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Abstract

Lyapunov direct method is employed to investigate the asymptotic be-
haviour and the boundedness of solutions to a certain third-order differential
equation with delay and some new results are obtained. Our results improve
and complement some earlier results. Two examples are given to illustrate the
importance of the topic and the main results obtained.
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1 Introduction

Differential equations (DEs) are used as tools for mathematical modeling in many

fields of life science. When a model does not incorporate a dependence on its past

history, it generally consists of so-called ordinary differential equation (ODEs). Mod-

els incorporating past history generally include delay differential equations (DDEs)

or functional differential equations (FDEs). In applications, the future behaviour of

many phenomena is assumed to be described by the solutions of an DDEs, which

implies that the future behaviour is uniquely determined by the present and inde-

pendent phenomena of the past. In FDEs, the past exerts its influence in a signifi-

cant manner upon the future. Many phenomena are more suitable to be described

by DDEs than ODEs. In many processes including physical, chemical, political,

economical, biological, and control systems, time-delay is an important factor. In

particular the third-order delay differential equations usually describe the phenom-

ena in various areas of applied mathematics and physics, for instance deflection of
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bucking beam with a variable cross-section, electromagnetic waves, gravity driven

flows, etc.

As we know the study of qualitative properties of solutions, such as stability and

boundedness, is very important in the theory of differential equations. Since it is

difficult to solve solutions to DEs, Lyapunov method is usually used to study the

stability and boundedness of the equations.

Many good results have been obtained on the qualitative behaviour of solutions

to some kinds of third-order DDEs by Zhu [23], Sadek [14–16], Abou-El-Ela et

al. [1], Tunç [18–22], Ademola et al. [2,3], Afuwape and Omeike [4], Bai and Guo [5],

Shekhare et al. [17], Remili et al. [11], and the references therein.

Numerous authors have obtained some very interesting results about the asymp-

totic behaviour of solutions to third-order DDEs, for example, Chen and Guan [7],

Mahmoud [8], Remili et al. [10, 12,13], etc.

In 2016, Remili and Oudjedi [12] studied the ultimate boundedness and the

asymptotic behaviour of solutions to a third-order nonlinear DDE of the form

[Ω(x, x′)x′′]′+(f(x, x′)x′)′+g(x(t−r(t)), x′(t−r(t)))+h(x(t−r(t))) = p(t, x, x′, x′′),

where f, g, h,Ω and p are continuous functions in their respective arguments with

g(x, 0) = h(0) = 0.

In 2017, Remili et al. [13] investigated the stability and ultimate boundedness

of solutions to a kind of third-order DDE as follows

[g(x′′(t))x′′(t)]′ + (h(x′(t))x′(t))′ + (ϕ(x(t))x(t))′ + f(x(t− r)) = e(t),

where r > 0 is a fixed delay; e, f, g, h and ϕ are continuous functions in their respec-

tive arguments with f(0) = 0.

The main objective of this research is to study the asymptotic stability and the

boundedness of solutions to a nonlinear third-order DDE

[h(x(t))x′′(t)]′ + [p(x(t))x′(t)]′ + g(x′(t− r(t))) + f(x(t− r(t)))

= e(t, x(t), x′(t), x′′(t)), (1.1)

where h, p, g, f and e are continuous functions with g(0) = f(0) = 0, and the deriva-

tives h′(u) = dh
du and p′(u) = dp

du exist and are also continuous.

We can take

h′(x(t))x′(t) = θ1, p′(x(t))x′(t) = θ2. (1.2)

Remark In equation (1.1), if h(x(t)) = 1 and p(x(t)) = a, then equation (1.1)

is reduced to the equation in Sadek [14].
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2 Stability Result

To prove the stability result, we shall give some important theorems about the

stability of solutions to DDEs.

Consider the general autonomous DDE

ẋ(t) = f(xt), xt(θ) = x(t+ θ), −r ≤ θ ≤ 0, t ≥ 0, (2.1)

where f : CH → Rn is a continuous mapping, f(0) = 0. We suppose that f maps

closed bounded sets into bounded sets of Rn. Here (C, ∥ · ∥) is the Banach space of

continuous functions ϕ : [−r, 0] → Rn with supremum norm, r > 0; CH is an open

ball of radius H in C; CH := {ϕ ∈ (C[−r, 0],Rn) : ∥ϕ∥ < H}.
Theorem 2.1[6] Let V : CH → R be a continuous functional satisfying a local

Lipschitz condition, V (0) = 0, such that

(i) W1(|ϕ(0)|) ≤ V (ϕ) ≤W2(∥ϕ∥), where W1(r) and W2(r) are wedges;

(ii) V̇(2.1)(ϕ) ≤ 0, for ϕ ∈ CH .

Then the zero solution to (2.1) is uniformly stable.

Theorem 2.2[6] If there are a Lyapunov functional for (2.1) and wedgesWi (i =

1, 2, 3), such that

(i) W1(|ϕ(0)|) ≤ V (ϕ) ≤W2(∥ϕ∥);
(ii) V̇(2.1)(ϕ) ≤ −W3(|ϕ|).

Then the zero solution to (2.1) is uniformly asymptotically stable.

Now, we shall give the main theorem and its proof.

Theorem 2.3 Suppose that there are positive constants a0, a1, a2, a3, b1, b2, L1,

L2, γ and β which satisfy the following conditions:

(i) |f ′(x)| ≤ L1, sup {f ′(x)} = b1, f(x)sgnx > 0, for x ̸= 0;

(ii) g(0) = 0, |g′(y)| ≤ L2,
g(y)
y ≥ b2, y ̸= 0;

(iii) 0 < a2 ≤ h(x) ≤ a0, a1 ≤ p(x) ≤ a3;

(iv) 0 ≤ r(t) ≤ γ, r′(t) ≤ β, 0 < β < 1;

(v) a1b2 − a2b1 > 0, a1 − a0µ > 0;

(vi)
∫∞
−∞[|h′(u)|+ |p′(u)|]du <∞,

provided that

γ<min

{
(1−β)(a1b2−a2b1)

2µ(L1+L2)(1−β)+L1(1+a2µ)
,

a2(1−β)(a1b2−a2b1)
2b2

{
L2{1+µa2+a22(1−β)}+L1a22(1−β)

}},
where

µ =
a1b2 + a2b1

2a2b2
.

Then the zero solution to (1.1) with e = 0 is uniformly asymptotically stable.

Proof When e = 0, equation (1.1) is equivalent to
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x′ = y, y′ =
z

h(x)
,

z′ = −p(x) z

h(x)
− θ2y − f(x)− g(y)

+

∫ t

t−r(t)
f ′(x(s))y(s)ds+

∫ t

t−r(t)
g′(y(s))

z(s)

h(x(s))
ds. (2.2)

The Lyapunov functional of the above system could be defined as:

V (xt, yt, zt) = µ

∫ x

0
f(ξ)dξ + f(x)y +

µ

2
p(x)y2 +

∫ y

0
g(η)dη + µyz +

1

2h(x)
z2

+λ

∫ 0

−r(t)

∫ t

t+s
y2(θ)dθds+ δ

∫ 0

−r(t)

∫ t

t+s
z2(θ)dθds. (2.3)

From conditions (i)-(iii) and using the mean-value theorem, we get

V (xt, yt, zt) ≤ µ

∫ x

0
L1ξdξ + L1xy +

µa3
2
y2 +

∫ y

0
L2ηdη + µyz +

1

2a2
z2

+λ

∫ t

t−r(t)
(θ − t+ r(t))y2(θ)dθ + δ

∫ t

t−r(t)
(θ − t+ r(t))z2(θ)dθ.

According to the inequality xy ≤ 1
2(x

2 + y2), we find

V (xt, yt, zt) ≤
µL1

2
x2 +

L1

2
x2 +

L1

2
y2 +

µa3
2
y2 +

L2

2
y2 +

µ

2
y2 +

µ

2
z2 +

1

2a2
z2

+
λ

2
r2(t)∥y∥2 + δ

2
r2(t)∥z∥2.

Considering r(t) ≤ γ in (iv), we obtain

V (xt, yt, zt) ≤
(µ+ 1)L1

2
∥x∥2 + 1

2
{L1 + L2 + µa3 + µ+ λγ2}∥y∥2

+
1

2

{
µ+

1

a2
+ δγ2

}
∥z∥2.

Then there exists a positive constant D0 such as

V (xt, yt, zt) ≤ D0(x
2 + y2 + z2). (2.4)

Since
∫ 0
−r(t)

∫ t
t+s y

2(θ)dθds and
∫ 0
−r(t)

∫ t
t+s z

2(θ)dθds are non-negative, from condi-

tions (i)-(iii) of Theorem 2.3, we find

V (xt, yt, zt) ≥ µ

∫ x

0
f(ξ)dξ + f(x)y +

µa1
2
y2 +

b2
2
y2 + µyz +

1

2a0
z2.

It follows that

V (xt, yt, zt) ≥
1

2b2
(b2y + f(x))2+µ

∫ x

0
f(ξ)dξ+

µa1
2
y2− 1

2b2
(f(x))2+µyz+

1

2a0
z2.
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Then we have

V (xt, yt, zt) ≥
1

2b2
(b2y + f(x))2 +

1

2b2y2

[
4

∫ x

0
f(ξ)

(∫ y

0
(µb2 − f ′(ξ))ηdη

)
dξ

]
+
a0
2

(
µy +

z

a0

)2
+
µ

2
(a1 − a0µ)y

2.

Since f(x)sgnx > 0, a1 − a0µ > 0, µb2 − f ′(ξ) ≥ µb2 − b1 =
a1b2−a2b1

2a2
> 0, we find

V (xt, yt, zt) ≥
1

2b2
(b2y + f(x))2 +

a0
2

(
µy +

z

a0

)2
.

There exists a positive constant D1 such that

V (xt, yt, zt) ≥ D1(x
2 + y2 + z2). (2.5)

Now, differentiating both sides of (2.3) along the solution to system (2.2) and from

(1.2), we have

dV

dt
= f ′(x)y2 − µθ2

2
y2 + µ

z2

h(x)
− µyg(y)− p(x)

(h(x))2
z2 − θ1

2(h(x))2
z2 − θ2

h(x)
yz

+
(
µy +

z

h(x)

)∫ t

t−r(t)
f ′(x(s))y(s)ds+

(
µy +

z

h(x)

)∫ t

t−r(t)
g′(y(s))

z(s)

h(x(s))
ds

+λy2r(t)− λ(1− r′(t))

∫ t

t−r(t)
y2(θ)dθ + δz2r(t)− δ(1− r′(t))

∫ t

t−r(t)
z2(θ)dθ.

By conditions (i)-(iii), we obtain

dV

dt
≤ b1y

2 − µθ2
2
y2 +

µ

a2
z2 − µb2y

2 − θ1
2a20

z2 − a1
a22
z2 − θ2

a0
yz

+
(
µy +

z

a2

)∫ t

t−r(t)
f ′(x(s))y(s)ds+

(
µy +

z

a2

)∫ t

t−r(t)
g′(y(s))

z(s)

h(x(s))
ds

+λy2r(t) + δz2r(t)− λ(1− r′(t))

∫ t

t−r(t)
y2(θ)dθ − δ(1− r′(t))

∫ t

t−r(t)
z2(θ)dθ.

By conditions |f ′(x)| ≤ L1 and |g′(y)| ≤ L2, using the inequality xy ≤ 1
2(x

2 + y2),

we conclude

dV

dt
≤ b1y

2 − µθ2
2
y2 +

µ

a2
z2 − µb2y

2 − θ1
2a20

z2 − a1
a22
z2 +

θ2
2a0

y2 +
θ2
2a0

z2

+
µL1

2
r(t)y2 +

µL1

2

∫ t

t−r(t)
y2(s)ds+

L1

2a2
r(t)z2 +

L1

2a2

∫ t

t−r(t)
y2(s)ds

+
µL2

2
r(t)y2 +

µL2

2a22

∫ t

t−r(t)
z2(s)ds+

L2

2a2
r(t)z2 +

L2

2a32

∫ t

t−r(t)
z2(s)ds

+λy2r(t) + δz2r(t)− λ(1− r′(t))

∫ t

t−r(t)
y2(θ)dθ − δ(1− r′(t))

∫ t

t−r(t)
z2(θ)dθ.
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It follows from condition (iv) that

dV

dt
≤ −

{
µb2 − b1 +

µθ2
2

− θ2
2a0

− µL1

2
γ − µL2

2
γ − λγ

}
y2

−
{a1
a22

− µ

a2
+

θ1
2a20

− θ2
2a0

− L1

2a2
γ − L2

2a22
γ − δγ

}
z2

+
{µ
2
L1 +

L1

2a2
− λ(1− β)

}∫ t

t−r(t)
y2(θ)dθ

+
{ µ

2a22
L2 +

L2

2a32
− δ(1− β)

}∫ t

t−r(t)
z2(θ)dθ.

Take
λ =

(µ
2
L1 +

L1

2a2

) 1

1− β
and δ =

( µ

2a22
L2 +

L2

2a32

) 1

1− β
,

so the above equation becomes

dV

dt
≤ −

{a1b2 − a2b1
2a2

− µ(L1 + L2)(1− β) + L1(1 + a2µ)

2a2(1− β)
γ
}
y2

−
{a1b2 − b1a2

2a22b2
− L2{µa2 + a22(1− β) + 1}+ L1a

2
2(1− β)

2a32(1− β)
γ
}
z2 +R(t),

where

R(t) = −θ2
a0
yz − µθ2

2
y2 − θ1

2a20
z2

≤ 1

2a0
|θ2||y2 + z2|+ µ

2
|θ2|y2 +

|θ1|
2a20

z2

≤
{ 1

2a20
|θ1|+

( 1

2a0
+
µ

2

)
|θ2|

}
|y2 + z2|.

Thus, we find
R(t) ≤ D2(|θ1|+ |θ2|)(y2 + z2),

where

D2 =
1

2a20

(
1 + a0 +

a20
2
µ
)
.

From inequality (2.5), taking G(t) = |θ1|+ |θ2|, we obtain

R(t) ≤ D2G(t)
V

D1
.

Then
dV

dt
≤ −

{a1b2 − a2b1
2a2

− µ(L1 + L2)(1− β) + L1(1 + a2µ)

2a2(1− β)
γ
}
y2

−
{a1b2 − a2b1

2a22b2
− L2{µa2 + a22(1− β) + 1}+ L1a

2
2(1− β)

2a32(1− β)
γ
}
z2 +

D2

D1
G(t)V.
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So we can write the time derivative of Lyapunov functional V (xt, yt, zt) as

dV

dt
≤ −D3y

2 −D4z
2 +

D2

D1
G(t)V, (2.6)

provided that

γ<min
{ (1−β)(a1b2−a2b1)
2µ(L1+L2)(1−β)+L1(1+a2µ)

,
a2(1−β)(a1b2−a2b1)

2b2
{
L2{1+µa2+a22(1−β)}+L1a22(1−β)

}}.
Now, we define the continuously differentiable functional W as follows

W = exp
(
− w(t)

η

)
V,

where

w(t) =

∫ t

0
G(s)ds ≤

∫ α2

α1

[|h′(u)|+ |p′(u)|]ds ≤
∫ ∞

−∞
[|h′(u)|+ |p′(u)|]du ≤ N <∞,

with α1 = min{x(0), x(t)} and α2 = max{x(0), x(t)}.
Therefore, if we take η = D1

D2
, then

W = exp
(
− w(t)

η

)
V = exp

(
− D2

D1
w(t)

)
V.

Taking the derivative of this equation, from (2.6) there is

W ′ ≤ exp
(
− D2

D1
w(t)

)
(−D3y

2 −D4z
2) ≤ −α(y2 + z2), (2.7)

where α = exp
(
− D2

D1
w(t)

)
min {D3, D4} > 0.

Hence, from (2.7), W3(∥X∥) = α(y2+z2) is a positive definite function and from

inequalities (2.4), (2.5), the Lyapunov functional V (xt, yt, zt) satisfies all conditions

of Theorem 2.2.

Therefore we conclude that the zero solution to equation (1.1) is uniformly

asymptotically stable.

Thus the proof of Theorem 2.3 is now finished.

3 Boundedness of Solutions

In this case e(t) ̸= 0, equation (1.1) is equivalent to the following system

x′ = y, y′ =
z

h(x)
,

z′ = −p(x) z

h(x)
− θ2y − f(x)− g(y) +

∫ t

t−r(t)
f ′(x(s))y(s)ds

+

∫ t

t−r(t)
g′(y(s))

z(s)

h(x(s))
ds+ e(t, x(t), y(t), z(t)). (3.1)

We can obtain the following theorem.
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Theorem 3.1 In addition to conditions (i)-(vi), we assume that

|e(t, x(t), y(t), z(t))| ≤ q(t),

where max (q(t)) <∞ and q(t) ∈ L1(0,∞) with L1(0,∞) being a space of integrable

Lebesgue function. Then there exists a finite positive constant D, such that the

solution x(t) defined by the initial functions

x(t) = ψ(t), x′(t) = ψ′(t), x′′(t) = ψ′′(t)

satisfies the inequalities

|x(t)| < D, |x′(t)| < D, |x′′(t)| < D, for any t ≥ t0.

Proof By the conditions of Theorem 3.1, and inequality (2.6) for system (3.1),

we can write

dV

dt
≤ −D3y

2 −D4z
2 +

D2

D1
G(t)V +

(
µ|y|+ 1

a2
|z|

)
|e(t, x(t), y(t), z(t))|.

Accordingly, the last inequality becomes

dV

dt
≤ D2

D1
G(t)V +

(
µ|y|+ 1

a2
|z|

)
q(t).

If we recall the inequalities |y| < 1 + y2 and |z| < 1 + z2, then we get

dV

dt
≤ k1G(t)V + k2(2 + y2 + z2)q(t),

where k1 = D2
D1

, k2 = max{µ, 1
a2
}. From (2.5), we have y2 + z2 ≤ D−1

1 V (xt, yt, zt),

then

dV

dt
≤ 2k2q(t) + [k1G(t) + k2D

−1
1 q(t)]V ≤ 2k2q(t) + k3[G(t) + q(t)]V,

where k3 = max{k1, k2D−1
1 }. Integrating the previous inequality from 0 to t, noting

G(t), q(t) ∈ L1(0,∞) and using the Gronwall-Reid-Bellman inequality, we conclude

V (xt, yt, zt) ≤
[
V (x0, y0, z0) + 2k2

∫ t

0
q(s)ds

]
exp

(
k3

∫ t

0
T (s)ds

)
= c <∞, (3.2)

for a positive constant c. From inequalities (2.5) and (3.2), we obtain x2+y2+ z2 ≤
D−1

1 V ≤ k4, then we conclude

|x(t)| ≤ k4, |x′(t)| = |y(t)| ≤ k4, |x′′(t)| =
∣∣∣ z

h(x)

∣∣∣ ≤ k4
a2
.

Thus, we have

|x(t)| ≤ D, |x′(t)| ≤ D, |x′′(t)| ≤ D, D = max
{
k4,

k4
a2

}
, for all t ≥ t0.

The proof of Theorem 3.1 is now finished.



No.1 A.M. Mahmoud, etc., Third-order Differential Equation 107

4 Examples

Example 4.1 In this example we shall study the stability of a third-order

nonlinear DDE of the following form[( ex

1+e2x
+

3

2

)
x′′(t)

]′
+
[(2

3
+e−x2

)
x′(t)

]′
+
[
36 x′(t− r(t))+ x′(t− r(t))

1+ |x′(t− r(t))|

]
+
3

2
x(t− r(t))+ 1

2
sin (x(t− r(t)) = 0. (4.1)

It is obvious that
3

2
≤ ex

1 + e2x
+

3

2
≤ 2

and ∫ ∞

−∞
|h′(x(u))|du ≤

∫ ∞

−∞

[∣∣∣ eu

(1 + e2u)2

∣∣∣+ ∣∣∣ e3u

(1 + e2u)2

∣∣∣]du.
Then, it follows that ∫ ∞

−∞
|h′(x(u))|du ≤ π

4
+
π

4
=
π

2
<∞.

Also, there are
2

3
≤ 2

3
+ e−x2 ≤ 5

3

and ∫ ∞

−∞
|p′(x(u))|du ≤

∫ ∞

−∞
| − 2ue−u2 |du ≤ 2 <∞.

Hence, we get ∫ ∞

−∞

[
|h′(x(u))|+ |p′(x(u))|

]
du <∞.

Note that

g(y) = 36y +
y

1 + |y|
, g(0) = 0.

Then, we have
g(y)

y
≥ 36,

and

g′(y) = 36 +
1

(1 + |y|)2
≤ 36 +

∣∣∣ 1

(1 + |y|)2
∣∣∣ ≤ 37 = L2.

Also, the function

f(x) =
3

2
x+

1

2
sinx, f(0) = 0,

and
f(x)

x
=

3

2
+

1

2

sinx

x
≥ 1 = b3.
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Therefore, we get

|f ′(x)| =
∣∣∣3
2
+

1

2
cosx

∣∣∣ ≤ 2 = L1,

so

sup {f ′(x)} = 2 = b1.

Hence, we have

γ<min
{ (1−β)(a1b2−a2b1)
2µ(L1+L2)(1−β)+L1(1+a2µ)

,
a2(1−β)(a1b2−a2b1)

2b2
{
L2{1+µa2+a22(1−β)}+L1a22(1−β)

}}
=min

{21

25
, 2.3× 10−3

}
.

So all conditions of Theorem 2.3 hold, therefore the zero solution to (4.1) is uni-

formly asymptotically stable.

Example 4.2 In this example we shall study the boundedness of a third-order

nonlinear DDE of the following form[( ex

1+e2x
+

3

2

)
x′′(t)

]′
+
[(2

3
+e−x2

)
x′(t)

]′
+
[
36x′(t− r(t))+ x′(t− r(t))

1+ |x′(t− r(t))|

]
+
3

2
x(t− r(t))+ 1

2
sin (x(t− r(t))) = e−t

1+x2+y2+ z2
. (4.2)

Note that

e(t) =
e−t

1 + x2 + y2 + z2
,

then

|e(t)| ≤ e−t = q(t),

∫ ∞

0
q(t)dt =

∫ ∞

0
e−sds = 1 <∞,

so q(t) ∈ L1(0,∞). It follows that

dV

dt
≤ 2k2q(t) + k3[G(t) + q(t)]V, k3 = max{k1, k2D−1

1 }, (4.3)

where ∫ ∞

0
G(t)dt =

∫ ∞

0
[|θ1|+ |θ2|]dt =

∫ ∞

0
[|h′(u)|+ |p′(u)|]du

=

∫ ∞

0

[∣∣∣ eu − e3u

(1 + e2u)2

∣∣∣+ ∣∣− 2ue−u2∣∣]dt = 1

2
+ 1 =

3

2
<∞.

Integrating (4.3) from 0 to t, using the fact that
∫∞
0 q(t)dt < ∞,

∫∞
0 G(t)dt < ∞,

we obtain

V (xt, yt, zt)≤
[
V (x0, y0, z0)+2k2

∫ ∞

0
q(s)ds

]
exp

(
k3

∫ ∞

0
(G(t)+q(t))dt

)
= c<∞,
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where k2 = max
{
µ, 1

a2

}
= max

{
1
4 ,

2
3

}
= 2

3 . Then

V (xt, yt, zt) ≤
[
V (x0, y0, z0) +

2

3

]
exp

{
k3

(3
2
+ 1

)}
<∞.

Hence, we can conclude that all solutions to equation (4.2) are bounded.
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