# A Note on Rough Parametric Marcinkiewicz 

 FunctionsLaith Hawawsheh ${ }^{1}$, Ahmad Al-Salman ${ }^{2, *}$ and Shaher Momani ${ }^{3,4}$<br>${ }^{1}$ School of Basic Sciences and Humanities, German Jordanian University, Amman, Jordan<br>${ }^{2}$ Department of Mathematics, Sultan Qaboos University, P.O. Box 36, Al-Khod 123 Muscat, Sultanate of Oman<br>${ }^{3}$ Department of Mathematics, Faculty of Science, University of Jordan, Amman 11942, Jordan<br>${ }^{4}$ Department of Mathematics and Sciences, College of Humanities and Sciences, Ajman University, Ajman, UAE

Received 23 November 2017; Accepted (in revised version) 13 April 2018


#### Abstract

In this note, we obtain sharp $L^{p}$ estimates of parametric Marcinkiewicz integral operators. Our result resolves a long standing open problem. Also, we present a class of parametric Marcinkiewicz integral operators that are bounded provided that their kernels belong to the sole space $L^{1}\left(S^{n-1}\right)$.


Key Words: Marcinkiewicz integrals, parametric Marcinkiewicz functions, rough kernels, Fourier transform, Marcinkiewicz interpolation theorem.
AMS Subject Classifications: 42B20, 42B15, 42B25

## 1 Introduction

Let $n \geq 2$ and $\mathbb{S}^{n-1}$ be the unit sphere in $\mathbb{R}^{n}$ equipped with the normalized Lebesgue measure $d \sigma$. Suppose that $\Omega$ is a homogeneous function of degree zero on $\mathbb{R}^{n}$ that satisfies $\Omega \in L^{1}\left(\mathbb{S}^{n-1}\right)$ and

$$
\begin{equation*}
\int_{S^{n-1}} \Omega\left(x^{\prime}\right) d \sigma\left(x^{\prime}\right)=0 \tag{1.1}
\end{equation*}
$$

In 1960, Hörmander (see [6]) introduced the following parametric Marcinkiewicz function $\mu_{\Omega}^{\rho}$ of higher dimension by

$$
\begin{equation*}
\mu_{\Omega}^{\rho} f(x)=\left(\left.\left.\int_{-\infty}^{\infty}\left|2^{-\rho t} \int_{|y| \leq 2^{t}} f(x-y)\right| y\right|^{-n+\rho} \Omega(y) d y\right|^{2} d t\right)^{\frac{1}{2}} \tag{1.2}
\end{equation*}
$$

[^0]where $\rho>0$. When $\rho=1$, the corresponding operator $\mu_{\Omega}=\mu_{\Omega}^{1}$ is the classical Marcinkiewicz integral operator introduced by Stein (see [7]). When $\Omega \in \operatorname{Lip}_{\alpha}\left(\mathrm{S}^{n-1}\right)$, $(0<\alpha \leq 1)$, Stein proved that $\mu_{\Omega}$ is bounded on $L^{p}$ for all $1<p \leq 2$. Subsequently, Benedek-Calderón-Panzone proved the $L^{p}$ boundedness of $\mu_{\Omega}$ for all $1<p<\infty$ under the condition $\Omega \in C^{1}\left(\mathbb{S}^{n-1}\right)$ (see [4]). Since then, the $L^{p}$ boundedness of $\mu_{\Omega}$ has been investigated by several authors. For background information, we advise readers to consult [1-3,7], among others.

Concerning the problem whether there are some $L^{p}$ results on $\mu_{\Omega}^{\rho}$ similar to those on $\mu_{\Omega}$ when $\Omega$ satisfies only some size conditions, Ding, Lu, and Yabuta (see [5]) studied the general operator

$$
\begin{equation*}
\mu_{\Omega, h}^{\rho} f(x)=\left(\left.\left.\int_{-\infty}^{\infty}\left|2^{-\rho t} \int_{|y| \leq 2^{t}} f(x-y)\right| y\right|^{-n+\rho} h(|y|) \Omega(y) d y\right|^{2} d t\right)^{\frac{1}{2}} \tag{1.3}
\end{equation*}
$$

where $h$ is a radial function on $\mathbb{R}^{n}$ satisfying $h(|x|) \in l^{\infty}\left(L^{q}\right)\left(\mathbb{R}^{+}\right), 1 \leq q \leq \infty$, where the class $l^{\infty}\left(L^{q}\right)\left(\mathbb{R}^{+}\right)$is defined by

$$
l^{\infty}\left(L^{q}\right)\left(\mathbb{R}^{+}\right)=\left\{h:|h|_{l^{\infty}\left(L^{q}\right)\left(\mathbb{R}^{+}\right)}=\sup _{j \in \mathbb{Z}}\left(\int_{2^{j-1}}^{2^{j}}|h(r)|^{q} \frac{d r}{r}\right)^{\frac{1}{q}}<\infty\right\} .
$$

For $q=\infty$, we set $l^{\infty}\left(L^{\infty}\right)\left(\mathbb{R}^{+}\right)=L^{\infty}\left(\mathbb{R}^{+}\right)$. It is clear that

$$
l^{\infty}\left(L^{\infty}\right)\left(\mathbb{R}^{+}\right) \subset l^{\infty}\left(L^{r}\right)\left(\mathbb{R}^{+}\right) \subset l^{\infty}\left(L^{q}\right)\left(\mathbb{R}^{+}\right) \subset l^{\infty}\left(L^{1}\right)\left(\mathbb{R}^{+}\right)
$$

$1<q<r<\infty$. Ding, Lu, and Yabuta (see [5]) proved the following result:
Theorem 1.1 ([5]). Suppose that $\Omega \in L\left(\log ^{+} L\right)\left(\mathrm{S}^{n-1}\right)$ is a homogeneous function of degree zero on $\mathbb{R}^{n}$ satisfying (1.1) and $h(|x|) \in l^{\infty}\left(L^{q}\right)\left(\mathbb{R}^{+}\right)$for some $1<q \leq \infty$. If $\operatorname{Re}(\rho)=\alpha>0$, then $\left|\mu_{\Omega, h}^{\rho} f\right|_{2} \leq C \alpha^{-\frac{1}{2}}|f|_{2}$, where $C$ is independent of $\rho$ and $f$.

In [1], Al-Salman and Al-Qassem considered the $L^{p}$ boundedness of $\mu_{\Omega, h}^{\rho}$ for $p \neq 2$. which was left open in [5]. They proved the following result:

Theorem 1.2 ([1]). Suppose that $\Omega \in L\left(\log ^{+} L\right)\left(S^{n-1}\right)$ is a homogeneous function of degree zero on $\mathbb{R}^{n}$ satisfying (1.1). If $h(|x|) \in l^{\infty}\left(L^{q}\right)\left(\mathbb{R}^{+}\right), 1<q \leq \infty$, and $\alpha=\operatorname{Re}(\rho)>0$, then $\left|\mu_{\Omega, h}^{\rho} f\right|_{p} \leq C \alpha^{-1}|f|_{p}$ for all $1<p<\infty$, where $C$ is independent of $\rho$ and $f$.

In light of Theorem 1.1, it is clear that the dependence of the $L^{p}$ bounds on $\alpha$ in Theorem 1.2 is not sharp. More precisely, we have the following long standing natural open problem:
Problem:
(a) Is the power $(-1 / 2)$ of $\alpha$ in Theorem 1.1 sharp?
(b) Does the result in Theorem 1.2 hold with power of $\alpha$ greater than $(-1)$ ?

It is our aim in this note to consider this problem. In fact, we shall prove the following result which completely resolves the above problem:

Theorem 1.3. Suppose that $\Omega \in L\left(\log ^{+} L\right)\left(S^{n-1}\right)$ is a homogeneous function of degree zero on $\mathbb{R}^{n}$ satisfying (1.1). If $h(|x|) \in l^{\infty}\left(L^{q}\right)\left(\mathbb{R}^{+}\right), 1<q \leq \infty$, and $\alpha=\operatorname{Re}(\rho)>0$, then

$$
\left|\mu_{\Omega, h}^{\rho} f\right|_{p} \leq C \alpha^{-\frac{1}{p}}|f|_{p} \quad \text { for all } 1<p<\infty,
$$

where $C$ is independent of $\rho$ and $f$. Moreover, the power $(-1 / p)$ is sharp in the sense that it can not be replaced by larger power.

It is clear that Theorem 1.3 substantially improves Theorem 1.2 as far as the power of $\alpha$ is concerned. Concerning the function $\Omega$, we present in Section 3 of this note a subclass of the class $l^{\infty}\left(L^{q}\right)\left(\mathbb{R}^{+}\right)$where the corresponding operator $\mu_{\Omega, h}^{\rho}$ is bounded on $L^{2}$ under the sole integrability condition $\Omega \in L^{1}\left(S^{n-1}\right)$.

Throughout the rest of the paper the letter $C$ will stand for a constant but not necessarily the same one in each occurrence.

## 2 Proof of main result

This section is devoted to present a proof of Theorem 1.3. We start by recalling the following well known interpolation theorem:

Theorem 2.1 ([8]). Let $T$ be a sublinear operator satisfying

$$
|T(f)|_{L^{p_{1}}\left(\mathbb{R}^{n}\right)} \leq C_{p_{1}}|f|_{L^{p_{1}}\left(\mathbb{R}^{n}\right)}
$$

and

$$
|T(f)|_{L^{p_{2}}\left(\mathbb{R}^{n}\right)} \leq C_{p_{2}}|f|_{L^{p_{2}}\left(\mathbb{R}^{n}\right)}
$$

for some $1 \leq p_{1}, p_{2} \leq \infty$ and $C_{p_{1}}, C_{p_{2}}>0$. Then for all $\theta \in[0,1]$, we have

$$
|T(f)|_{L^{p_{\theta}\left(\mathbb{R}^{n}\right)}} \leq C_{p_{\theta}}|f|_{L^{p_{\theta}\left(\mathbb{R}^{n}\right)}},
$$

where $p_{\theta}$ satisfies $\frac{1}{p_{\theta}}=\frac{\theta}{p_{1}}+\frac{1-\theta}{p_{2}}$ and $C_{p_{\theta}}=C_{p_{1}}^{\theta} C_{p_{2}}^{1-\theta}$.
Proof of Theorem 1.3. The proof is based on an interpolation argument. By Theorem 1.1 and Theorem 1.2, we have

$$
\begin{equation*}
\left|\mu_{\Omega, h}^{o} f\right|_{2} \leq \frac{C}{\sqrt{\alpha}}|f|_{2} \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\mu_{\Omega, h}^{\rho} f\right|_{1+\epsilon} \leq \frac{C}{\alpha}|f|_{1+\epsilon}, \tag{2.2}
\end{equation*}
$$

for any $\epsilon>0$. Thus, (2.1) and (2.2) show that the operator $\mu_{\Omega, h}^{\rho}$ is a bounded operator from $L^{2}\left(\mathbb{R}^{n}\right)$ to $L^{2}\left(\mathbb{R}^{n}\right)$ and from $L^{1+\epsilon}\left(\mathbb{R}^{n}\right)$ to $L^{1+\epsilon}\left(\mathbb{R}^{n}\right)$, respectively. Thus, by Theorem 2.1, (2.1) and (2.2), we have

$$
\begin{equation*}
\left|\mu_{\Omega, h}^{p} f\right|_{p} \leq C \alpha^{-\left(\frac{\epsilon-\frac{\epsilon 1}{p}}{\epsilon-1}\right)}|f|_{p} \tag{2.3}
\end{equation*}
$$

for all $1+\epsilon<p<2$. Letting $\epsilon \rightarrow 0^{+}$, we would get

$$
\left|\mu_{\Omega, h}^{p} f\right|_{p} \leq \frac{C}{\alpha^{\frac{1}{p}}}|f|_{p}
$$

for $1<p<2$. Similarly, for $M>2$, we have by Theorem 1.2 that

$$
\begin{equation*}
\left|\mu_{\Omega, h}^{\rho} f\right|_{M} \leq \frac{C}{\alpha}|f|_{M} . \tag{2.4}
\end{equation*}
$$

Interpolating between (2.1) and (2.4) yields

$$
\begin{equation*}
\left|\mu_{\Omega, h}^{\rho} f\right|_{p} \leq C \alpha^{-\left(\frac{\frac{1}{M}-\frac{1}{p}}{M}\right)}|f|_{p} \tag{2.5}
\end{equation*}
$$

for all $2<p<M$. Letting $M \rightarrow \infty$ gives

$$
\left|\mu_{\Omega, h}^{p} f\right|_{p} \leq \frac{C}{\alpha^{\frac{1}{p}}}|f|_{p}
$$

for $2<p<\infty$.
Now, we show that the power $(1 / p)$ is sharp. We shall work out the case $p=2$ and $\rho=\alpha$ is a positive real number. We shall also assume $0<\alpha<1$. Set

$$
\Omega(x)=\left(x_{1}\right)^{\prime}=\frac{x_{1}}{|x|} .
$$

Then $\Omega$ satisfies (1.1) and $\Omega \in L^{2}\left(S^{n-1}\right)$. On the other hand, let $f(x)=x_{1}$ if $|x|<1$ and $f(x)=0$ if $|x| \geq 1$. Then $f \in L^{2}\left(\mathbb{R}^{n}\right)$. In fact,

$$
|f|_{2}=\frac{1}{\sqrt{n+2}}|\Omega|_{2} .
$$

Now,

$$
\begin{aligned}
\left|\mu_{\Omega, h}^{\rho} f\right|_{2}^{2} & \geq \int_{\mathbb{R}^{n}} \int_{3}^{\infty}\left|\int_{S^{n-1}} \int_{0}^{t} \Omega\left(y^{\prime}\right) f\left(x-r y^{\prime}\right) \frac{d r}{r^{1-\alpha}} d \sigma\left(y^{\prime}\right)\right|^{2} \frac{d t}{t^{1+2 \alpha}} d x \\
& \geq \int_{|x|<1} \int_{3}^{\infty}\left|\int_{S^{n-1}} \int_{0}^{t} \Omega\left(y^{\prime}\right) f\left(x-r y^{\prime}\right) \frac{d r}{r^{1-\alpha}} d \sigma\left(y^{\prime}\right)\right|^{2} \frac{d t}{t^{1+2 \alpha}} d x .
\end{aligned}
$$

By noticing that $f\left(x-r y^{\prime}\right)=0$ whenever $|x|<1$ and $r>2$, it follows from the last integral that

$$
\begin{align*}
\left|\psi_{\Omega, h}^{\rho} f\right|_{2}^{2} & \geq \int_{|x|<1} \int_{3}^{\infty}\left|\int_{S^{n-1}} \int_{0}^{2} \Omega\left(y^{\prime}\right)\left(x_{1}-r y_{1}^{\prime}\right) \frac{d r}{r^{1-\alpha}} d \sigma\left(y^{\prime}\right)\right|^{2} \frac{d t}{t^{1+2 \alpha}} d x \\
& =\int_{|x|<1} \int_{3}^{\infty}\left|\int_{S^{n-1}} \int_{0}^{2}\left(\Omega\left(y^{\prime}\right)\right)^{2} r^{\alpha} d r d \sigma\left(y^{\prime}\right)\right|^{2} \frac{d t}{t^{1+2 \alpha}} d x \\
& =|\Omega|_{2}^{4}\left(\frac{2^{\alpha+1}}{1+\alpha}\right)^{2}\left(\frac{1}{3^{2 \alpha}}\right) \frac{1}{2 \alpha}|B(0,1)| \\
& \geq \frac{C}{\sqrt{\alpha}}|f|_{2}, \tag{2.6}
\end{align*}
$$

where $|B(0,1)|$ is the volume of the ball $B(0,1)=\left\{x \in \mathbb{R}^{n}:|x|<1\right\}$ and $C$ is a constant independent of $\alpha$. Here, (2.6) follows by (1.1). This completes the proof.

## 3 Further study

As pointed out in the introduction section, in this section we present a subclass of the class $l^{\infty}\left(L^{q}\right)\left(\mathbb{R}^{+}\right)$where the corresponding operator $\mu_{\Omega, h}^{\rho}$ is bounded on $L^{2}$ under the condition $\Omega \in L^{1}\left(S^{n-1}\right)$. If $q=\infty, l^{\infty}\left(L^{\infty}\right)\left(\mathbb{R}^{+}\right)=L^{\infty}\left(\mathbb{R}^{+}\right)$. For $1 \leq q<\infty$, let $\mathcal{D}_{q}$ be the space of all measurable radial functions $h$ on $\mathbb{R}^{n}$ which satisfy

$$
\begin{align*}
& \frac{h(r)}{r^{1 / q^{\prime}}} \in l^{\infty}\left(L^{q}\right)\left(\mathbb{R}^{+}\right),  \tag{3.1a}\\
& \sum_{j=1}^{\infty}\left(\int_{2^{j}}^{2^{j+1}}|h(r)|^{q} \frac{d r}{r}\right)^{1 / q}<\infty . \tag{3.1b}
\end{align*}
$$

It is obvious that $\mathcal{D}_{q} \subset l^{\infty}\left(L^{q}\right)\left(\mathbb{R}^{+}\right)$and this inclusion is proper for $1 \leq q<\infty$. In fact, for $j \in \mathbb{Z}^{-}$, we have

$$
\left(\int_{2^{j}}^{2^{j+1}}|h(r)|^{q} \frac{d r}{r}\right)^{1 / q}=\left(\int_{2^{j}}^{2^{j+1}}\left|\frac{h(r)}{r^{1 / q^{\prime}}}\right|^{q} r^{\frac{q}{}} \frac{d r}{r}\right)^{1 / q} \leq C\left|h / r^{1 / q^{\prime}}\right|_{l^{\infty}\left(L^{q}\right)\left(\mathbb{R}^{+}\right)} .
$$

On the other hand, for $j \in \mathbb{Z}^{+}$, by (3.1b) we have

$$
\left(\int_{2 j}^{2 j+1}|h(r)|^{q} \frac{d r}{r}\right)^{1 / q} \leq \sum_{j=1}^{\infty}\left(\int_{2^{j}}^{2 j+1}|h(r)|^{q} \frac{d r}{r}\right)^{1 / q}<\infty
$$

Notice further that the constant functions are contained in $l^{\infty}\left(L^{q}\right)\left(\mathbb{R}^{+}\right)$but not in $\mathcal{D}_{q}$.
On the other hand,

$$
\begin{equation*}
\mathcal{D}_{q} \nsubseteq L^{\infty}\left(\mathbb{R}^{+}\right) . \tag{3.2}
\end{equation*}
$$

To see (3.2), we construct a function $h \in \mathcal{D}_{q} \backslash L^{\infty}\left(\mathbb{R}^{+}\right)$. For convenience, we consider the case $q=2$. Define $h$ on $\mathbb{R}^{+}$by $h(r)=\sqrt[4]{n} r$, if $r \in\left[1+\frac{1}{n+1}, 1+\frac{1}{n}\right], n \in \mathbb{N}$ and $h(r)=0$ otherwise. It is clear that $h$ is not bounded. To see that $h \in \mathcal{D}_{q}$, we first observe that since $h(r)=0$ for all $r \geq 2$, it follows that $h$ satisfies (3.1b). To see that $h$ satisfies (3.1a), notice

$$
\left(\int_{1}^{2}\left|\frac{h(r)}{r^{1 / 2}}\right|^{2} \frac{d r}{r}\right)^{1 / 2}=\left(\sum_{n=1}^{\infty} \int_{1+\frac{1}{n+1}}^{1+\frac{1}{n}}\left|\frac{h(r)}{r^{1 / 2}}\right|^{2} \frac{d r}{r}\right)^{\frac{1}{2}}=\left(\sum_{n=1}^{\infty} \frac{\sqrt{n}}{n(n+1)}\right)^{\frac{1}{2}}<\infty .
$$

Now, we have the following result:
Theorem 3.1. If $h \in \mathcal{D}_{q}$ for some $1 \leq q<\infty$ and $\Omega \in L^{1}\left(S^{n-1}\right)$ is a homogeneous function of degree zero on $\mathbb{R}^{n}$ satisfying (1.1), then $\mu_{\Omega, h}^{\rho}$ is bounded on $L^{2}\left(\mathbb{R}^{n}\right)$.

Proof. By simple change of variables and Plancherel's theorem, we have

$$
\begin{equation*}
\left|\mu_{\Omega, h}^{\rho}\right|_{2}^{2} \leq \int_{\mathbb{R}^{n}}|\widehat{f}(\xi)|^{2}\left[\left.\left.\int_{0}^{\infty}\left|t^{-\rho} \int_{|y| \leq t} e^{-2 \pi i y \cdot \xi}\right| y\right|^{-n+\rho} h(|y|) \Omega(y) d y\right|^{2} \frac{d t}{t}\right] d \xi \tag{3.3}
\end{equation*}
$$

On the other hand, by Minkowski's integral inequality, we have

$$
\begin{align*}
& \left(\left.\left.\int_{0}^{\infty}\left|t^{-\rho} \int_{|y| \leq t} e^{-2 \pi i y \cdot \xi}\right| y\right|^{-n+\rho} h(|y|) \Omega(y) d y\right|^{2} \frac{d t}{t}\right)^{\frac{1}{2}} \\
= & \left(\int_{0}^{\infty}\left|\int_{0}^{\infty} \int_{S^{n-1}} e^{-2 \pi i r y^{\prime} \cdot \xi} h(r) \Omega\left(y^{\prime}\right) \chi_{[0, t]}(r) r^{\rho-1} d \sigma\left(y^{\prime}\right) d r\right|^{2} \frac{d t}{t^{1+2 \rho}}\right)^{\frac{1}{2}} \\
\leq & \int_{0}^{\infty}\left(\int_{0}^{\infty}\left|\int_{S^{n-1}} e^{-2 \pi i r y^{\prime} \cdot \xi} h(r) \Omega\left(y^{\prime}\right) \chi_{[0, t]}(r) d \sigma\left(y^{\prime}\right)\right|^{2} \frac{d t}{t^{1+2 \alpha}}\right)^{\frac{1}{2}} \frac{d r}{r^{1-\alpha}} \\
= & \int_{0}^{\infty}\left|\int_{S^{n-1}} e^{-2 \pi i r y^{\prime} \cdot \xi} h(r) \Omega\left(y^{\prime}\right) d \sigma\left(y^{\prime}\right)\right|\left(\int_{r}^{\infty} \frac{d t}{t^{1+2 \alpha}}\right)^{\frac{1}{2}} \frac{d r}{r^{1-\alpha}} \\
= & \frac{1}{\sqrt{2 \alpha}} \int_{0}^{\infty}\left|\int_{S^{n-1}} e^{-2 \pi i r y^{\prime} \cdot \zeta} h(r) \Omega\left(y^{\prime}\right) d \sigma\left(y^{\prime}\right)\right| \frac{d r}{r} . \tag{3.4}
\end{align*}
$$

In view of (3.4), we need only to show that

$$
\begin{equation*}
\sup _{\xi \in \mathbb{R}^{n}-\{0\}} \int_{0}^{\infty}\left|\int_{\mathrm{S}^{n-1}} e^{-2 \pi i r y^{\prime} \cdot \tilde{\xi}} h(r) \Omega\left(y^{\prime}\right) d \sigma\left(y^{\prime}\right)\right| \frac{d r}{r}<\infty . \tag{3.5}
\end{equation*}
$$

We consider two cases:

Case 1. If $|\xi|>2$, then

$$
\begin{align*}
& \int_{0}^{\infty}\left|\int_{S^{n-1}} e^{-2 \pi i r y^{\prime} \cdot \xi} h(r) \Omega\left(y^{\prime}\right) d \sigma\left(y^{\prime}\right)\right| \frac{d r}{r} \\
= & \int_{0}^{2 /|\xi|}\left|\int_{S^{n-1}} e^{-2 \pi i r y^{\prime} \cdot \tilde{\zeta}} h(r) \Omega\left(y^{\prime}\right) d \sigma\left(y^{\prime}\right)\right| \frac{d r}{r} \\
& +\int_{2 /|\xi|}^{1}\left|\int_{S^{n-1}} e^{-2 \pi i r y^{\prime} \cdot \xi} h(r) \Omega\left(y^{\prime}\right) d \sigma\left(y^{\prime}\right)\right| \frac{d r}{r} \\
& +\int_{1}^{\infty}\left|\int_{S^{n-1}} e^{-2 \pi i r y^{\prime} \cdot \xi} h(r) \Omega\left(y^{\prime}\right) d \sigma\left(y^{\prime}\right)\right| \frac{d r}{r} \\
= & I+I I+\text { III. } \tag{3.6}
\end{align*}
$$

By the cancellation property (1.1), we get

$$
\begin{align*}
I & =\int_{0}^{2 /|\xi|}\left|\int_{S^{n-1}} e^{-2 \pi i r y^{\prime} \cdot \xi} h(r) \Omega\left(y^{\prime}\right) d \sigma\left(y^{\prime}\right)\right| \frac{d r}{r} \\
& =\int_{0}^{2 /|\xi|}\left|\int_{S^{n-1}}\left(e^{-2 \pi i r y^{\prime} \cdot \xi}-1\right) h(r) \Omega\left(y^{\prime}\right) d \sigma\left(y^{\prime}\right)\right| \frac{d r}{r} \\
& =\sum_{-\infty}^{1} \int_{2^{j-1} /|\xi|}^{2 j /|\xi|}\left|\int_{S^{n-1}}\left(e^{-2 \pi i r y^{\prime} \cdot \xi^{\tau}}-1\right) h(r) \Omega\left(y^{\prime}\right) d \sigma\left(y^{\prime}\right)\right| \frac{d r}{r} \\
& \leq C|\Omega|_{L^{1}\left(S^{n-1}\right)}|h|_{l^{\infty}\left(L^{q}\right)\left(\mathbb{R}_{+}\right)}, \tag{3.7}
\end{align*}
$$

where the last inequality was obtained using (3.1b). Next, choose $j_{\xi} \in \mathbb{Z}$ such that $2^{j_{\bar{\xi}}} \leq$ $2 /|\xi|$. Then

$$
\begin{align*}
I I & =\int_{2 /|\xi|}^{1}\left|\int_{S^{n-1}} e^{-2 \pi i r y^{\prime} \cdot \xi} h(r) \Omega\left(y^{\prime}\right) d \sigma\left(y^{\prime}\right)\right| \frac{d r}{r} \\
& \leq \int_{2^{j} \xi}^{1}\left|\int_{S^{n-1}} e^{-2 \pi i r y^{\prime} \cdot \xi} h(r) \Omega\left(y^{\prime}\right) d \sigma\left(y^{\prime}\right)\right| \frac{d r}{r} \\
& \leq|\Omega|_{L^{1}\left(S^{n-1}\right)}\left|h / r^{1 / q^{\prime}}\right|_{L^{\infty}\left(L^{q}\right)\left(\mathbb{R}_{+}\right)} \sum_{j=j_{\xi}+1}^{0}\left(2^{j-1}\right)^{1 / q^{\prime}} \\
& \leq C|\Omega|_{L^{1}\left(S^{n-1}\right)}\left|h / r^{1 / q^{\prime}}\right|_{L^{\infty}\left(L^{q}\right)\left(\mathbb{R}^{+}\right)}, \tag{3.8}
\end{align*}
$$

where $C$ does not depend on the choice of $j_{\tilde{\xi}}$. Finally, notice that

$$
\begin{align*}
I I I & =\int_{1}^{\infty}\left|\int_{S^{n-1}} e^{-2 \pi i r y^{\prime} \cdot \xi^{\xi}} h(r) \Omega\left(y^{\prime}\right) d \sigma\left(y^{\prime}\right)\right| \frac{d r}{r} \\
& \leq C|\Omega|_{L^{1}\left(S^{n-1}\right)} \tag{3.9}
\end{align*}
$$

where the last inequality was obtained using (3.1b). This proves (3.5) for all $\xi \in \mathbb{R}^{n}$ with $|\xi|>2$.
Case 2. If $|\xi| \leq 2$, then

$$
\begin{align*}
& \int_{0}^{\infty}\left|\int_{S^{n-1}} e^{-2 \pi i r y^{\prime} \cdot \xi} h(r) \Omega\left(y^{\prime}\right) d \sigma\left(y^{\prime}\right)\right| \frac{d r}{r} \\
= & \int_{0}^{2}\left|\int_{S^{n-1}} e^{-2 \pi i r y^{\prime} \cdot \xi} h(r) \Omega\left(y^{\prime}\right) d \sigma\left(y^{\prime}\right)\right| \frac{d r}{r} \\
& +\int_{2}^{\infty}\left|\int_{S^{n-1}} e^{-2 \pi i r y^{\prime} \cdot \xi} h(r) \Omega\left(y^{\prime}\right) d \sigma\left(y^{\prime}\right)\right| \frac{d r}{r} . \tag{3.10}
\end{align*}
$$

To estimate (3.10), we follow similar argument as in Case 1. This completes the proof.

## Acknowledgements

The work is a part of the first author's PhD thesis, which had been done under the supervision of the second and third authors.

## References

[1] A. Al-Salman and H. Al-Qassem, On the $L^{p}$ boundedness of rough parametric Marcinkiewicz functions, J. Inequal. Pure Appl. Math., 8(4) (2007), 108.
[2] A. Al-Salman, H. Al-Qassem, L. Cheng and Y. Pan, $L^{p}$ bounds for the function of Marcinkiewicz, Math. Res. Lett., 9 (2002), 697-700.
[3] A. Al-Salman, Marcinkiewicz functions along flat surfaces with hardy space kernels, J. Integral Equations Appl., 17(4) (2005), 357-373.
[4] A. Benedek, A. Calderón and R. Panzone, Convolution operators on Banach space valued functions, Proc. Nat. Acad. Sci., 48 (1962), 356-365.
[5] Y. Ding, S. Lu and K. Yabuta, A problem on rough parametric Marcinkiewicz functions, J. Austral. Math. Soc., 72 (2002), 13-21.
[6] Hörmander, Translation invariant operators, Acta Math., 104 (1960), 93-139.
[7] E. M. Stein, On the function of Littlewood-Paley, Lusin and Marcinkiewicz, Trans. Amer. Math. Soc., 88 (1958), 430-466.
[8] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton NJ, 1970.
[9] E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality and Oscillatory Integrals, Princeton University Press, Princeton, NJ, 1993.


[^0]:    *Corresponding author. Email addresses: Laith.hawawsheh@gju.edu.jo (L. Hawawsheh), alsalman@squ. edu.om (A. Al-Salman), s.momani@ju.edu.jo (S. Momani)

