) + ∆t|| ft||C( J̄;L2(Ω))

)
,

if θ ̸= 1/12, and

||r0||0 ≤ C
(

∆t−1hp+1||ut||C( J̄;Hp+1(Ω)) + ∆t3||∂5
t u||C( J̄;L2(Ω)) + ∆t3|| fttt||C( J̄;L2(Ω))

)
,

if θ=1/12, with a constant C>0 independent of h, ∆t and T in each case.

Proof. We recall that r0 is defined by

(r0, v) = ∆t−2(ϕ1 − ϕ0, v) + θah(ϕ
1 − ϕ0, v), ∀v ∈ Vh. (4.16)

We have

(ϕ1 − ϕ0, v)

=(ω1 − U1, v)− (ω0 − U0, v)

=(ω1 − u1, v) + (u1 − U1, v)− (ω0 − u0, v)− (u0 − U0, v)

=((Πh − I)(u1 − u0), v) + (u1 − u0, v)− (U1 − U0, v), (4.17)

ah(ϕ
1 − ϕ0, v)

=ah(ω
1 − U1, v)− ah(ω

0 − U0, v)

=ah(ω
1 − u1, v) + ah(u1 − U1, v)− ah(ω

0 − u0, v)− ah(u0 − U0, v)

=ah(u1 − u0, v)− ah(U1 − U0, v), (4.18)

where we have used that

ah(ω
1 − u1, v) = ah(Πhu1 − u1, v) = 0, ah(ω

0 − u0, v) = ah(Πhu0 − u0, v) = 0.

From Taylor’s formula with integral remainder, we have

u1 = u0 + ∆tv0 +
∆t2

2
u0

tt +
1
2

∫ t1

0
(∆t − s)2uttt(·, s)ds. (4.19)

If we consider (4.8) with n=0 and n=1, and subtract the resulting equations, we get

(u1
tt − u0

tt, v) + ah(u1 − u0, v) = ( f 1 − f 0, v), ∀v ∈ Vh. (4.20)
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Using (4.19) and (4.20), we readily obtain

(u1 − u0, v) + θ∆t2ah(u1 − u0, v)

=∆t(v0, v) +
∆t2

2
(u0

tt, v) + θ∆t2( f 1 − f 0, v)− θ∆t2(u1
tt − u0

tt, v)

+
1
2

∫ t1

0
(∆t − s)2(uttt(·, s), v)ds. (4.21)

Recall that U1 is the solution of the Galerkin elliptic problem

(U1 − U0, v) + ∆t2θah(U1 − U0, v) = ∆t(v0, v) +
∆t2

2
(Ũ0, v), ∀v ∈ Vh. (4.22)

Subtracting (4.22) from (4.21) and taking into account (2.10) yields

∆t2(r0, v) =
(
(Πh − I)(u1 − u0), v

)
− θ∆t2(u1

tt − u0
tt, v)

+ θ∆t2( f 1 − f 0, v) +
1
2

∫ t1

0
(∆t − s)2(uttt(·, s), v)ds. (4.23)

We now estimate the terms on the right-hand side of (4.23). To bound the first term
((Πh − I)(u1 − u0), v), we use standard arguments; see for instance [17]. We have

|((Πh − I)(u1 − u0), v)| ≤
∫ t1

0
|(∂t(Πh − I)u, v)|dt =

∫ t1

0
|((Πh − I)ut, v)|dt,

and thanks to (4.3), we derive the bound

|((Πh − I)(u1 − u0), v)| ≤ C∆thp+1||ut||C( J̄;Hp+1(Ω))||v||0. (4.24)

Next, we have the following bounds which are easy to verify,

|( f 1 − f0, v)| ≤
∫ t1

0
|( ft(·, s), v)|ds ≤ ∆t|| ft||C( J̄;L2(Ω))||v||0,

|(u1
tt − u0

tt, v)| ≤
∫ t1

0
|(uttt(·, s), v)|ds ≤ ∆t||uttt||C( J̄;L2(Ω))||v||0,

and ∣∣∣ ∫ t1

0
(∆t − s)2(uttt(·, s), v)ds

∣∣∣ ≤∆t2
∫ t1

0
|(uttt(·, s), v)| ds

≤∆t3||uttt||C( J̄;L2(Ω))||v||0.

Since r0∈Vh, referring to (4.23), (4.24) and the three previous bounds, we conclude that

∆t2||r0||0 ≤C∆thp+1||ut||C( J̄;Hp+1(Ω)) + ∆t3
(

θ +
1
2

)
||uttt||C( J̄;L2(Ω))

+ θ∆t3|| ft||C( J̄;L2(Ω)). (4.25)
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Dividing (4.25) by ∆t2 yields the desired estimate for ||r0||0.
For the case with θ=1/12, we make use of the higher-order Taylor’s formula

u1 = u0 + ∆tv0 +
∆t2

2
u0

tt + 2θ∆t3u0
ttt +

θ

2
∆t4u0

tttt +
1
24

∫ t1

0
(∆t − s)4∂5

t u(·, s)ds,

which combined with (4.20) gives

(u1 − u0, v) + θ∆t2ah(u1 − u0, v)

=∆t(v0, v) +
∆t2

2
(u0

tt, v) + 2θ∆t3(u0
ttt, v)

+ θ∆t2( f1 − f 0, v)− θ∆t2ah(u1
tt − u0

tt, v)

+
θ

2
∆t4(u0

tttt, v) +
θ

2

∫ t1

0
(∆t − s)4(∂5

t u(·, s), v)ds.

Using the fact that

u1
tt = u0

tt + ∆tu0
ttt +

∆t2

2
u0

tttt +
1
2

∫ t1

0
(∆t − s)2∂5

t u(·, s)ds,

we have

(u1 − u0, v) + θ∆t2ah(u1 − u0, v)

=∆t(v0, v) +
∆t2

2
(u0

tt, v) + θ∆t3(u0
ttt, v) +

θ

2

∫ t1

0
(∆t − s)4(∂5

t u(·, s), v)ds

− θ

2
∆t2

∫ t1

0
(∆t − s)2(∂5

t u(·, s), v)ds + θ∆t2( f1 − f 0, v). (4.26)

If we differentiate (4.8) with respect to t and consider the resulting equation with n=0,
we obtain

ah(u0
t , v) = ( f 0

t , v)− (u0
ttt, v). (4.27)

Subtracting (2.11) from (4.26) and taking into account (4.27) shows that

∆t2(r0, v) =((Πh − I)(u1 − u0), v) + θ∆t2
(

f 1 − f0 − ∆t f 0
t − ∆t2

2
f 0
tt, v

)
+

θ

2

∫ t1

0
(∆t − s)4(∂5

t u(·, s), v)ds − θ

2
∆t2

∫ t1

0
(∆t − s)2(∂5

t u(·, s), v)ds. (4.28)

By noticing that∣∣∣( f 1 − f0 − ∆t f 0
t − ∆t2

2
f 0
tt, v

)∣∣∣ ≤∆t2

2

∫ t1

0
|( fttt(·, s), v)|ds

≤∆t3

2
|| fttt||C( J̄;L2(Ω))||v||0,
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and bounding the two integrals in (4.28) as done in the previous case, we conclude
that

∆t2||r0||0 ≤C∆thp+1||ut||C( J̄;Hp+1(Ω)) + θ∆t5||∂5
t u||C( J̄;L2(Ω))

+ θ∆t5|| fttt||C( J̄;L2(Ω)). (4.29)

Dividing (4.29) by ∆t2 yields the second estimate for ||r0||0. �

Lemma 2. For 1≤n≤N − 1, there holds

||rn||0 ≤ C
(

∆t−1hp+1
∫ tn+1

tn−1
||utt(·, s)||p+1ds + ∆t

∫ tn+1

tn−1
||∂4

t (·, s)||0ds
)

,

if θ ̸= 1/12, and

||rn||0 ≤ C
(

∆t−1hp+1
∫ tn+1

tn−1
||utt(·, s)||p+1ds + ∆t3

∫ tn+1

tn−1
||∂6

t (·, s)||0ds
)

,

if θ=1/12, with a constant C>0 independent of h, ∆t and T.

Proof. By the triangle inequality, we have

||rn||0 = ||∂̄ttω
n − un;θ

tt ||0 ≤ ||∂̄tt(Πh − I)un||0 + ||∂̄ttun − un;θ
tt ||0. (4.30)

From Taylor’s formulas with integral remainders, we find that

∂̄ttun =
1

∆t2

∫ ∆t

−∆t
(∆t − |s|)∂2

t u(·, tn + s)ds.

By using (4.3), we have

||∂̄tt(Πh − I)un||0 ≤ 1
∆t2

∫ ∆t

−∆t
(∆t − |s|)||∂2

t (Πh − I)u||0ds

≤C
hp+1

∆t

∫ ∆t

−∆t
||utt(·, tn + s)||p+1ds, (4.31)

where we used the fact that

(∆t − |s|) ≤ ∆t, when s ∈ [−∆t, ∆t].

To estimate the second term on the right-hand side of (4.30), we make use of the iden-
tity

∂̄ttun = un
tt +

1
6∆t2

∫ ∆t

−∆t
(∆t − |s|)3∂4

t u(·, tn + s)ds. (4.32)

From the Taylor’s expansions of un+1
tt and un−1

tt about un
tt, we have

un+1
tt = un

tt + ∆tun
ttt +

∫ ∆t

0
(∆t − |s|)∂4

t u(·, tn + s)ds,

un−1
tt = un

tt − ∆tun
ttt +

∫ 0

−∆t
(∆t − |s|)∂4

t u(·, tn + s)ds,
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and we deduce that

un;θ
tt = un

tt + θ
∫ ∆t

−∆t
(∆t − |s|)∂4

t u(·, tn + s)ds. (4.33)

Subtracting (4.33) from (4.32) yields

∂̄ttun − un;θ
tt =

1
6∆t2

∫ ∆t

−∆t
(∆t − |s|)3∂4

t u(·, tn + s)ds

− θ
∫ ∆t

−∆t
(∆t − |s|)∂4

t u(·, tn + s)ds.

This leads to the bound

||∂̄ttun − un;θ
tt ||0 ≤

(1
6
+ θ

)
∆t

∫ ∆t

−∆t
||∂4

t u(·, tn + s)||0 ds. (4.34)

Referring to (4.30), (4.31) and (4.34) proves the first estimate in the lemma.
Now we wish to derive expressions similar to (4.32) and (4.33) by using high-order

Taylor’s formulas. We have

∂̄ttun = un
tt +

∆t2

12
un

tttt +
1

5!∆t2

∫ ∆t

−∆t
(∆t − |s|)5∂6

t u(·, tn + s)ds,

and it can be easily verified that

un;θ
tt = un

tt + θ∆t2un
tttt +

θ

6

∫ ∆t

−∆t
(∆t − |s|)3∂6

t u(·, tn + s)ds.

Combining the two previous inequalities using θ=1/12, we obtain

∂̄ttun − un;θ
tt =

1
5!∆t2

∫ ∆t

−∆t
(∆t − |s|)5∂6

t u(·, tn + s)ds

− 1
72

∫ ∆t

−∆t
(∆t − |s|)3∂6

t u(·, tn + s)ds,

and therefore

||∂̄ttun − un;θ
tt ||0 ≤

( 1
5!

+
1
72

)
∆t3

∫ ∆t

−∆t
||∂6

t u(·, tn + s)||0ds. (4.35)

Referring to (4.30), (4.31) and (4.35) shows the second estimate for ||rn||0, and thus
completes the proof of the lemma. �

The next proposition follows immediately from Lemma 1 and Lemma 2.

Proposition 3. For 1≤n≤N − 1, there holds

||Rn||0 ≤C∆t2
(
||uttt||C( J̄;L2(Ω)) + ||∂4

t u||L1(J;L2(Ω)) + || ft||C( J̄;L2(Ω))

)
+ Chp+1

(
||ut||C( J̄;Hp+1(Ω)) + ||utt||C( J̄;Hp+1(Ω))

)
,
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if θ ̸=1/12, and

||Rn||0 ≤C∆t4
(
||∂5

t u||C( J̄;L2(Ω)) + ||∂6
t u||L1(J;L2(Ω)) + || fttt||C( J̄;L2(Ω))

)
+ Chp+1

(
||ut||C( J̄;Hp+1(Ω)) + ||utt||C( J̄;Hp+1(Ω))

)
,

if θ=1/12, with a constant C>0 independent in each case of h, ∆t and T.

Proof. Using the bounds for ||rn||0 derived in Lemma 1 and Lemma 2 for θ=1/12
for instance, we obtain

||Rn||0 ≤∆t||r0||0 + ∆t
N−1

∑
m=1

||rm||0

≤C∆t4
(
||∂5

t u||C( J̄;L2(Ω)) + ||∂6
t u||L1(J;L2(Ω)) + || fttt||C( J̄;L2(Ω))

)
+ Chp+1

(
||ut||C( J̄;Hp+1(Ω)) + ||utt||C( J̄;Hp+1(Ω))

)
.

The first estimate in the proposition follows from the same argument. �
Now, we are ready to prove the main theorem.

Theorem 2. Let u be the solution of the wave problem (1.1)-(1.2c) and let the discrete finite
element approximations {Un}N

n=0 be defined by (2.7) and (2.9) if θ ̸=1/12 and by (2.7) and
(2.11) if θ=1/12. Assume that the CFL condition (4.5) is satisfied. Then there holds the error
estimate:

N
max
n=0

||un − Un||0 ≤ C(hp+1 + ∆t2).

Furthermore, if θ=1/12 and u satisfies the regularity properties (4.7), then the following error
estimate holds:

N
max
n=0

||un − Un||0 ≤ C(hp+1 + ∆t4).

In each case, C>0 is a constant independent of the mesh size and the time step.

Proof. From Proposition 2, it follows that

N
max
n=0

||en||0 ≤ C
(
||e0||0 +

N
max
n=0

||ηn||0 + T
N−1
max
n=0

||Rn||0
)

,

since

∆t
N−1

∑
n=0

||Rn||0 ≤ T
N−1
max
n=0

||Rn||0.

By the approximation properties of the L2-projection and the elliptic projection (4.2),
we respectively have

||e0||0 = ||u0 − Phu0||0 ≤ Chp+1||u0||p+1 ≤ Chp+1||u||C( J̄;Hp+1(Ω)),
N

max
n=0

||ηn||0 ≤ Chp+1||u||C( J̄;Hp+1(Ω)).
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We next apply Proposition 3 to bound
N−1
max
n=0

||Rn||0. This gives

||en||0 ≤Chp+1||u||C2( J̄;Hp+1(Ω)) + C∆t2
(
||uttt||C( J̄;L2(Ω))

+ ||∂4
t u||L1(J;L2(Ω)) + || ft||C( J̄;L2(Ω))

)
,

if θ ̸=1/12, and

||en||0 ≤Chp+1||u||C2( J̄;Hp+1(Ω)) + C∆t4
(
||∂5

t u||C( J̄;L2(Ω))

+ ||∂6
t u||L1(J;L2(Ω)) + || fttt||C( J̄;L2(Ω))

)
,

if θ=1/12. The proof is now complete. �
Notice that the constant C in the theorem grows linearly with T.

5 Conclusions

We have presented and analyzed three-level implicit-in-time finite difference schemes
for the acoustic wave equation, where Galerkin methods are used for the spatial ap-
proximation. The schemes cover the explicit leapfrog scheme and the fourth-order
accurate scheme in time obtained by the modified equation method. Stability results
covering well-known CFL conditions have been derived. The stability results are gen-
eral and use only the symmetry of the underlying bilinear form, so they are not limited
to finite element methods. Optimal error estimates have also been obtained. For suf-
ficiently smooth solutions, it is demonstrated that the maximal error in the L2-norm
error over a finite time interval converges optimally as O(hp+1 + ∆ts), where p de-
notes the polynomial degree, s=2 or 4, h the mesh size, and ∆t the time step. Our
convergence results hold for any fully discrete DG method where the underlying DG
bilinear form is symmetric, continuous, coercive, and adjoint consistent in the sense
of [2]. Our study serves as a model for general second-order hyperbolic problems.
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