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Abstract

In this paper, we consider a Lotka-Volterra competitive system with nonlo-
cal delays and feedback controls. Using the Lyapunov functional and iterative
technique method, we investigate the global stability and extinction of the sys-
tem. Also, we show the influence of feedback controls on dynamic behaviors
of the system. Some examples are presented to verify our main results.
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1 Introduction and Main Results

In this paper, we consider the following reaction-diffusion Lotka-Volterra com-
petitive system with nonlocal delays and feedback controls
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for t > 0, x € (0,7), under the homogeneous Neumann boundary conditions
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and initial conditions
ui(0,x) = ¢i(0,2) >0, (6,x)¢€ (—o0,0] x [0, ],
v;(0,2) = ¥;(0,2) >0, z€(0,m), i=1,2.

In system (1.1), u; denotes the population density of the i-th species; v; denotes

=0, t>0, x=0,m, i=1,2, (1.2)

(1.3)

the feedback control variable; b; and by are the intrinsic growth rates; a1 and aso are
the rates of the intra-specific competition of the first and second species respectively;
aio and ao; are the rates of the inter-specific competition of the first and second
species respectively; ¢, e;,d; are coefficients of the feedback control variable; D; is
the diffusion rate. All the parameters in system (1.1) are positive constants. The
boundary conditions (1.2) imply that the populations and feedback control variable
do not move across the boundary x = 0, 7. We assume that the kernel G;(x, y, t) fi(¢)
depends on both the spatial and the temporal variables. The delay in this type of
model formulation is called a spatio-temporal delay or nonlocal delay (as we shall
show below how G; are chosen).
The following two-species autonomous competitive system

21 (t) = 21(t) (b1 — anw1(t) — a1a22(t)),

(1.4)
25 (t) = 22(t) (b2 — ag121(t) — azwa(t)),

where b;,a;;, i,j = 1,2 are positive constants, has been discussed in many books
on mathematical ecology ( for example [1]). If the coefficients of system (1.4) sat-
isfy # > l% > #2, then system (1.4) has a unique positive equilibrium (Z1,72)
which is globally attractive, that is, all positive solutions of system (1.4) satisfy
t_lgrnoo(xl(t), x9(t)) = (71, T2). If the coefficients of system (1.4) satisfy 2—; > by

a1’ b2
a2, then system (1.4) is extinct, that is, all positive solutions of system (1.4) satisfy
i (a1(0),22(0)) = (2,0).

In [2], the authors argued that in some situation, the equilibrium is not the de-
sirable one (or affordable) and a smaller value is required, which can be explained
logically especially in a food limited environment since the circumstance can only
withstand a certain amount of populations. Thus we must alter the system struc-
turally by introducing a feedback control variable (Aizerman and Gantmacher [3]
or Lefschetz [4]). On the other hand, ecosystem in the real world are continuously
disturbed by unpredictable forces which can result in some changes of the biological
parameters such as survival rates. We call the disturbance functions to be control
variables. Gopalsamy and Weng [5] introduced a feedback control variable into a
two species competitive system and discussed the existence of the globally attractive
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positive equilibrium of the system with feedback controls. For more details in this
direction, please see [6-9].

In [10], Li, Han and Chen studied the following two-species autonomous Lotka-
Volterra competitive system with infinite delays and feedback controls:

“+oo
() = 21(t) (bl —apzy(t) — are ; Ki(s)xa(t — s)ds — clul(t)>,

+oo
:L'/g (t) = :L'Q(t) <b2 — a21 ) KQ(S)HJl(t — s)ds — a22$2(t) — CU9 (t)),
uy(t) = —equy (t) + dyz (1),
u'g (t) = —62U2(t> + dQl‘Q (t), (1.5)

where b;, aij, ¢, e;,d;, 1,5 = 1,2, are positive constants; x;(t) denotes the density
of the population x;; u;(t) denotes the feedback control variable. By constructing
suitable Lyapunov functional, the authors investigated the extinction and global
stability of the equilibriums, and showed that the suitable feedback controls can
retain or change the stability of system (1.5).

However, as argued in [11], in many ecological systems, the species under con-
sideration may disperse spatially as well as evolve in time. This spatial dispersal
or diffusion arises from the natural tendency of each species to diffuse to areas of
lower population density. The role of diffusion in the ecological system has been
extensively studied in [12-18].

In more realistic ecological models, any delays should be spatially inhomoge-
neous, that is, the delay affects both the temporal and spatial variables, due to
the fact that any given individual may not necessarily have been at the same spa-
tial location at the previous times. Such delays are called a spatio-temporal delay
or nonlocal delay. In [19], Gourley and So considered the following food-limited
reaction-diffusion population model with nonlocal delay

ou B 1 —au—b(f*u)
E—DAU <1+acu+bc(f*u)>’ x € (0,m), t>0 (1.6)

with homogeneous Neumann boundary conditions % = 0, x = 0,7, where the

convolution f * u is defined by

peu= [ [ 6wt =91~ sty spivas.

here

G(z,y,t)

=n~

2 oo

2 :
— g D7t cosna sin ny
77

is solution of
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06 _ oG
ot 0y?
subject to
oG
o =0 aty=0,7, and G(z,y,0) =d(z —y);

the function f(¢) in (1.6) is called the delay kernel and satisfies f(t) > 0 for all
t > 0 together with the normalization condition f0+°° f(t)dt = 1. The authors [19]
studied the the linear stability, boundedness, global convergence of solutions and
bifurcations of system (1.6).

Gourley and Ruan [20] considered a two-species competition model described by
a reaction-diffusion system with nonlocal delays. Using the energy function method,
they studied the extinction and stability of the equilibria of the system. By em-
ploying linear chain techniques and geometric singular perturbation theory, they
investigated the existence of traveling front solutions of the system.

Motivated by the works of Gourley and So [19] and Gourley and Ruan [20],
in this paper, we discuss the extinction and global stability of a reaction-diffusion
Lotka-Volterra competitive system (1.1), and show the effect of nonlocal delay and
feedback control on system (1.1), that is, feedback control can retain or change the
stability of system (1.1).

In system (1.1), we assume that

1 2¢
Gi(x,y,t) = = + — Ze_Di"Qt cos nx sin ny (1.7)

is the weight function describing the distribution at the past times of the individual
of the species u; at position x and time ¢, and satisfies aaci =D, o2 % subject to
%C;Z*Oaty—OmandG(xy,)—(53@— Jo Gi(z,y, t)dy = 1, i = 1,2; the

delay kernel f;(t) satisfies

+oo
f0 20 tz0, [ w1, i=12, (1.8)
0

The organization of this paper is as follows. In Section 2, we introduce some
definitions and lemmas. In Section 3, we study the extinction and global stability of
system (1.1). To illustrate the feasibility of our main results, Section 4 is devoted to
giving some numerical simulations. At last, we give a brief discussion of our result.

2 Preliminaries

In this section, we present some preliminary results required in the sequel.
Let R = (—o0,+0), = (0,7). For 1 < p < oo, let LP(Q2) denote the Banach
space of Lesbegue measurable functions v on  satisfying
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1/p
(/ u(a:)pd:U) < oo, 1<p<oo;
Q

esssup |u(z)| < oo, p = 0.
€S

[ullp =

In particular, if p = 2, L?(Q) becomes a Hilbert space with the usual inner
product (-,-) and || - |3 = (-,-). Let ||| - |||2 denote the norm in L?((0,T); L*(Q; R)),

that is,
T 2
llalle = ( /0 r|u<s>||2ds>

Further, for m € N, 1 < p < 400, the Sobolev space W™P(Q) is defined by

1/2

W™ (Q) = {f € LX(Q) : for any |a] <m, 92f € LX(Q)},

where a = (a1, -+, an), || = a1 +-- -+ ap, and the derivatives 9y f = Oy} - - - 9g»
are taken in a weak sense. When endowed with the norm

1 llmpe = > 1105 Fllps
la|<m
W™P(Q) is a Banach space (see, for example [21]).
It can be easily seen that (0,0,0,0) and (M, My, N1, N2) are a pair of coupled
upper and lower solutions of problem (1.1)-(1.3), where

b; d; .
M; = max{, wiu}, N, =max{Mi, mr}, =12,
Qg5 €
with

il = sup 19i(0,2)], [[Will = sup [v:(0,2)], i=1,2.
(t,z)€(—00,0]%[0,m] z€[0,7]

Hence, the global existence of solutions (uq(t,x), ua(t, x), vi(t, x), v2(t, x)) of (1.1)-
(1.3) can be derived based on the theory of upper-lower solution pairs (see, for
example, Redlinger [22] or Pao [23]). It follows that 0 < u;(¢,x) < M;, 0 < wv;(t,x) <
N; (i = 1,2) for (t,z) € R x [0,x]. In addition, if ¢;(0,z) # 0, ¥;(0,z) # 0
(1 = 1,2), then it follows from the strong maximum principle that w;(t,z) > 0,
vi(t,z) >0 (i=1,2) for all t > 0, z € [0, 7).

By simple computation, system (1.1) has a trivial steady state solution Fy(0, 0, 0,
0), two semi-trivial steady state solutions

bier bidy
Ei(ut, 0,0 = 0 0
(", 0,017, 0) <a11€1+61d1’ “ajie; +cdy’ )

baes 0 bado )
"agges + cady’ T agges + cada )

Ba(0, uy", 0, v5) — (o
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If
ajrer +cidy _ by ai2€2
—_— > > —— (Hy)
asiey by agees + cads
then system (1.1) has a unique positive steady state E*(uj,u3, vy, v3), where
o — e1(by(agzes + cada) — baayzes)
U7 (arier + cidi)(agzen + cada) — arpazieres’
. ea(bz(arrer + c1dy) — brasier)
U2 = 5
(ar11€e1 + c1dr)(azes + cada) — a12a21€1€2
dyuf doul
=k =t
€1 €2

Lemma 2.1 Let (uq(t,x),us(t, z),v1(t, z), v2(t, x)) be a solution of system (1.1)
with the boundary conditions (1.2) and initial conditions (1.3) satisfying ¢;(0,z) Z 0
and ¥;(0,z) #0, i =1,2. Then

d;b;

: b; . .
limsup max u;(t,z) < —, limsup max v;(t,z) < , i=1,2.
t—+oo z€[0,7] Qi t—+oo x€[0,m] €; Q5

Proof It follows from the first and second equations of system (1.1) that

Ou; .
877; — DZ-Aul S ui(t,x)(bi — aiiui(t,x)), 1= 1, 2.

Let z;(t) be a solution of the following ordinary differential equation

2(t) = 2 (b — aizi), 2(0) = m[%x]ui((),x), 1=1,2.
xe|0,7

It is easy to see that tiiinoo zi(t) = ab—;, i = 1,2. From the comparison principle, we
obtain wu;(t,z) < z;(t), hence
limsup max wu;(t,x) < ﬁ, i=1,2.
t—+oo z€[0,7] Qi
From the above inequalities, for any € > 0 sufficiently small, there exists a 77 > 0
such that for any =z € [0,7] and ¢ > T, u;(t,z) < ;—; + &. Therefore, if follow from
the third and fourth equations of system (1.1) that
ov;
o

Let w;(t) be a solution of the following ordinary differential equation

b.
DjioAv; < —evi(t, x) + d; <Z —|—€> , xz€[0,m], t>T, i=1,2.

a”L’L

b
wi(t) = —ev; +d; (Z —|—€> . w;i(T1) = max u;(Th,z), i=1,2.
Qjj z€[0,7]

It is easy to see that
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It follows from the comparison principle that v;(¢,z) < w;(t), then

d; [ b;
limsup max v;(t,z) < — <Z —1—5) , 1=1,2.
v

t——+oo x€[0,m] e; \
Setting € — 0, we obtain
d;b;

limsup max v;(t,z) < , 1=1,2.
t—+oo z€[0,7] €i Q4

This ends the proof of Lemma 2.1.
Similar to the proof of Lemma 2.5 in [14], we obtain the following lemma.
Lemma 2.2 Ifu(t,x) is a bounded nonnegative function, where (t,z) € (0, +00)x
(0,7), and G;(x,y,t), fi(t), i = 1,2 are defined by (1.7) and (1.8) respectively, then
fori=1,2,

liminf min u(t T <hm1nf/ / Gi(x,y,t — s)fi(t — s)u(s,y)dyds

t s
<timsup [ [ Giagit = )it = s)uts.)dpds
oo J0

t—+o00

< limsup max u(t,x),
t—+oo z€[0,7]
uniformly for z € [0, 7.
Lemma 2.3 Let (uq(t,x), us(t, z),v1(t, z),v2(t, x)) be a solution of system (1.1)
with the boundary conditions (1.2) and the initial conditions (1.3) satisfying ¢;(0,x) #
0 and ¢¥;(0,z) #0, i =1,2. Assume that 1%(1 — %) > % holds, then there exists

an « > 0 such that iminf min wu (¢, z) > a.
t—+00 ze[0,n]

Proof Note that 2—;(1 - %) > 92 then we have by — ajp2 — ¢ 1L > (.

erail a2’ a22 Letars
Then for given € > 0 sufficiently small, we obtain
b dib
bl—a12<2+€>—01< Lhe +€>>0. (2.1)
a22 €1ail
It follows from Lemma 2.1 that
b d1b
limsup max wua(t,z) < —2 . limsup max vi(t,x) < L
t—+oco z€[0,7] a2 t—+oo z€[0,7] €1a11

According to Lemma 2.2, we obtain
t ™ b2
limsup/ / Gi(z,y,t — s)fi(t — s)ua(s,y)dyds < limsup max us(t,z) < —
t—s+o00 0 t——+o0 z€[0,7] a9

uniformly for z € [0, 7].
Hence, for € > 0 sufficiently small satisfying (2.1), there is a t; > 0 such that
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t s b
u/ /AGNL%t—ﬁﬁ@—SMﬂ&w@ﬁs§2+s
—00 0

a22
diby

vi(t,x) <
1(t:) e1a1

+e, t>t, xel0,n].

From the above inequalities and the first equation of system (1.1), for = €
[0, 7], t > t1, we have

0 b dib
an DiAuy > uy(t,x) |by — aiz 2 te) - c1 Loe) - anui(t,z)| .
ot a2 €1ail

From (2.1), a standard comparison argument shows that

b1 —alz(bf2+8) —Cl(Mﬁ-&)

liminf min wu(¢,x) > 222 Lt > 0.
t—+o00 z€[0,7] a11
Setting € — 0, it follows that
b1 — app 2 — oy b
liminf min wu;(¢,z) > e can 5,
t—+00 z€[0,7] a1

This ends the proof of Lemma 2.3.
Lemma 2.4 Let (uy(t,x),us(t, z),vi(t,x),va(t, x)) be a solution of system (1.1)
with the boundary conditions (1.2) and the initial conditions (1.3) satisfying ¢;(0,x) #
- d . o )
0 and ¥;(0,z) Z0, i = 1,2. Assume that S <1and t£+moo ug(t, z) = 0 uniformly
for xz € [0, 7], then

lim (uy(t, ), u2(t, z),vi(t, x),va(t, x)) = (ui™, 0,07, 0)

t——+o0

uniformly for x € [0, x].

Proof Note that . ligrn ug(t,z) = 0 uniformly for z € [0, 7], then it follows from
—+00

Lemma 2.2 that there exist 7, (7, < Tp+1), n =1,2,---, such that

t ™
0< / / Gi(z,y,t —s)f1(t — s)ua(s,y)dyds < E, for any t > 7,, x € [0, 7).
—00 J0 n
(2.2)
From Lemma 2.1, for any ¢ > 0 sufficiently small, there exists a 77 > 0 such
that for any = € [0, 7] and ¢ > T,

b
ui(t,z) < e TR def Hgl), vi(t,z) <
arl e1

(2.3)

From the above inequalities, (2.2) and the first equation of system (1.1), for z €
[0, 7], t > t; = max{T1, 71}, we have

% — D1Au > wy (t, {L‘)(bl — a12€ — Clﬁgl)

5 —anui(t, x)).
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Let wi(t) be a solution of the following ordinary differential equation

(1)

w’l (t) = wl(bl — a12¢€ — 01@1 - anwl), wl(tl) = r&in ul(tl,x), t Z tl.
z€|0,m

For any € > 0 sufficiently small, it follows from % < 1 that

b1 — a19e — Clﬁgl) > 0, (2.4)

. b1—a126—015(1) . . . .
then lim w(t) = ————2—. From the comparison principle, we obtain u; (¢, z) >
t—+o00 a1l
wi(t). Then
(1)

b1 — ajee — C10y

liminf min wu; (¢, z) >
t—+00 z€(0,7] ar

Hence, for any ¢ > 0 sufficiently small, there exists a T4 > ¢; such that for any
xz € [0,7] and t > T3,

(1
b1 — a12& — clvg ) c def

w (t,z) > ul? > 0. (2.5)

ail

It follows from (2.5) and the third equation of system (1.1) that
aaz;l — D3A’U1 > —e101 (t,l’) + dlggl), t> TQ,

Let p1(t) be a solution of the following ordinary differential equation

A0 = —epi(t) +dit”, pu(T) = min vy (o), ¢2 T
T T

(1)
Then solutions of the above equality satisfy . lir+n pi(t) = d%l. By the comparison
—+00
theorem, we have ui(t,z) > pi(t). Then

dlu(l)
liminf min vy (¢, z) > ——1—
t—+00 z€[0,7] el
Hence, for any ¢ > 0 sufficiently small, there exists a To > T such that for any
x € [0,7] and t > Ty,

(1)

d e
v (t,z) > z% —e WS, (2.6)
1
By (2.2), (2.6) and the first equation of system (1.1), we have
0
% — D1 Auy < ui(by — cwﬁl) —anur), t>7Ts.

It follows from (2.3), (2.4) and (2.6) that
(1)

by — clygl) > by — ajee — 01511 > 0.
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Therefore, by the similar arguments as above, we have

1)
. by — ¢yt
limsup max wui(t,z) < 4
t—+o00 z€[0,7] a11

For any ¢ > 0 sufficiently small, there exists a T4 > T, such that for any = € [0, 7]

and ¢t > T,
(1)

by — e
w(tz) < 2 4 = Eal, (2.7)
a1l 2
If follows from (2.7) and the third equation of system (1.1) that
%Utl — D3Av; < —eqvi(t, x) +dlﬂg2)7 relon, t>T.

By the similar arguments as above, we have

limsup max vy (t,z) < —1—
t—+oo z€[0,7] el

Hence, for any € > 0 sufficiently small, there exists a T3 > Tj such that for any
x € [0,7] and t > T,

—(2)
i(t,x) < T 4 2 g® (2.8)
el 2

From (2.2), (2.8) and the first equation of system (1.1), there exists a to =
max{T5, 72} such that for any = € [0, 7

aautl — D1Auy > uy (bl - CL12% - Cﬁ@ - allul)a t > to.
It follows from (2.3), (2.4), (2.7) and (2.8) that

2) (1)

e
by — a12§ — Clﬁg > by — a19e — civy’ > 0.

By the similar arguments as above, one has

(2)

. _
by — a125 — 10y

\Y

liminf min w(¢, ) >
t—+00 z€[0,7] arl

Therefore, for any € > 0 sufficiently small, there exists a T; > to such that for any
z € [0,7] and t > Ty,

_a
b1 — a5 — 01115 - def (2
2 pr—

t > - = 0. 2.9
o) > AL S > 29)
If follows from (2.9) and the third equation of system (1.1) that
0
% — D3Avy > —ejui(t,z) + dlggz), r€[0,7], t >Ty.

By the similar arguments as above, we have
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o . diu
liminf min vy (t,z) > ——L—
t—+00 z€[0,n] el

Hence, for any ¢ > 0 sufficiently small, there exists a Ty > T such that for any
x € [0,7] and t > Ty,

dyu’) def (2)
vy (t,r) > —— — 53— u >0 (2.10)

el
Obviously, from (2.3), (2.4) and (2.5)-(2.10), for any = € [0, 7] and ¢ > Ty, we have

0<ul’ <ul? <uyt,x) < <alV, 0<olV <o <vy(t,z) <P <V,

Repeating the above procedure, we get four sequences Hgn), ygn),ﬁgn) and ygn), n =

1,2,---, such that for n > 2

n by — ™Y ¢ n da” e
NUNUETT R
. _(n) (n) (2.11)
NON by —ap; —aivy € NON diuj €
-1 a1 n’ 1 e1 n

Clearly, we have

n)

gg (n)

<wui(t,x) < ﬂgn), ygn) <wvi(t,z) <vy’, forany x € [0,7], t > Ty,

We claim that the sequences ﬂ(ln) , Egn) are non-increasing, and the sequences ggn) , an)

are non-decreasing. To prove this claim, we will carry out by induction. Firstly, we
immediately get

(1) =(2)

I RN I IO )

<uy’, v <y

Assume that our claim is true for n, that is,

ﬂgn)<agn71)’ Egn)<ﬂgn71)7 anfl)<ﬂgn)7 an71)<ygn).

After a tedious but straightforward computation, we obtain that
(n) (n—1)

b1 — b1 —
ﬂgn—l-l) _ b —ay e _bh-ay L& Hgn),
a1l n+1 ail
d —=(n+1) d =(n)
G e T e R
e1 n+1 el n
LD — b1 — alQTLL‘H - Cl@(ln) € > bi —arzy; — Cl@gn) _ & _ oM.
- ail n+1 ail o
1
1y daud"Y € dul” e
Vq = - > - — =1
e1 n+1 €1 n
Hence, the limits of ﬂgn),ggn),ﬁgn) and y(ln), n=1,2,---, exist. Denote that
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lim @™ =m, lim ol = lim o\ =3, lim o{” =
1 = U, m U~ = Uy, m vy = v, m vy =Ug.
n—-+00 n—-+00 n—-+00 n—-+0o

Then w; > u;, U1 > v;. To complete the proof, we only need to show w; = u,, 71 =
v;. Letting n — 400 in (2.11), we obtain

by —anuy — vy =0, —e1v1 +diuy =0,
(2.12)
b1 —anu; — 11 =0, —eqvy +diug; = 0.
It follows from (2.12) that
by — anTy — 28y, =0,
e =L (2.13)

adi=
b1 —ainu; — 1 Uy = 0.

Subtracting the first equality of (2.13) from the second equality, we obtain
cidr ,_
<a11 - L)(Ul —uy) =0.
el

adi < 1 7 = uy, consequently, 7; = v;. Also, (ul*,v}*) satisfies (2.12).

€i1ail
Hence ) = u; = uj* and 77 = v; = v]", that is

Since

lim (ui(t,z),v1(t,x)) = (u7™,v7"), uniformly for x € [0, x].
t——+o00

Note that , ligrn ug(t,z) = 0 uniformly for z € [0, 7], then for any € > 0 suffi-
—+00

ciently small, there exists a Ty > 0 such that uy(t,z) < ¢, for any x € [0, 7] and
t > Tp. If follows from the fourth equation of system (1.1) that for any = € [0, 7]

0
% — D4Avy < *62’[)2(75, .T) +dse, t>"1Tp.
Therefore, we have
. d2€
limsup max wvy(t,z) = —.
t—+oo x€[0,7] €9

Setting € — 0, we obtain

tlgrnoo va(t,z) = 0, uniformly for = € [0, 7).

This completes the proof of Lemma 2.4.
Take ¢; = ¢o = 0 in system (1.1), that is, consider system (1.1) without feedback
controls. Then system (1.1) is reduced to the following system

Gu t s

87; — DiAu; =wuy (bl —aiul — a12/ / Gl(% y,t — S)fl(t - 8)“2(S,y)dyd5> )
—00 J0

811,2 t m

e DoAug = ug | be — ag ; Go(z,y,t — s) fo(t — s)ui(s,y)dyds — aseus

(2.14)
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Without lose of generality, it follows from Theorem 2.3 in [20] that we have the
following theorem.

Theorem 2.1 Let (u1(t,x),us(t,z))" be a solution of system (2.14) with the
boundary conditions (1.2) and the initial conditions (1.3) satisfying ¢1(0,x) # 0 and
¢2(03 :E) # 0.

(i) If o2 > 2—; > 32, then tl>i+moo(u1(t, x),uz(t,z)) = (T1,T2) uniformly for

biazz—ajobs a11ba—bjaz;
011a22—012a21° G11022—a12021

x € [0, 7], where (T1,T2) = ( ) is the unique positive steady
state of system (2.14).

(ii) If Z—; > 4L o> 420 then tl}?QQ(Ul(t,fL‘),UQ(t,CC)) = (b—l,O) uniformly for

az1 azz’ a1l
x € [0,m].
a a b . . by .
(iii) If g1t > 212 > 3L then tl>1+moo(u1(t, z),us(t, z)) = (0, a222) uniformly for
z € [0,7].

3 Main Results

The trivial steady state solution Ejy is of no interest here. In this paper, we
discuss the stability of the equilibria Fy, Fo and E*, and shows the influence of
feedback controls on the global stability of system (1.1). More precisely, we present
the main results of this paper.

Theorem 3.1 Let (uy(t,x),us(t,x),v1(t,x),v2(t,z)) be a solution of system
(1.1) with the boundary conditions (1.2) and the initial conditions (1.3) satisfying
¢:(0,2) Z 0 and ¥;(0,x) £ 0, i =1,2. Assume further that (Hy) and

a a
ar iz (Ha)
a21 a22

Then tligrn (ui(t, ), ua(t, x),vi(t,x),v2(t, x)) = (uf,ud,v,vy) uniformly for z €

—400

[0, 7].
Proof Define

2 2
Vi(t) = Zm/ﬂ (uZ —u; —u;In %)dx + 51‘/9(%‘ —v})?de,
i=1 i i=1

Ki(%@/»t) = Gi(.l‘,y,t)fi(t), Q= (077{)7 1=1,2,

where o = 1; 5; = %]Z’ i =1,2; n is a positive constant to be determined below.

It is easy to see that the equations of (1.1) can be rewritten as

0
N DAy = ul(t,x)< —ayr(ui(t,x) —uj) — ep (v (t, ) — o)

ot ,
can [ [ Ka(opt = s)(ua(s) - u3)dyds).
—00 JQ
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0 *

% — DoAuy = ug(t, z)( — a21/ / Ko(z,y,t — s)(u1(s,y) — uy)dyds
—ag(u2(t,x) — ud) — ca(va(t,z) —v3) ),

Ou, (3.1)

5 D3Av; = —eq(vi(t, ) — v]) + dy(ui (¢, ) — ui),

8”2 * *

e DyAvy = —eg(va(t, ) — v3) + do(ua(t, x) — us).

Calculating the derivative of V; along the solution of system (3.1), it follows that

d az 8’L *
V1 Zm/ u <1—>dx+z2ﬁl 81;( — v} )dx

= —Zsz‘UZ/ ]Vu;\ dl“—z?ﬁiDiH/ Vil *de
i=1 Q Y% i=1 Q
—na / (ui(t,z) — u1)2dx — / aga(ug(t, ) — u§)2dx

—7]1@12/ / / Ki(z,y,t — s)(ui(t, z) — ui)(ua2(s, x) — us)dydsdx
—agl/ / / Ko(z,y,t — s)(ui(s,z) — ul)(uz(t, x) — us)dydsdx
QJ—c0 JO
“2ier [ (ot.0) — oi)Pde — 2Baes [ (va(t,a) 3P (3.2)
0 0
Noting that ab < 9a2 + 5502, 0 > 0, we derive from (3.2) that
2 2
dVvi(t) . [ IVul? 2
g” < — ;mDiUi /Q 2 dz — ; 26Dt /Q |Vv;|“dx
—ma / (ui(t,z) — uT)de — a9 / (ug(t,z) — uZ)de
Q Q
01 ! *\2
+man| — K1 (x,y,t —s)(ui(t,z) — u]) dydsdx

o0, // /Kl z,y,t — s)(ua(s, w)—US)Qdydsd:n)
ran(% [ [ Katont (s i
292// | Kalarnt = aa(t.) = ) dydsdm)

2B, /Q (01(t ) — v})2dz — 2Baes /Q (st 2) — v})2dz.  (3.3)
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Using the property of K;(x,y,t), i = 1,2 as described in (1.7) and (1.8), we have

// /K z,y,t — 8)(ui(t, 2) — uf)?dydsdz

+o0
- / / Ki(w,y,7) (wi(t, ) — u)?dydrda
QJ0 Q
+oo
=// Gilw, g ) fulr) (uilt, @) — uf)*dydrde
//+Oof1 ultas)—u)drd:v

—/(uz(t z) —ul)?dz, i=1,2.
Q

Substituting the above equalities into (3.3) leads to
2 2
dvl(t) * ‘vul‘Q 2
dt § — ;szuz /Q UZQ dx — ;2BiDi+2/Q |VUZ| dx
01 *\ 2
—\mai — 7716!125 (w1 (t,z) — uy)°dz
Q
1 *\ 2
a2 — a1 5 50, (u2(t71’) —uy)°dz
+o00
+a21/ / Ko(z,y,7)(ur(t — 7, 2) — uf)’dydrda
+oo
+771a12/ / Ky (2, y,7)(ug(t — 7, 2) — u3)*dydrda

201
~2B1er /Q (v1(t,2) — v})2dz — 2Bses /Q (va(t, 2) — v3)2dz.  (34)

Now, define a new Lyapunov functional

0 “+oo t
Ve =Vi s an [ [ Kawprs,) - i) dsdydrds
QJo QJt—r

1 400 t
+n1a12/ / / Ky (z,y,7)(ug(s, z) — ub)?dsdydrdz.  (3.5)
20, Q t—r

It is derived from (3.4) and (3.5) that
2 12 2
i=1 Q Y i=1 Q@
91 *\ 2
— | an = maiz Q(ul(ta x) —uy)“dw

1
<a22 - a21292> /(U2(t»33) — u})?dw
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—+o00
tan 2 / / Ky, 1) (w (t, @) — uf)2dydrde

+oo
+771a12// Ki(z,y,r)(ua(t, 2) — ub)*dydrda

204
—2B1€q / (v1(t,z) — v)2dz — 2Bses / (va(t, ) — v3)?dw
Q Q
2
:—Z iD;u z/ |VUz| Z2ﬁ1Dl+2/ ‘VUZ| dx
i =1
0 0
— | ma11 — 7716112*1 - 6121*2 /(Ul(t7x) - UT)2dx
2 2 Q

1 1
<a22 — a1 50 — a1 50, > /(Uz(tﬁﬁ) —u3)?dw

—2f1e1 /Q(Ul(tw’ﬂ) —v})*dz — 25e2 /{2(1)2(75@) — v3)?du.

Vol.35

(3.6)

61 [%
Denote 6 = niay; — 771(1127 — a1 22 and 99 = a9g — a9y 292 — 1141255~ 29 . Then taking

= @7 b, = 0, = 2a91a11
ai2 a11a22 + ajeaoq
can lead to
5 = arrazi(ariags — aza12) 5y — Q11022 ~ A21012
aiz(ainage + a12a21) 2a11

From (Hs), we have §; > 0, ¢ = 1,2. It is easy to see that

2 2
av (t) o [ 1Vul? Z 2
T < — g niDiui / u2 dr — ' 25Z‘Di+2/ ]sz\ dz

_25/ ui(t,z) — uf dx—zzﬁzez/ (vi(t,2) — o}
Q

For any T' > 0, integrating (3.7) over [0, 7], we derive that
2
> mDij
i=1

2 2
+ > dilllui = ui[[[3 + Y 2Bseillloi — ][5 < V(0).
i=1 i=1

Diol||Vuilll3

From (3.8) we can conclude that

[

<G lIVulll < D

(3.9)
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and
i —ugllle < By |Jvi — o7 |l]2 < Fi, (3.10)

for some constants C;, D;, E;, F;, i = 1,2 independent of T.
Noting that u;(¢,x), vi(t,z), ¢ = 1,2 are bounded, it follows from (3.9) that

[[Vuilll2 < Qi (3.11)

for some constants @;, i = 1,2 independent of 7. We derive from (3.9)-(3.11) that
ui(t,z) — uf,vi(t,z) — vf € L*((0,00); WH2(Q; R)), i = 1,2 thus

Jim i) = ui e =0, T [Joi(t) = vf 2 =0, i=1,2

We obtain from the Sobolev compact embedding theorem (see, for example [21])
that

lim |Jui(¢) = willc@.r) = 0

M hmoo HUz(t) —; HC(Q,R) = O7 7 = 17 2.

t—+

This completes the proof of Theorem 3.1.

Remark 3.1 If % > Z—; > %, from (i) of Theorem 2.1, the unique positive
steady state (Z1,72) of system (2.14) is globally stable. Note that St > Z% > o
implies (H;) and (Hg) hold. Thus it follows from Theorem 3.1 that the unique
positive steady state E*(uj,u3, vy, v5) of system (1.1) is still globally stable, that
is, in this case, feedback controls only change the position of the unique positive
equilibrium and retain the stable property.

Remark 3.2 If % > % > %, from (ii) of Theorem 2.1, the species ug in
system (2.14) is extinct. Choosing suitable values of ¢1, e, d;, by Theorem 3.1, the
species ug in system (1.1) is globally stable, that is, in this case, the suitable feedback
control variables can make extinct species ug become globally stable in system (1.1),

Remark 3.3 If Z—; > % > 2—;, from (iii) of Theorem 2.1, the species u; in
system (2.14) is extinct. Choosing suitable values of cg, e2, d2, by Theorem 3.1, the
species u; in system (1.1) is globally stable, that is, in this case, suitable feedback
control variables can make extinct species u; become globally stable in system (1.1).

Now, we study the stability of semi-trivial steady state solution of system (1.1).

Theorem 3.2 Let (ui(t,x),us(t,x),v1(t,x),v2(t,z)) be a solution of system
(1.1) with the boundary conditions (1.2) and the initial conditions (1.3) satisfying

¢i(0,x) £ 0 and ¥;(0,x) £0, i =1,2. Assume further that

b d b d
1(1_011>2a117 1<1_011>>al27 (Hs)
bo erat az1’ by eran an?

thent liin (ur(t, @), ua(t, x), v1(t, z), v2(t, z)) = (7*,0,ui*, 0) uniformly for x € [0, ].
—+00
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Proof From Lemma 2.1 we have

b; d;b;
limsup max u;(t,z) < —, and limsup max v;(t,z) < —-, i=1,2.

t—+oo z€[0,7] Qi t—+oo x€[0,7] eiai/
Hence, for any € > 0 sufficiently small, from Lemma 2.2, there exists a 71 > 0 such
that for any = € [0, 7] and ¢ > T1,

t ™
ug(t,z) < ﬂgl), / / Ki(z,y,t — s)ua(s,y)dyds < ﬂ(zl), (3.12)
—o0 JO

where
() _ b _
Uy _CL722+67 K1<$,y,t)—G1(.’L',y,t)f1(t)
For any ¢ > 0 sufficiently small, it follows from Lemma 2.2 that there exist positive

constants 7, (7, < Tpt1), n = 1,2, such that
dib
w(te) < L4 S b, zeo,. (3.13)
€i1a11 n

From (3.12), (3.13) and the first equation of system (1.1), for z € [0,n], t > t; =
max{T1, 71}, we have

0 dqb
S Di1Auy > ug (bl — algﬂgl) - Cl( Lhe + 6) — auul).
ot €1a11
For any ¢ > 0 sufficiently small, it follows from (Hs) that
dq1b
by — algﬁgl) — Cl< Lt + E) > 0, (3.14)
€1a11

then from the comparison principle, we obtain

—(1) diby
bl — a12u2 — C1 (€1a11 + 8)

liminf min wu (¢, x) >
t—+o0 z€[0,7] a11

Hence, for any € > 0 sufficiently small, from Lemma 2.2, there exists a T > t; such
that for any = € [0, 7] and ¢ > Tb,

t s
w(t,z) > o) / / Ka(w,y,t — shur (s, y)dyds > ulV,  (3.15)
—o0 JO

where

—(1) dib
) = bl _ alQU2 _ 61(61111111 + 8) — & > 07

(1
t ail
KQ(xa Y, t) = GQ(xa Y, t)fQ(t)'

It follows from (3.15) and the second equation of system (1.1) that

Quz _ DyAuy < ug(be — a21g§

BN 1)—a22u2), t>1Ts.
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If by — a21g§1) < 0, then from the comparison principle, we obtain . lir+n ug(t,x) =0
—+o00

uniformly for = € [0,7]. Note that (Hg) implies % < 1, by Lemma 2.4, then

1tligl (ur(t, ), ug(t, z), v1(t, z), v2(t, x)) = (x7%,0,u7*,0) uniformly for x € [0, ],
—+00

that is, the proof is completed. Next, we consider by —asy ggl) > 0. By the comparison
principle, we have

(1)

by — as1uy

IA

limsup max wus(t, z) <
t—+oo z€[0,7] a2

Hence, for any € > 0 sufficiently small, from Lemma 2.2, there exists a T3 > T5 such
that for any = € [0, 7] and ¢ > T3,

t
ug(t,x) < E(Q), Ki(x,y,t — s)ua(s,y)dyds < u( ) 3.16
2 Q

where W
ng) _ b —aniy L e
ago 2
By (3.13), (3.16) and the first equation of system (1.1), for z € [0,7], t > t2 =
max{T53, 72}, we have

% DA >y <b1 _ algug ) _ Cl(ﬂ + f) — a11u1>.

ot eian 2
For any ¢ > 0 sufficiently small, it follows from (3.12), (3.14) and (3.16) that
dib
b1 —algug ) —Cl<L + E) > 0.
€e1a11 2

By the comparison principle, we have

b1 — argy”) — e (A% + 5)

liminf min w(¢,z) >
t——+00 z€[0,7] ai

Hence, for any € > 0 sufficiently small, from Lemma 2.2, there exists a Ty > to such
that for any = € [0, 7] and ¢t > Ty,

ui(t,x) > @&2), / / Ko(x,y,t — s)ui(s,y)dyds > u( ) (3.17)
where @)
@  b—apu —a(@P+5) .
Ql = ——=>0.
ail 2

From (3.12) and (3.15)-(3.17), for any x € [0, 7] and t > T}, we have

(2) _ =(1) (1) (2)

0<wug(t,x) <uy’ <uy’, 0<uy’ <uy’ <u(t z).
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(n) (n)

Repeating the above procedure, we get two sequences @y, and uy ', n = 1,2,---,
such that for n > 2

(n—1)

by —
Egn) _ % ajwl n %7
22
(1) dib e (3.18)
ggn) _ by — argy  — cl(ellalll +3) _f .0
ail n
Without loss of generality, we assume by — aglggn) >0, n=1,2---. Then

0 <wus(t,z) < Eg"), 0< QY‘) <wui(t,x), forany x € [0,7], t > Top.

. —(n o . n
We claim that the sequences ug ) are non-increasing, and the sequences gg ) are

non-decreasing. To prove this claim, we will carry out by induction. Firstly, we
immediately get
o <, o <o

Assume that our claim is true for n, that is,

ﬂgn) < ﬂén—l)’ an—l) < an)
By computation, we have
(n) (n—1)
ﬂgn-i-l) _ by — a21@1n n € < by — a21y1n L& ﬂgn),
422 (n+1) " 1d b (122 "
—(n
u(n-l—l) _ b — ai2uy - Cl(ellalll + nL—&—l) . €
=1 ) all n+1
—(n di1b
- bl — a12Uy © — Cl(ellallli + %) B E . u(n)
=
aii
Therefore, the limits of ﬂgn) and ggn) exist. Denote that
lim Hgn) = Uo, lim ygn) =u.
n—+o00 n—+400
Note that (Hs) holds, then if follows from Lemma 2.3 that lim inf min u, (¢, z) >

a, that is u; > a > 0. Obviously we > 0. To prove tlir+n ug(t, z) = 0 uniformly
— 400

for z € [0, 7], it suffices to show that Wy = 0. Otherwise, we suppose that uy > 0.

Letting n — 400 in (3.18), we obtain

c1dy _
by (1 - ) — a1y — ajpz = 0,
erait

by — as1u; — aztia = 0.

(3.19)

Multiplying the second equation of (3.19) by —l%(l — ﬂ) and adding it to the

€1a11

first equation of (3.19), we obtain
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|:a22b71 (1 — ad ) — alg]ﬂ2 = [all — a21ﬁ<1 — ﬂ)}gl (320)
bo e1a11 bo €1a11
From the first inequality in condition (Hs), u; > 0 and (3.20), we have
b d
[ami <1 _aa ) — a12:| uy < 0. (3.21)
ba e1a11

It follows from the second inequality in condition (Hg) and (3.21) that uy < 0, which
is a contradiction, then we obtain tligl uz(t,z) = 0 uniformly for x € [0, 7]. Hence,
—+o00

by Lemma 2.4, we have t_13+moo(u1(t,:E),uz(t,x),vl(t,x),UQ(t,a:)) = (z7*,0,ui*,0)
uniformly for « € [0,7]. This ends the proof of Theorem 3.3.
Using Lyapunov functional method, another sufficient conditions which guaran-
tee the stability of semi-trivial steady state solution of system (1.1) are obtained.
Theorem 3.3 Let (uy(t,x),us(t,x),v1(t,x),v2(t,z)) be a solution of system
(1.1) with the boundary conditions (1.2) and the initial conditions (1.3) satisfying
¢i(0,z) # 0 and ¥;(0,x) #0, i =1,2. Assume further that

by _ aner+cadi  ann _ ape

—_> Y — > —, (Hy)
by azieq a1 a2

then t—ligl (ur(t, @), ua(t, x), v1(t, z), v2(t, z)) = (uf*,0,v7*,0) uniformly for z € [0, 7].
Proof Define
u1

Vi(t) = 771/ (ul—uf*—uf* In **)dﬂfﬂh/ U2d$+/81/ (1 —v7")?dz + ﬂQ/ vidz,
0 u 0 Q Q

1

Kl(xayut) = Gl($7y7t)fl(t)7 Q= (0771-)7 i = ]-725

where 2 = 1; f; = §F*, i =1,2; 11 is a positive constant to be determined below.
System (1.1) can be rewritten as

ou
a—tl — D1 Auy = uy(t, x)( —a(ui(t,z) —uy™) — er(vi(t, ) — vi™)
t
CL12/ / Kl (CC, yat - 5)“2(85 y)dde)
—o0 JQ
0 *
% — DQAUQ = UQ(t, l‘) (bg — aglu’{ — CLQQUQ(t, .73) — CQ’UQ(t, 1‘)
t
—a21/ / Ko(z,y,t — s)(ui(s,y) — uf*)dyds), (3.22)
—oc0 JQ
ov
O Dyhor = —ex(vr(6,2) o) + d (a1, ) — ),
81)2

5 DyAvy = —equa(t, ) + dous(t, x).
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If follows from the first inequality in condition (H4) that be — agiui* < 0. Using
similar arguments to those in the proof of Theorem 3.1, we have

tlir+n (ui(t, z), u2(t, x), vi(t, x),v2(t, x)) = (u7™,0,07",0) uniformly for = € [0, 7.
—T00

This ends the proof of Theorem 3.3.

Remark 3.4 If Z—; > % > %, from (ii) of Theorem 2.1, the species u9 in system
(2.14) is extinct. By Theorem 3.2 or 3.3, choosing suitable values of ¢1,e1,d;, the
species ug in system (1.1) is still extinct, that is, in this case, the suitable feedback
control variables can make extinct species uo still keep the property of extinction in
system (1.1).

Similar to the proofs of Theorems 3.2 and 3.3, we have the following theorem.

Theorem 3.4 Let (uy(t,x),u2(t,x),v1(t,z),v2(t,z)) be a solution of system
(1.1) with the boundary conditions (1.2) and the initial conditions (1.3) satisfying
¢i(0,z) £ 0 and ¥;(0,x) Z0, i =1,2. Assume further that

b d b d
1<an<1_022>, 1§a12<1_022> (Hs)
by an €2022 by T an €2022

by a12€e2 a2 _ ai11

—_——, =< — H

by agez+cody a2 an (Ho)
hold, then lim (ui(t,x),ua(t,z),vi(t,x),va(t,z)) = (0,25%,0,us*) uniformly for

t—+o00

or

z € [0,7].
Note that when ¢; = 0, ¢ = 1,2, system (1.1) is reduced to system (2.14). Similar
to the analysis of Theorems 3.1, 3.2 and 3.4, we have the following corollary.
Corollary 3.1 Let (uy(t,z),uz(t,z))T be a solution of system (2.14) with the
boundary conditions (1.2) and the initial conditions (1.3) satisfying ¢1(0,x) Z 0 and
¢2(0, a?) ;7é 0.
i) If ¢ > ,% > 42 then tE+mm(u1(t,x),u2(t,x)) = (%1,T2) uniformly for
x € [0, 7|, where (T1,T2) is the unique positive steady state given by Theorem 2.1.
(i) If oo > a1 b 5 a1z ypep t_lgrnoo(ul(t,x),uQ(t,x)) = (&1,0) wniformly for

by = a21’ by azz’ ail
z € [0,7].
a b1 a b : _ b ;
(iif) If g2t > ¢, o2 > oL then t£+moo(u1(t,x),u2(t,a:)) = (0, ;%) uniformly for
x € [0,m].

Remark 3.5 When ¢; = 0, ¢ = 1,2, conditions (Hs) and (Hy4) are changed
into & > @ b a1 apg by o %, respectively. Obviously, lg—; > 4l and

b by = a1’ b2 a2 b b2 az1 azy
B > 12 are weaker than 2 > 2L > %2 Then, the conditions of Corollary 3.1
2 a22 2 a1 a2

are weaker than those of Theorem 2.1. Hence, Theorems 3.1-3.4 and Corollary 3.1
generalize and improve the results of [20].



No.1 Z. Li, etc., Stability of Lotka-Volterra System 93

Remark 3.6 If system (1.1) is reduced to system (1.5), Theorems 3.1-3.4 gen-
eralize the main results of [10]. Especially, it is hard to construct the extinction of
Lyapunov functional to study the extinction of system (1.1) as in [10]. Hence, in
Theorem 3.2, we use the iterative technique method to investigate the extinction of
system (1.1).

4 Example

In this section, we give some examples to show the feasibility of our results.

_t
In the following, we always take f;(t) = %e 7 and
1 2
Gi(z,y,t) = —+ — e Pin’t cosna sin ny.
i(@,y,t) . + . ngl Y

However, it is difficult for us to carry out numerical simulations directly because
of nonlocal term. Define

t s 1 t—s
Gltn) = [ [ Gilot-9 e Tl pdids, i) ij=12 (@)
—00 J0 T;

Similar to [19], the equations of (1.1) are rewritten as:

ou

aftl — D1Auy = uy (by — arjug — a12Q1 — c1v1),

ou

87752 — DyAugy = uy(by — az Q2 — aguy — cav2), (42)
0 1 0 1 )
991 _ DiAQr = —(uz — Q1), 09 DyAQr = —(u1 — Q2),

a@t T a@t Ty

—;tl — D3Av; = —eqvr + dyug, 7(;;2 — D4Avz = —eavz + daus.

Each component is considered with homogeneous Neumann boundary conditions;
additionally, we need the following initial condition

t s 1 =
QZ(va) = / / Gi(xayv _s)ie” Uj(S,y)dde, { 7& ja Za] = 172 (43)
—00 J0 T

Similar to (4.1)-(4.3), the equations of (2.14) are rewritten as:

0
% — DiAu; =y (bl —aiul — a12Q1)7
19}
% — DyAuy = ug(by — azn Q2 — aseus),
o DAa 2 Q)

1
% — DyAQy = —(u1 — Q2).

T

Consider the following system
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t ™
% —Didu =u (4 —2u - 2/ / Gi(z,y,t — 3)6_(t_s)u2($,y)dyds> :
—o0 J0

a t s 1 s
% — DoAug = uo <1 - / / Go(x,y,t — s)fe_tTm(S,y)dde - 2U2> )
—o0 J0

2
(4.5)
where b1 = 4; ajl = 2; a2 = 2; bQ = 1; as1 = 1; a2 — 2; T = 1; T2 — 2. ObViOllSly
Z—; > b > 22 holds, it follows from (i) of Theorem 2.1 that system (4.5) has a
semi-trivial steady state (3,0), which attracts all positive solutions of system (4.5).
Now, we show the influence of feedback controls on dynamic behaviors of system

(4.5), and consider the following feedback controls system (4.6)

t s
%—D1Au1 =u <4 —2u1 — 2/ / Gi(z,y,t — s)e_(t_s)uQ(s, y)dyds — 011)1) ,
—00 J0

Oua b 1 s
————DoAus =usg [ 1 — Go(z,y,t —s)=e 2 uy(s,y)dyds — 2us — cove | ,
ot —o Jo 2

0
%—D3AU1 = —e1v1 + dyuq, % — DyAvy = —egvg + dous.

(4.6)
Example 4.1 In system (4.6), set ¢; = 7; e; = 1; d = 0.5; cog = 2; ey =
2; do = 1. By computation, one has
matah g by a0 geeey ogpg WL 92
aziel ba agzes + cady as  a
then conditions (H;) and (Hg) hold. It follows from Theorem 3.1 that system (4.6)
has a unique positive steady state E*(0.689 7,0.103 4, 0.344 8,0.051 7), which attracts
all positive solutions of system (4.6). Note that species ug is extinct in system (4.5).
However, species ug is globally stable in system (4.6), that is, feedback controls can
make an extinct species in system (4.5) become globally stable. Figure 1 shows the
dynamics behavior of system (4.6).

u, 1(t,x)

(a) ug

Figure 1: Dynamics behavior of system (4.6) with ¢; = 7; e; = 1; d1 = 0.5; co = 2; e3 = 2;
dy = 1.
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Example 4.2 Insystem (4.6),set ¢c; = 3; e1 = 1; d = 0.5; ca = 2; eg = 2; dg =
1. By computation, (Hy) holds, but (Hs) is not satisfied, then it follows from The-
orem 3.2 that system (4.6) has a semi-trivial steady state E;(1.1429,0,0.5714,0),
which attracts all positive solutions of system (4.6). Hence, by choosing suitable
feedback controls variables, the extinct species ug in system (4.5) is still extinct.
Figure 2 shows the dynamics behavior of system (4.6).

(a) uy (b) uz

Figure 2: Dynamics behavior of system (4.6) with ¢; = 3; e1 =1; dy =0.5; ca = 2; ea = 2;
dy = 1.

Example 4.3 In system (2.14), set by = 3; a;1 = 1; a12 = 2; by = 1; ag =
1; ass = 1; 4 = 1; 79 = 2. Obviously Z—;i < %, which does not satisfy the
condition of Theorem 2.1 (ii), thus (ii) of Theorem 2.1 fails to study system (2.14).
But 2—; > o Z—; > 12 hold, then it follows from (ii) of Corollary 3.1 that system
(2.14) has a semi-trivial steady state (3,0), which attracts all positive solutions of

system (2.14). Figure 3 shows the dynamics behavior of system (2.14).

0
space x time t space x 0 time t

(a) ug (b) uz

Figure 3: Dynamics behavior of system (2.14) with by = 3; a11 = 1; @12 = 2; ba = 1; a1 = 1
aggzl; ’7'1:1; 7'2:2.
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Example 4.4 In system (1.1), b;,a;5,7;, %,j = 1,2 are the same as those in
Example 4.3. Let ¢; = 0.5; e; = 1; dy = 0.5; co = 2; eg = 2; dy = 1. Obviously (Hy)
holds, but (Hs) is not satisfied, then it follows from Theorem 3.3 that system (1.1)
has a semi-trivial steady state E1(2.4,0,1.2,0), which attracts all positive solutions
of system (1.1). Then, the extinct species ug in system (1.1) retains the property of
extinction under suitable feedback controls variables. Figure 4 shows the dynamics
behavior of system (1.1).

space x 0 o time t space x 0 o time t

(a) uy (b) w2

Figure 4: Dynamics behavior of system (1.1) with by = 3; a1 = 1; a12 = 2; by = 1; ag; = 1;
ass=1;¢1=05;e1=1;d1 =05;c0=2;e0=2;do =1, 71 =1; 79 = 2.

Consider the following system

t ™
881;1 - Didu=u (1 —3uy — 2/ / Gi(z,y,t — 3)6_(t_s)ug(s,y)dyds) :
—o0 J0

Oua t i 1 _t-s
—= — DyAug = uy <1 - / / Gao(z,y,t —s)=e 2 uy(s,y)dyds — U2> ,

ot R 2
(4.7)
where b1 = 2; aj] — 3; a12 = 1; bg = 1; as1 — 1; a2 — 1; T = 1; T2 — 2. Then %; >
Z—; > 12 holds. It follows from (i) of Theorem 2.1 that system (4.7) has a unique
positive steady state (0.5,0.5), which attracts all positive solutions of system (4.7).
Example 4.5 In system (1.1), b;, a;j, 7, ,j = 1,2 are chosen the same as those
in system (4.7). Let ¢ = 1; e = 1; di = 0.5; ca = 2; ea = 2; do = 1. Note that
o> Z—; > 12 implies (H;) and (Hs) hold, then it follows from Theorem 3.1 that
system (1.1) has a semi-trivial steady state E*(0.5,0.25,0.25,0.125), which attracts
all positive solutions of system (1.1). Hence, in this case, feedback controls have no
influence on the stability of system (1.1), that is, feedback controls only change the
value of the positive steady state and keep the property of stability. Figure 5 shows

the dynamics behavior of system (1.1).
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space x 0 o time t space x 0 o

time t

(a) uy (b) uz
Figure 5: Dynamics behavior of system (1.1) with by = 2; a1 = 3; a12 = 1; by = 1; a9 = 1;
ass=1;c1=1;e1=1;d1 =05, ca =2, e =2;do =1, 71 =1, 70 = 2.

Consider the following system
o t ™
%—DlAulzul <1—3u1—2/ / Gl(ac,y,t—s)e_(t_s)ug(s,y)dyds> ,
(4.8)

—ooJ0
6u2

— —DoAug=1us <1—/t /WGg(z,y,t—s)1e_t_2su1(s,y)dyds—u2> ,
ot _ooJo 2
where b1 = 1; a11 = 3; a1 =2; bo =1; ao1 = 1; aso = 1; 4 = 1; 79 = 2. Then
o> > Z—; holds. It follows from (iii) of Theorem 2.1 that system (4.8) has a
semi-trivial steady state (0, 1), which attracts all positive solutions of system (4.8).
Example 4.6 In system (1.1), b;,a;5, 7, i,j = 1,2 are chosen the same as
those in system (4.8). Let ¢ = 1; eg = 1; dy = 0.5; co = 3; e2 = 2; dy = 5.
Obviously, (H;) and (Hz) hold, then it follows from Theorem 3.1 that system (1.1)
has a semi-trivial steady state £*(0.23,0.09,0.11,0.23), which attracts all positive
solutions of system (1.1). Hence, suitable feedback controls can make an extinct
species up in system (4.8) become globally stable. Figure 6 shows the dynamics
behavior of system (1.1).

space x 0 o time t space x 0 o

(a) ur (b) u2
Figure 6: Dynamics behavior of system (1.1) with by = 1; a1 = 3; a12 = 2; by = 15 a1 = 1;
ase=1;c1=1;e1=1;d1 =0.5;ca=3;e5=2;do =5, 71 =1; 70 = 2.
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