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Abstract. In this paper, we develop an accurate and efficient Legendre wavelets
method for numerical solution of the well known time-fractional telegraph equation.
In the proposed method we have employed both of the operational matrices of frac-
tional integration and differentiation to get numerical solution of the time-telegraph
equation. The power of this manageable method is confirmed. Moreover the use of
Legendre wavelet is found to be accurate, simple and fast.
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1 Introduction

Fractional ordinary and partial differential equations, as generalizations of classical inte-
ger order differential equations, are increasingly used to model problems in fluid flow,
mechanics, viscoelasticity, biology, physics, engineering and other applications (for ex-
ample see [1–3]). Fractional derivatives provide an excellent instrument for the descrip-
tion of memory and hereditary properties of various materials and processes [4–9]. Frac-
tional differentiation and integration operators are also used for extensions of the diffu-
sion and wave operators [10]. The solutions of fractional differential equations are much
involved, because in general, there exists no method that yields an exact solution for
fractional differential equations, and only approximate solutions can be derived using
linearization or perturbation methods.
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Wavelet methods have been applied for solving partial differential equations (PDEs)
from the beginning of 1990s [11]. In the last two decades this method of solution for such
problems has attracted great attention and numerous papers about this topic have been
published. Due to this fact we must confine somewhat our analysis; in the following
only PDEs of mathematical physics and of elastostatics are considered. From the first
field of investigation [12–17] can be cited, and for elasticity problems we refer to [18–24].
In these papers different wavelet families have been applied. In most cases the wavelet
coefficients have been calculated by the Galerkin or collocation method, for which we
have to evaluate integrals of some combinations of the wavelet functions (also called
connection coefficients).

We consider the time-fractional telegraph equation of order α (1<α≤2) as:

∂αu(x,t)

∂tα
+

∂α−1u(x,t)

∂tα−1
+u(x,t)=

∂2u(x,t)

∂x2
+ f (x,t), a≤ x≤b, t≥0, (1.1)

where ∂β/∂tβ denotes Caputo fractional derivative of order β, that will be described in
the next section. This equation is commonly used in the study of wave propagation of
electric signals in a cable transmission line and also in wave phenomena. This equation
has been also used in modeling the reaction-diffusion processes in various branches of
engineering sciences and biological sciences by many researchers (see [25] and references
therein).

The fractional telegraph equation has recently been considered by many authors.
Cascaval et al. [26] have discussed the time-fractional telegraph equations, and have in-
vestigated its wellposedness and asymptotic behavior by using the Riemann-Liouville
approach. Orsingher and Beghin [27] discussed the time-fractional telegraph equation
and telegraph processes with Brownian time, showing that some processes are gov-
erned by time-fractional telegraph equations. Chen et al. [28] also discussed and de-
rived the solution of the time-fractional telegraph equation with three kinds of non-
homogeneous boundary conditions, by the method of separations of variables. Ors-
ingher and Zhao [29] considered the space-fractional telegraph equations, obtaining the
Fourier transform of its fundamental solution and presenting a symmetric process with
discontinuous trajectories, whose transition function satisfies the space-fractional tele-
graph equation. Momani [30] discussed exact and approximate solutions of the space-
and time-fractional telegraph differential equations by means of the so-called Adomian
decomposition method.

The aim of the present work is to develop Legendre wavelets method with both of the
operational matrices of integration and differentiation for solving the time-fractional tele-
graph equation, which is fast and mathematically simple and guarantees the necessary
accuracy for a relatively small number of grid points. The outline of this article is as fol-
lows: In Section 2 we describe properties of Legendre wavelets. In Section 3 the proposed
method is used to approximate the solution of the problem. In Section 4 some numerical
examples are solved by applying the method of this article. Finally a conclusion is drawn
in Section 5.
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2 Basic definitions

In this section, we briefly give some necessary definitions about fractional calculus and
wavelets theory which will be used in this paper.

2.1 Fractional calculus

We give some basic definitions and properties of the fractional calculus theory which will
be used further in this paper.

Definition 2.1. A real function f (t), t>0, is said to be in the space Cµ, µ∈R if there exists
a real number p (>µ) and a function f1(t)∈C[0,∞) such that f (t)= tp f1(t), and it is said
to be in the space Cn

µ, n∈N if f (n)∈Cµ.

Definition 2.2. The Riemann-Liouville fractional integration operator of order α≥0 of a
function f ∈Cµ, µ≥−1, is defined as:

(Iα f )(t)=







1

Γ(α)

∫ t

0
(t−τ)α−1 f (τ)dτ, α>0,

f (t), α=0.

(2.1)

It has the following properties:

(i) Iα Iβ= Iα+β, (ii) Iα Iβ= Iβ Iα, (2.2a)

(iii) (Iα Iβ f )(t)=(Iβ Iα f )(t), (iv) Iαtϑ =
Γ(ϑ+1)

Γ(α+ϑ+1)
tα+ϑ, (2.2b)

where α, β≥0, t>0 and ϑ>−1.

Riemann-Liouville fractional derivative of order α>0 is defined as:

Dα f (t)=
( d

dt

)n
In−α f (t), (n−1<α≤n), (2.3)

where n is an integer and f ∈Cn
1 .

The Riemann-Liouville derivatives have certain disadvantages when trying to model
real-world phenomena with fractional differential equations. Therefore, we shall now
introduce a modified fractional differential operator Dα

∗ proposed by Caputo [7]:

Definition 2.3. The fractional derivative of order α>0 in the Caputo sense is defined as:

Dα
∗ f (t)=

1

Γ(n−α)

∫ t

0
(t−τ)n−α−1 f (n)(τ)dτ, (n−1<α≤n), (2.4)

where n is an integer, t>0, and f ∈Cn
1 .
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Caputos integral operator has a useful property:

IαDα
∗ f (t)= f (t)−

n−1

∑
k=0

f (k)(0+)
tk

k!
, (n−1<α≤n), (2.5)

where n is an integer, t>0, and f ∈Cn
1 .

For more details on the mathematical properties of fractional derivatives and integrals
see [7].

2.2 Wavelets

Wavelets constitute a family of functions constructed from dilations and translations of
a single function called the mother wavelet ψ(t). When the dilation parameter a and the
translation parameter b vary continuously we have the following family of continuous
wavelets as [31]:

ψa,b(t)= |a|− 1
2 ψ

( t−b

a

)

, a,b∈R, a 6=0. (2.6)

If we restrict the parameters a and b to discrete values as a=a−k
0 , b=nb0a−k

0 , a0>1, b0>0,
and for n and k positive integers, we obtain the following family of discrete wavelets:

ψk,n(t)= |a0|
k
2 ψ(ak

0t−nb0), (2.7)

and {ψk,n(t)|k, n ∈Z} forms a wavelet basis for L2(R). In particular, when a0 = 2 and
b0=1, ψk,n(t) forms an orthonormal basis, that is (ψk,n(t),ψl,m(t))=δklδnm.

2.2.1 Legendre wavelets

Legendre wavelets ψn,m(t)=ψ(k,n̂,m,t) have four arguments; k∈N, n=1,2,··· ,2k−1, and
n̂=2n−1, moreover m is the degree of the Legendre polynomials and t is the normalized
time, and are defined on the interval [0,1) as [31]:

ψn,m(t)=







2
k
2

√

m+
1

2
pm(2kt−n̂),

n̂−1

2k
≤ t<

n̂+1

2k
,

0, otherwise,

(2.8)

where m= 0,1,··· ,M−1, and M is a fixed positive integer. The coefficient
√

m+1/2 in
(2.8) is for orthonormality, the dilation parameter is a=2−k and the translation parameter
is b= n̂2−k. Here, Pm(t) are the well-known Legendre polynomials of degree m which are
orthogonal with respect to the weight function w(t)=1 on the interval [−1,1], and satisfy
the following recursive formula:

p0(t)=1, p1(t)= t,

pm+1(t)=
(2m+1

m+1

)

tpm(t)−
( m

m+1

)

pm−1(t), m=1,2,3,··· .
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2.3 Function approximation

An arbitrary function f (t) ∈ L2(R) defined over [0,1) may be expanded into Legendre
wavelets basis as

f (t)=
∞

∑
n=1

∞

∑
m=0

cnmψnm(t), (2.9)

where coefficients cnm =( f (t),ψnm(t)), in which (,) denotes the inner product.
If the infinite series in (2.9) is truncated, then (2.9) can be written as

f (t)≈
2k−1

∑
n=1

M−1

∑
m=0

cnmψnm(t)=CTΨ(t), (2.10)

where C and Ψ(t) are m̂×1 (m̂=2k−1M) matrices, given by

C=
[

c10,c11,··· ,c1M−1,c20,··· ,c2M−1,··· ,c2k−10,··· ,c2k−1M−1

]T
,

Ψ(t)=
[

ψ10(t),ψ11(t),··· ,ψ1M−1(t),··· ,ψ2k−10(t),··· ,ψ2k−1M−1(t)
]T

.

For simplicity, we write (2.10) as

f (t)≈
m̂

∑
i=1

ciψi(t)=CTΨ(t), (2.11)

where ci = cnm, ψi =ψnm. The index i, is determined by the relation i= M(n−1)+m+1.
Therefor we have

C=[c1,c2,··· ,cm̂]
T, Ψ(t)= [ψ1(t),ψ2(t),··· ,ψm̂(t)]

T . (2.12)

Similarly, an arbitrary function of two variables u(x,t)∈ L2(R×R) defined over [0,1)×
[0,1), may be expanded into Legendre wavelets basis as

u(x,t)≈
m̂

∑
i=1

m̂

∑
j=1

uijψi(x)ψj(t)=ΨT(x)UΨ(t), (2.13)

where U=[uij] and uij =(ψi(x),(u(x,t),ψj(t))).
Taking the collocation points

ti =
(2i−1)

2m̂
, i=1,2,··· ,m̂, (2.14)

we define the m̂×m̂ wavelet matrix Φ as

Φ=
[

Ψ
( 1

2m̂

)

,Ψ
( 3

2m̂

)

,··· ,Ψ
(2m̂−1

2m̂

)]

. (2.15)

Indeed Φ has a diagonal form [32].
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2.4 The fractional operational matrices of Legendre wavelets

The fractional integration of order α of the vector Ψ(·) defined in (2.12) can be expressed
as

(IαΨ)(·)≈PαΨ(·), (2.16)

where Pα is the m̂×m̂ approximated operational matrix of fractional integration of order
α for Legendre wavelets. It is shown that the matrix Pα can be expressed as [31]:

Pα=ΦPα
BΦ−1, (2.17)

where Pα
B is the operational matrix of fractional integration of order α of the Block Pulse

functions (BPF) [33]. In [32] it is shown that Pα has an upper trigonometric form. Also,
From (2.11) and (2.17), it is concluded that for a function f (t)∈Cµ, µ≥−1, we have:

(Iα f )(t)≈CTΦPα
B Bm̂(t).

The fractional differentiation of order α of the matrix Ψ(·) in Caputo sense can be approx-
imated as:

(Dα
∗Ψ)(·)≈QαΨ(·), (2.18)

where Qα is the m̂×m̂ approximated operational matrix of fractional differentiation of or-
der α. It can be simply shown that the matrix Qα is the inverse of Pα that can be expressed
as:

Qα=ΦP−α
B Φ−1, (2.19)

where P−α
B is the operational matrix of fractional differentiation of order α of the BPF [33].

3 Description of numerical method

In this section, we will use the fractional operational matrices of Legendre wavelets for
solving the time-fractional telegraph equation (1.1). Let us consider the time-fractional
telegraph equation (1.1) as:

∂αu

∂tα
+

∂α−1u

∂tα−1
+u=

∂2u

∂x2
+ f (x,t), (x,t)∈ [0,1)×[0,1), (3.1)

with the Dirichlet boundary conditions:

u(x,0)=h0(x), u(0,t)= g0(t), (3.2a)

u(x,1)=h1(x), u(1,t)= g1(t), (3.2b)

where hi(x) and gi(t) are two times continuously differentiable functions on [0,1].
We suppose

∂α+2u

∂tα∂x2
=Ψ(x)TUΨ(t), (3.3)
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where U=[ui,j]m̂×m̂ is an unknown matrix which should be found and Ψ(·) is the vector
that was defined in (2.12).

By fractional integrating of order α with respect to t of (3.3), we have:

∂2u

∂x2
=Ψ(x)TUPαΨ(t)+

∂2u

∂x2

∣

∣

∣

t=0
+t

∂

∂t

(∂2u

∂x2

)
∣

∣

∣

t=0
, (3.4)

and by putting t=1 in (3.4) and considering (3.2) we have:

∂

∂t

(∂2u

∂x2

)
∣

∣

∣

t=0
=h′′1 (x)−h′′0 (x)−Ψ(x)TUPαΨ(1). (3.5)

Now by substituting (3.5) into (3.4) we obtain:

∂2u

∂x2
=Ψ(x)TUPαΨ(t)−tΨ(x)TUPαΨ(1)+(1−t)h′′0 (x)+th′′1 (x). (3.6)

Also by integrating two times with respect to x of (3.3), and considering (3.2) we obtain:

∂αu

∂tα
=Ψ(x)T(P2)TUΨ(t)−xΨ(1)T(P2)TUΨ(t)+(1−x)

∂α g0

∂tα
+x

∂αg1

∂tα
. (3.7)

Now by integrating (3.6) two times with respect to x and considering (3.2) we have:

u(x,t)=Ψ(x)T(P2)TUPαΨ(t)−tΨ(x)T(P2)TUPαΨ(1)−xΨ(1)T(P2)TUPαΨ(t)

+txΨ(1)T(P2)TUPαΨ(1)+H(x,t), (3.8)

where H(x,t) is a known function of x and t.
Now by fractional differentiation of order (α−1) of (3.8) with respect to t, and con-

sidering operational matrix of fractional order differentiation we get:

∂α−1u

∂tα−1
=Ψ(x)T(P2)TUPΨ(t)− t2−α

Γ(3−α)
Ψ(x)T(P2)TUPαΨ(1)−xΨ(1)T(P2)TUPΨ(t)

+
xt2−α

Γ(3−α)
Ψ(1)T(P2)TUPαΨ(1)+

∂α−1H(x,t)

∂tα−1
. (3.9)

By replacing (3.6)-(3.9) into (3.1) and taking collocation points

xi,ti=
2i−1

2m̂
, i=1,2,··· ,m̂,

we obtain the

∂αu(x,t)

∂tα
+

∂α−1u(x,t)

∂tα−1
+u(x,t)− ∂2u(x,t)

∂x2
− f (x,t)

∣

∣

∣

(x,t)=(xi,tj)
=0, i, j=1,2,··· ,m̂. (3.10)

By solving this system and determining U, we get the numerical solution of this problem
by substituting U into (3.8).
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4 Numerical examples

In this section we demonstrate the efficiency of the proposed method for numerical solu-
tion of telegraph equation in the form (3.1) with the Dirichlet boundary conditions (3.2).
To show the efficiency of the present method, we report the root mean square error L2

and maximum error L∞ in case α=2 as:

L2=

√

√

√

√

1

m̂

m̂

∑
i=1

|u(xi,ti)−ũ(xi,ti)|2, L∞= max
1≤i≤m̂

|u(xi,ti)−ũ(xi,ti)|.

Example 4.1. Consider the time-fractional telegraph equation (3.1) with f (x,t)=x2+t−1
and the boundary conditions:

u(x,0)= x2, u(0,t)= t,

u(x,1)=1+x2, u(1,t)=1+t.

The exact solution of this problem for α= 2 is u(x,t) = x2+t. The space-time graph
of the exact and numerical solutions for α = 2 and m̂ = 12 (M = 3, k = 3) are presented
in Figs. 1 and 2. The graphs of analytical and approximate solutions for some nodes in
[0,1]×[0,1] and different values of α are shown in Fig. 3. From Figs. 2 and 2 (in case α=2),
it can be seen that the numerical solutions are in a very good agreement with the exact
solutions. Therefore, we hold that the numerical solutions for α=1.65, 1.75 and 1.85 are
also credible. A comparison between the exact solution (Ex.S) and numerical solution
(Nu.S) for α= 1.65, 1.75 and 1.85 for some nodes in [0,1]×[0,1] are shown in Fig. 3. The
root-mean-square error L2 and maximum error L∞ for some (x,t)∈ [0,1] in case α=2, are
presented in Table 1.
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Figure 1: Exact solution of Example 4.1.



M. H. Heydari et al. / Adv. Appl. Math. Mech., 6 (2014), pp. 247-260 255

0

0.5

1

0

0.5

1
0

0.5

1

1.5

2

 

t

Approximate solution

x
 

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Figure 2: Approximate solution of Example 4.1.
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Figure 3: Comparison between numerical and exact solutions for Example 4.1.

Table 1: The L∞ and L2 errors for some different values of t in case α=2.

t t=0.1 t=0.3 t=0.5 t=0.7 t=0.9 t=1.0

L∞ 4.90×10−3 1.47×10−3 2.28×10−3 1.17×10−3 6.45×10−4 0.00

L2 8.64×10−4 8.06×10−4 1.38×10−3 7.50×10−4 8.60×10−5 0.00

Example 4.2. Consider the time-fractional telegraph equation (3.1) with f (x,t) = 0 and
the boundary conditions:

u(x,0)= ex, u(0,t)= e−t,

u(x,1)= ex−1, u(1,t)= e1−t.
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The exact solution of this problem for α = 2 is u(x,t) = ex−t. The space-time graph
of the exact and numerical solutions for α = 2 and m̂ = 12 are shown in Figs. 4 and 5.
The graphs of analytical and approximate solutions for some nodes in [0,1]×[0,1] and
different values of α are presented in Fig. 6. From Figs. 5 and 6 (in case α= 2), it can be
seen that the numerical solutions are in a very good agreement with the exact solutions.
Therefore, we hold that the numerical solutions for α=1.65, 1.75 and 1.85 are also credible.
A comparison between exact and numerical solutions for α=1.65, 1.75 and 1.85 for some
nodes in [0,1]×[0,1] are shown in Fig. 6. The root-mean-square error L2 and maximum
error L∞ for some (x,t)∈ [0,1] in case α=2 are presented in Table 2.

Table 2: The L∞ and L2 errors for some different values of t in case α=2.

t t=0.1 t=0.3 t=0.5 t=0.7 t=0.9 t=1.0

L∞ 8.64×10−3 2.05×10−3 2.43×10−4 8.54×10−5 1.50×10−5 0.00

L2 5.50×10−3 9.61×10−4 9.43×10−5 5.41×10−5 6.53×10−6 0.00
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Figure 6: Comparison between numerical and exact solutions for Example 4.2.

Example 4.3. Finally consider the time-fractional telegraph equation (3.1) with f (x,t)=
2sin(x)e−t and the boundary conditions:

u(x,0)=sin(x), u(0,t)=0,

u(x,1)= e−1sin(x), u(1,t)=sin(1)e−t.

The exact solution of this problem for α=2 is u(x,t)=sin(x)e−t. The space-time graph
of the exact and numerical solutions for α= 2 and m̂= 12 are presented in Figs. 7 and 8.
The graphs of analytical and approximate solutions for some nodes in [0,1]×[0,1] and
different values of α are shown in Fig. 9. From Figs. 8 and 9, it is obvious that the nu-
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Figure 7: Exact solution of Example 4.3.



258 M. H. Heydari et al. / Adv. Appl. Math. Mech., 6 (2014), pp. 247-260

0

0.5

1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

 

t

Approximate solution

x
 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 8: Approximate solution of Example 4.3.
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Figure 9: Comparison between numerical and exact solutions for Example 4.3.

merical solutions are in a very good agreement with the exact solutions. Therefore, we
hold that the numerical solutions for α=1.65, 1.75 and 1.85 are also credible. A compar-
ison between exact and numerical solutions for α=1.65, 1.75 and 1.85 for some nodes in
[0,1]×[0,1] are shown in Fig. 9. The root-mean-square error L2 and maximum error L∞

for some (x,t)∈ [0,1] in case α=2 are presented in Table 3.

Table 3: The L∞ and L2 errors for some different values of t in case α=2.

t t=0.1 t=0.3 t=0.5 t=0.7 t=0.9 t=1.0

L∞ 6.95×10−3 2.53×10−3 5.28×10−3 8.17×10−4 8.65×10−4 0.00

L2 6.34×10−3 5.26×10−4 6.33×10−4 5.52×10−4 7.61×10−4 0.00
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5 Conclusion

In this paper, numerical solutions of the nonhomogeneous time-fractional telegraph equa-
tion are derived by combining wavelet function with operational matrices of fractional
integration and derivative. In the proposed method already a small number of grids
points guarantees the necessary accuracy. The method is very convenient for solving
boundary value problems, since the boundary condition are taken into account automat-
ically. Also the basic idea described in this paper is expected to be further employed to
solve other fractional partial differential equations.
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