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Abstract

This paper attempts to study the convergence of optimal values and opti-
mal policies of continuous-time Markov decision processes (CTMDP for short)
under the constrained average criteria. For a given original model M∞ of
CTMDP with denumerable states and a sequence {Mn} of CTMDP with fi-
nite states, we give a new convergence condition to ensure that the optimal
values and optimal policies of {Mn} converge to the optimal value and optimal
policy of M∞ as the state space Sn of Mn converges to the state space S∞
of M∞, respectively. The transition rates and cost/reward functions of M∞
are allowed to be unbounded. Our approach can be viewed as a combination
method of linear program and Lagrange multipliers.
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1 Introduction
Markov decision processes have wide application in queueing system, telecommu-

nications systems, etc.; see, for instance, [2, 11, 13, 16, 18] and the reference therein.

The existence and computation of optimal value and optimal policies form a hot re-

search area in Markov decision processes. The basic method to study the existence

of optimal policies include the dynamic programming approach, the linear program-

ming and duality programming method. Based on above methods, the value itera-

tion algorithms, policy iteration algorithms, linear programming algorithms for un-

constrained optimality problems and linear programming algorithms for constrained

optimality problems have been proposed; see, for instance, [4, 11,13,15]. However,
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these algorithms are only adapt to tackle the optimality problems with finite states.

It is natural to use finite-state models to approximate the original model with de-

numerable state space or general Borel state space. Hence, from the theoretical and

practical point of view, the convergence of optimal values and optimal policies are

important and interesting issues in Markov decision processes.

In the discrete-time context, [3] considered the convergence of optimal value and

optimal policies of Markov decision processes with denumerable states under the

constrained expected discounted cost criteria. [5, 6] developed the approximation

method of optimal value and optimal policies of Markov decision processes with Borel

state and action spaces under the constrained expected discounted cost criteria.

In the continuous-time formulation, [16] studied the convergence of optimal val-

ue and optimal policies of Markov decision processes with denumerable states under

the expected discounted cost and average cost criteria. [17, 18] developed an ap-

proximation procedure for CTMDP with denumerable state space under the finite-

horizon expected total cost criterion and risk-sensitive finite-horizon cost criterion,

respectively. For constrained optimal problem, [12] proposed an approach based on

occupation measures to study the convergence problem of optimal value and optimal

policies, and gave condition imposed on the original model with denumerable states

to ensure the original model can be approximated by a sequence of CTMDP with

finite states.

In this paper, we consider the similar convergence problem as in [12] with denu-

merable states but under the constrained expected average criteria. More precisely,

the original controlled model has the following features: 1) The state space is de-

numerable and the action space is a Polish space; 2) the transition rates, cost and

reward functions may be unbounded from above and from below. Firstly, by intro-

ducing the average occupation measures and Lagrange multipliers, we prove that

the constrained optimality problem of each model Mn of CTMDP equals to a un-

constrained optimality problem, and deduce the optimality equation which includes

some Lagrange multipliers. These results are extension of the results in [16] for

constrained optimality problem with one constraint. Then, we derive the bound of

the Lagrange multipliers in each model Mn. Secondly, according to the optimality

equations, we give the exact bound of of the optimal values between the finite-state

model Mn and the original model M∞. Finally, using some approximation prop-

erties of expected average reward/cost, we obtain the asymptotic convergence of

optimal policies of finite-state models to the optimal policy of the original model.

The rest of the paper is organized as follows. In Section 2, we introduce the

constrained average model we are concerned with. In Section 3, we deduce the

optimality equation of each constrained model Mn and give the error bounds of the
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Lagrange multipliers in optimality equations. In Section 4, we obtain the asymptotic

convergence of optimal values of finite-state models to the optimal value of the

original model and asymptotic convergence of policies of finite-state models to the

optimal policy of the original model.

2 The Models
In this section we introduce the models we are concerned with.

Notation If X is a Polish space, we denote by B(X) its Borel σ-algebra, by

P(X) the set of probability measures on B(X) endowed with the topology of weak

convergence, by Bb(X) the Banach space of all bounded measurable functions on

X, by Cb(X) the Banach space of all bounded continuous functions on X. Let

N := {1, 2, · · · }, N := N ∪ {∞}, R+ := (0,∞) and R0
+ := [0,∞).

Consider the sequence of models {Mn} for constrained CTMDP:

Mn :=
{
Sn, (A(i)⊆A, i∈Sn), qn(·|i, a), rn(i, a), (cln(i, a), dln, 1≤ l≤ p), γn

}
, n∈N,

(2.1)

where Sn is the state space. We assume Sn := {0, 1, · · · , n} for each n ∈ N and

S∞ := {0, 1, · · · }. As a consequence, for each i ∈ S∞, we can define n(i) := min{n ≥
1, i ∈ Sn}. The set A is the action space which is assumed to be a Polish space and

the set A(i) ∈ B(A) represents the set of all available actions or decisions at state

i ∈ Sn for each n ∈ N. Let Kn :=
{
(i, a)|i ∈ Sn, a ∈ A(i)

}
represent the set of all

feasible state-action pairs. For fixed n ∈ N, the function qn(·|i, a) in (2.1) denotes

the transition rates, that is, qn(j|i, a) ≥ 0 for all (i, a) ∈ Kn and i ̸= j. Furthermore,

qn(i|j, a) is assumed to be conservative, that is∑
j∈Sn

qn(j|i, a) = 0, for all (i, a) ∈ Kn, (2.2)

and stable, that is

q∗n(i) := sup
a∈A(i)

|qn(i|i, a)| < ∞, for each i ∈ Sn. (2.3)

Moreover, qn(j|i, a) is a measurable function on A(i) for each fixed i, j ∈ Sn. Finally,

rn corresponds to the reward function that is to be maximized, and cln corresponds

to the cost function on which the constraint dln ∈ R is imposed for each 1 ≤ l ≤ p.

The γn denotes the initial distribution for Mn.

Next, we briefly recall the construction of the stochastic basis (Ωn,Fn, {Ft,n}t≥0,

P π
γn,n) for each n ∈ N. Let i∞ /∈ S∞ be an isolated point and i∞ /∈ S∞, S∗

n :=

Sn∪{i∞}, Ωn := (Sn×(R+×Sn)
∞)∪

∞∪
m=0

(
Sn×(R+×Sn)

m×({∞}×{i∞})∞
)
. Thus,

we obtain the sample space (Ωn,Fn), where Fn is the standard Borel σ-algebra. For



452 ANN. OF APPL. MATH. Vol.35

each m ≥ 1 and each sample ω = (i0, θ1, i1, · · · , θn−1, in−1, · · · ) ∈ Ωn, we define some

maps on Ωn as follows: T0(ω) := 0, X0(ω) := i0, Θm(ω) := θm, Tm(ω) :=
m∑

n=1
θn,

T∞(ω) := lim
n→∞

Tm(ω), Xm(ω) := im. Here, Θm, Tm, Xm denote the sojourn time,

jump moment and the state of the process on the interval [Tm, Tm+1), respectively.

Define a process {ξt, t ≥ 0} on (Ωn,Fn) by

ξt(ω) :=
∑
m≥0

I{Tm(ω)≤t<Tm+1(ω)}im + I{T∞(ω)≤t}i∞ for each ω ∈ Ωn.

In what follows, hn(ω) := (i0, θ1, i1, · · · , θn, in) is the n-component internal history,

the argument ω = (i0, θ1, i1, · · · , θn, in, · · · ) ∈ Ωn is often omitted. Since we do not

consider the process after T∞, i∞ is regarded as absorbing. Define A(i∞) := a∞,

where a∞ /∈ A is a isolated point, A∗ := A ∪ {a∞} and q(i∞|i∞, a∞) := 0. Let

Ft,n := σ({Tm ≤ s,Xm = j} : j ∈ Sn, s ≤ t,m ≥ 0) be the internal history to time t

for the game model G, Fs−,n :=
∨
t<s

Ft,n, Pn := σ(C × {0}(C ∈ F0), C × (s,∞)(C ∈

Fs−,n, s > 0)) which denotes the predictable σ-algebra on Ωn × R0
+.

Below we introduce the concept of policies. Let Φn denote the set all kernels on

A∗ given S∗
n.

Definition 2.1 (i) A Pn-measurable transition probability function π(·|ω, t)
on (A∗,B(A∗)), concentrated on A(ξt−(ω)), is called a randomized Markov policy if

there exists φ(·|·, t) ∈ Φn for each t > 0 such that π(·|ω, t) = φ(·|ξt−(ω), t).
(ii) A randomized Markov policy π is said to be randomized stationary if there

exists a stochastic kernel φ ∈ Φn such that π(·|ω, t) = φ(·|ξt−(ω)) for each t > 0.

Such policies are denoted as φ.

We denote by Πn the family of all randomized Makov policies of Mn. The set

of all stationary policies is denoted by Πs
n. For each given n ∈ N and policy π ∈ Πn,

according to Theorem 4.27 in [14], there exists a unique probability measure P π
γn,n on

(Ωn,Fn). Expectations with respect to P π
γn,n is denoted as Eπ

γn,n. When γn(i) = 1,

we write P π
i,n for P π

γn,n and Eπ
i,n for Eπ

γn,n, respectively.

To guarantee the state processes {ξt, t ≥ 0} for each model Mn is nonexplosive,

we impose the following so-called drift conditions.

Assumption 2.1 There exist a nondecreasing function w ≥ 1 on S∞, constants

κ1 ≥ ρ1 > 0, L > 0 and a finite set Cn ⊂ Sn for each n ∈ N such that

(a) lim
i→∞

w(i) = ∞;

(b)
∑

j∈Sn

qn(j|i, a)w2(j) ≤ −ρ1w
2(i) + κ1ICn(i) for all (i, a) ∈ Kn, n ∈ N;

(c) q∗n(i) ≤ Lw(i) for all i ∈ Sn, n ∈ N;
(d)

∑
i∈Sn

w2(i)γn(i) < ∞ for all n ∈ N.
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Remark 2.1 Under Assumptions 2.1 (a)-(c), it follows from Theorem 2.13

in [16] that there exist constants ρ′τ > 0 and κ′τ > 0 for each 0 < τ < 2 such that∑
j∈Sn

qn(j|i, a)wτ (j) ≤ −ρ′τw
τ (i) + κ′τICn(i), for any (i, a) ∈ Kn. (2.4)

The expected average criteria J l
n(γn, π) for each given n ∈ N and π ∈ Πn are

defined as follows:

J0
n(γn, π) := lim inf

T→∞

1

T
Eπ

γn,n

[ ∫ T

0

∫
A
rn(ξt, a)π(da|ξt, t)dt

]
, (2.5)

J l
n(γn, π) := lim sup

T→∞

1

T
Eπ

γn,n

[ ∫ T

0

∫
A
cln(ξt, a)π(da|ξt, t)dt

]
, for all 1≤l≤p. (2.6)

Let Un := {π ∈ Πn| J l
n(γn, π) ≤ dln, 1 ≤ l ≤ p}, and J∗

n = sup
π∈Un

J0
n(γn, π) be the

set of all constrained policies and the optimal value of Mn(n ∈ N), respectively.
Definition 2.2 (i) For any n ∈ N, a policy π ∈ Un is called an (constrained)

optimal policy of Mn if J0
n(γn, π) = J∗

n.

(ii) A sequence {φn} with φn ∈ Πs
n for each n ∈ N is said to converge weakly

to φ ∈ Πs
∞, if the sequence {φn(·|i)} converges weakly to φ(·|i) in P(A(i)) for each

i ∈ S∞ and n ≥ n(i). We denote it by φn → φ.

3 Preliminary Results

For convenience, we define cn(i, a):=(c1n(i, a), · · · , c
p
n(i, a)) and dn :=(d1n, · · · , d

p
n)

for each n ∈ N and (i, a) ∈ Kn. Let e be the p-dimensional vector with all com-

ponents equal to one. First, for the existence of an optimal policy πn of Mn, we

introduce the following conditions from [9,16]:

Assumption 3.1 (a) For each i ∈ Sn, A(i) is a compact set.

(b) The functions qn(j|i, ·), rn(i, ·) cln(i, ·) and
∑

j∈Sn

w(j)qn(j|i, ·) are all continu-

ous in a ∈ A(i), for each fixed n ∈ N, i, j ∈ Sn and 1 ≤ l ≤ p.

(c) There exists a constant M > 0, such that |rn(i, a)| ≤ Mw(i) and |cln(i, a)| ≤
Mw(i) for all n ∈ N, (i, a) ∈ Kn and 1 ≤ l ≤ p.

(d) There exist constants η > 0 and κ2 ≥ ρ2 > 0 such that
∑

j∈Sn

w2+η(j)qn(j|i, a) ≤

−ρ2w
2+η(i) + κ2 for each n ∈ N and (i, a) ∈ Kn.

Remark 3.1 Assumption 3.1(a) implies that the space P(A(i)) with the topol-

ogy of weak convergence is also compact for each i ∈ S∞. Hence, by the Tychonoff’s

theorem, Πs
n =

∏
i∈Sn

P(A(i)) is compact too.

Under Assumptions 2.1 and 3.1(c), we can obtain the finiteness of the expected

average criteria.
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Lemma 3.1[11,16] Suppose that Assumptions 2.1 and 3.1(c) hold. Then

|J l
n(γn, π)| ≤ M

κ′1
ρ′1

for each n ∈ N, π ∈ Πn and 0 ≤ l ≤ p,

where κ′1 and ρ′1 are the constants in Remark 2.1 for τ = 1.

To obtain our main results, we consider the following assumptions:

Assumption 3.2 (a) lim
n→∞

sup
a∈A(i)

|qn(j|i, a)− q∞(j|i, a)| = 0, for each i, j ∈ S∞,

where n ≥ max{n(i), n(j)};
(b) lim

n→∞
sup

a∈A(i)
|rn(i, a)− r∞(i, a)| = 0 and lim

n→∞
sup

a∈A(i)
|cln(i, a)− cl∞(i, a)| = 0 for

each i ∈ S∞ and 1 ≤ l ≤ p, where n ≥ n(i);

(c) lim
n→∞

dln = dl∞ for each 1 ≤ l ≤ p.

For each n ∈ N, a measurable function u on Sn (resp., Kn) is said to be with a

finite w-norm if ||u||w := sup
i∈Sn

|u(i)|
w(i) < ∞ (resp., ||u||w := sup

(i,a)∈Kn

|u(i,a)|
w(i) < ∞). We

denote by Bw(Sn) the Banach space of functions on Sn with finite w-norm and denote

the set Cw(Kn) = {u : Kn → R
∣∣u is continuous on Kn and sup

(i,a)∈Kn

|u(i,a)|
w(i) < ∞}.

Assumption 3.3 For each n ∈ N and φ ∈ Πs
n, the corresponding Markov

process ξt in each model Mn is irreducible.

Remark 3.2 (i) Under Assumptions 2.1and 3.3, Theorem 2.5 in [16] yields that

for each n ∈ N and φ ∈ Πs
n, the Markov chain {ξt} has a unique invariant probability

measure, denoted by µφ
n.

(ii) Under Assumptions 2.1, 3.1 and 3.3, Theorem 2.11 in [16] implies that the

control model (2.1) is uniformly w-exponentially ergodic, that is, there exist con-

stants δn > 0 and βn > 0 such that

sup
φ∈Πs

n

|Eφ
i,n

(
u(ξt)

)
− µφ

n(u)| ≤ βne
−δnt∥u∥ww(i),

for each n ∈ N, u ∈ Bw(Sn) and t ≥ 0, where µφ
n(u) :=

∑
j∈Sn

u(j)µφ
n(j). Moreover,

by Remark 2.1, we have µφ
n(wτ ) :=

∑
j∈Sn

wτ (j)µφ
n(j) ≤ κ′

τ
ρ′τ

for each 0 < τ ≤ 2, where

ρ′2 = ρ1 and κ′2 = κ1.

(iii) Under Assumptions 2.1, 3.1 and 3.3, for each n ∈ N, 0 ≤ l ≤ p and stationary

policy φ ∈ Πs
n, the J l

n(γn, φ) is a constant and does not depend on the initial state

i, more precisely, J l
n(γn, φ) =

∑
j∈Sn

cln(j, φ)µ
φ
n(j) := gln(φ).

Assumption 3.4(Slater condition) There exists a policy π ∈ Π∞ such that

J l
∞(γ∞, π) < dl∞ for all 1 ≤ l ≤ p. (3.1)
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For each φ ∈ Πs
∞, we denote by φ|Sn the restriction of φ in the set Sn as follows:

φ|Sn(·|i) := φ(·|i) for each i ∈ Sn.

Lemma 3.2 Suppose Assumptions 2.1, 3.1, 3.2(a)-(b) and 3.3 hold. Then, for

each 0 ≤ l ≤ p,

lim
n→∞

sup
φ∈Πs

∞

|gl∞(φ)− gln(φ|Sn)| = 0.

This statement has been established by Theorem 4.21 in [16] for determinis-

tic stationary policies. It is easy to extend the result to the class of randomized

stationary policies.

For each n ∈ N and φ ∈ Πs
n, we define the measure µ̃φ

n by µ̃φ
n(i × B) :=

µφ
n(i)φ(B|i) for each i ∈ Sn and B ⊆ A(i). For measurable function w, let

Pw(Kn) :=

{
η ∈ P(Kn)|

∫
Kn

w(i)η(i, da) < ∞
}
.

In particular, under Assumptions 2.1, 3.1 and 3.3, µ̃φ
n ∈ Pw(Kn) for each φ ∈ Πs

n

and n ∈ N. Now, we introduce the following sets

Λn := {µ̃φ
n|φ ∈ Πs

n},

and

Λf
n :=

{
µ ∈ Λn|

∫
Kn

cln(i, a)µ(i, da) ≤ dln, for each 1 ≤ l ≤ p

}
for each n ∈ N,

where the index “f” in Λf
n stands for “feasible”.

Definition 3.1 The w-weak topology on Pw(Kn) is the coarsest topology for

which all mappings

µ 7→
∫
Kn

fdµ, where f ∈ Cw(Kn)

are continuous.

The following lemma characters the w-weak topology; for a proof, see [8, Corol-

lary A.45].

Lemma 3.3 A sequence {µm} ∈ Pw(Kn) converges w-weakly to µ if and only

if
∫
Kn

fdµm →
∫
Kn

fdµ for every measurable function f which is µ-a.e continuous

on Kn and for which exists a constant c such that |f | ≤ c · w µ-almost everywhere.

In this case, we write µm
w−→ µ.

Lemma 3.4 Suppose that Assumptions 2.1, 3.1 and 3.3 hold. Then, the set Λn

and Λf
n are convex, compact and closed under the w-weak topology for each n ∈ N.

Proof Under Assumptions 2.1, 3.1 and 3.3, it follows from Lemma 8.12 in [16]

that Λn is convex and compact. Let {µm} ⊂ Λn with µm
w−→ µ and v ∈ Bb(Sn),

by the definition of w-weakly convergence and Assumption 3.1(b), it follows from

Lemma 8.11 in [16] that
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lim
m→∞

∫
Kn

∑
j∈Sn

v(j)qn(j|i, a)µm(i,da) =

∫
Kn

∑
j∈Sn

v(j)qn(j|i, a)µ(i, da) = 0,

which implies that µ ∈ Λn. Hence, Λn is closed. Furthermore, suppose that µm ∈ Λf
n

for each m, then it follows that

lim
m→∞

∫
Kn

cln(i, a)µm(i,da) =

∫
Kn

cln(i, a)µ(i,da) ≤ dln,

for each 1 ≤ l ≤ p, which implies that µ ∈ Λf
n and Λf

n is closed. Now, suppose that

µ1, µ2 ∈ Λf
n, we have that∫

Kn

cln(i, a)[λµ1(i, da) + (1− λ)µ2(i, da)]

= λ

∫
Kn

cln(i, a)µ1(i,da) + (1− λ)

∫
Kn

cln(i, a)µ2(i, da) ≤ dln,

for each 1 ≤ l ≤ p, which implies the convexity of Λf
n. The proof is completed.

Lemma 3.5[10] Suppose that Assumptions 2.1, 3.1 and 3.3 hold. Then, for each

π ∈ Π∞, there exists a stationary policy φ̃ ∈ Πs
∞ such that J0

∞(γ∞, φ̃) ≥ J0
∞(γ∞, π)

and J l
∞(γ∞, φ̃) ≤ J l

∞(γ∞, π) for each 1 ≤ l ≤ p.

By Assumption 3.4 and Lemma 3.5, there exists a stationary policy φ̃ ∈ Πs
∞

such that J l
∞(γ∞, φ̃) < dl∞ for each 1 ≤ l ≤ p. Next, we need to introduce some

notations:

gn(φ) := (g1n(φ), · · · , gpn(φ)), θ := min
1≤l≤p

{dl∞ − gl∞(φ̃)}, (3.2)

ϵ2(n) := max
1≤l≤p

{|dl∞ − dln|}, ϵ1(n) := max
0≤l≤p

{ sup
φ∈Πs

∞

|gl∞(φ)− gln(φ|Sn)|} (3.3)

for each n ∈ N and φ ∈ Πs
n.

Lemma 3.6 Suppose that Assumptions 2.1 and 3.1-3.4 hold, then there exist

an integer N∗ and φn ∈ Πs
n for each n ≥ N∗ such that

J l
n(γn, φn) < dln, for any 1 ≤ l ≤ p. (3.4)

Proof For each fixed δ < θ, it follows from Lemma 3.2 and Assumption 3.2(c)

that there exists an integer N such that for each n≥N , we have ϵ1(n)+ϵ2(n)≤δ and

gl∞(φ̃)− ϵ1(n) ≤ gln(φ̃|Sn) ≤ gl∞(φ̃) + ϵ1(n) < dl∞ − ϵ2(n) ≤ dln,

for each 1 ≤ l ≤ p. Hence,

dln − gln(φ̃|Sn) = dln − dl∞ + dl∞ − gl∞(φ̃) + gl∞(φ̃)− gln(φ̃|Sn)

≥ θ − ϵ1(n)− ϵ2(n) > θ − δ > 0, (3.5)

that is gln(φ̃|Sn) < dln for each 1 ≤ l ≤ p which implies that φn := φ̃|Sn is a feasible

solution of Mn for each n ≥ N∗. The proof is completed.
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The following lemma gives the optimality equation for constrained problem

which has been established by Theorem 8.13 in [16] for the case of a single con-

straint. For completeness, we extend Theorem 8.13 in [16] to any finite numerable of

constraints. First, we need to introduce some notations. For each x = {x1, · · · , xp},

y = {y1, · · · , yp} ∈ Rp, we define ⟨x, y⟩ :=
p∑

k=1

xk · yk and say x ≤ y if xk ≤ yk for

each 1 ≤ k ≤ p.

The proof of the following lemma is similar to that of Theorem 4.10 in [5] for

discrete-time MDP, we prove it here only for completeness.

Lemma 3.7 Suppose that Assumptions 2.1 and 3.1-3.4 hold. Then, for each

n ∈ N,
(i) there exist a function hn ∈ Bw(Sn) and a vector λ∗

n ∈ (−∞, 0]p such that

J∗
n = sup

a∈A(i)

{
rn(i, a) + ⟨λ∗

n, cn(i, a)− dn⟩+
∑
j∈Sn

hn(j)qn(j|i, a)
}

= sup
φ∈Πs

n

{∫
Kn

[rn(i, a) + ⟨λ∗
n, cn(i, a)− dn⟩]µ̃φ

n(i, da)
}

= sup
µ∈Λf

n

{∫
Kn

rn(i, a)µ(i, da)
}
,

where cn(i, a)−dn denotes the p-dimensional vector whose components are cln(i, a)−
dln for each 1 ≤ l ≤ p;

(ii) there exists a stationary optimal policy φ∗
n of Mn.

Proof (i) Let n ∈ N be fixed and

On :=
∪

µ∈Λn

{
(z1, · · · , zp) :

∫
Kn

cln(i, a)µ(i,da) ≤ zl, for each 1 ≤ l ≤ p
}
.

For each z = (z1, z2, · · · , zp) ∈ On we define

Nn(z) :=
{
µ ∈ Λn :

∫
Kn

cln(i, a)µ(i,da) ≤ zl, 1 ≤ l ≤ p
}

and

Un(z) := sup
{∫

Kn

rn(i, a)µ(i, da) : µ ∈ Nn(z)
}
.

Suppose that µm
w−→ µ and {µm} ⊂ Nn(z), by the definition of w-weakly con-

vergence and Assumption 3.1(b), then it follows that lim
m→∞

∫
Kn

cln(i, a)µm(i,da) =∫
Kn

cln(i, a)µ(i,da) ≤ zl for each 1 ≤ l ≤ p which implies that µ ∈ Nn(z). Hence,

Nn(z) is a closed set of Λn for each n ∈ N and z ∈ On, which together with Lemma

3.4 implies Nn(z) is compact. Therefore, for each z ∈ On, there exists µ∗ ∈ Nn(z)

such that Un(z) =
∫
Kn

rn(i, a)µ
∗(i, da) which together with Lemma 3.1 implies Un(z)

is finite for each z ∈ On.
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Next, we need to show that Un(z) is concave in z. Let zk ∈ On with zk =

(z1k, · · · , z
p
k) for each k = 1, 2. There exist µ1 ∈ Nn(z1) and µ2 ∈ Nn(z2) such that∫

Kn
rn(i, a)µ1(i, da) = Un(z1) and

∫
Kn

rn(i, a)µ2(i, da) = Un(z2). Let λ ∈ (0, 1). We

have

λUn(z1) + (1− λ)Un(z2) =

∫
Kn

rn(i, a)[λµ1 + (1− λ)µ2](i, da)

and ∫
Kn

cln(i, a)[λµ1 + (1− λ)µ2](i, da) ≤ λzl1 + (1− λ)zl2, for each 1 ≤ l ≤ p,

which implies that λµ1 + (1 − λ)µ2 ∈ Nn(λz1 + (1 − λ)z2). Thus, it follows that

Un(λz1 + (1− λ)z2) ≥ λUn(z1) + (1− λ)Un(z2), that is Un(z) is concave on On.

For arbitrary z1, z2 ∈ On satisfying zl1 ≤ zl2 for each 1 ≤ l ≤ p, we have

Un(z1) ≤ Un(z2). By Lemma 3.6, dn is the interior of On. Then, it follows from

Theorem 7.12 in [1] that there exists λ∗
n = (λ∗1

n , · · · , λ∗p
n ) ∈ Rp with λ∗

n ≤ 0

such that Un(θ̂n) ≤ Un(dn) + ⟨−λ∗
n, θ̂n − dn⟩, for each θ̂n ∈ On. Take θ̂n :=

{
∫
Kn

c1n(i, a)µ(i, da), · · · ,
∫
Kn

cpn(i, a)µ(i,da)} for some µ ∈ Λn. Then,

Un(dn)≥Un(θ̂n)+⟨λ∗
n, θ̂n−dn⟩ =

∫
Kn

rn(i, a)µ(i, da)+⟨λ∗
n, θ̂n−dn⟩

=

∫
Kn

rn(i, a)µ(i, da)+

∫
Kn

⟨λ∗
n, cn(i, a)−dn⟩µ(i, da),

for each µ ∈ Λn. That is,

Un(dn) ≥ sup
µ∈Λn

{∫
Kn

rn(i, a)µ(i, da) +

∫
Kn

⟨λ∗
n, cn(i, a)− dn⟩µ(i, da)

}
≥ sup

µ∈Λf
n

{∫
Kn

rn(i, a)µ(i, da)
}
= Un(dn),

which implies that

Un(dn) = sup
µ∈Λn

{∫
Kn

rn(i, a)µ(i, da) +

∫
Kn

⟨λ∗
n, cn(i, a)− dn⟩µ(i, da)

}
= sup

φ∈Πs
n

{∫
Kn

(
rn(i, a) + ⟨λ∗

n, cn(i, a)− dn⟩
)
µ̃φ
n(i, da)

}
. (3.6)

Under Assumptions 2.1, 3.1 and 3.3, by (3.6), Theorem 3.20 in [16] and Remark

3.2(ii), there exists hn ∈ Bw(Sn) such that

Un(dn)= max
a∈A(i)

{
rn(i, a) + ⟨λ∗

n, cn(i, a)− dn⟩+
∑
j∈Sn

hn(j)qn(j|i, a)
}

= sup
π∈Πn

{
lim inf
T→∞

1

T
Eπ

γn,n

[ ∫ T

0

∫
A

(
rn(ξt, a)+

p∑
l=1

λ∗l
n (c

l
n(ξt, a)−dln)

)
π(da|ξt, t)dt

]}
.
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Let π ∈ Πn such that

lim sup
T→∞

1

T
Eπ

γn,n

[ ∫ T

0

∫
A
cln(ξt, a)π(da|ξt, t)dt

]
≤ dln,

for each 1 ≤ l ≤ p, then we have

J0
n(γn, π) = lim inf

T→∞

1

T
Eπ

γn,n

[ ∫ T

0

∫
A
rn(ξt, a)π(da|ξt, t)dt

]
≤ lim inf

T→∞

1

T
Eπ

γn,n

[ ∫ T

0

∫
A

(
rn(ξt, a) +

p∑
l=1

λ∗l
n (c

l
n(ξt, a)− dln)

)
π(da|ξt, t)dt

]
≤ Un(dn).

On the other hand, by the definition of Un(dn), we have J∗
n ≥ Un(dn). Hence,

J∗
n = Un(dn). (ii) Let n ∈ N. By Assumption 3.1(b) and Lemma 3.4, there exist a

p.m. µ∗ ∈ Λf
n and a stationary policy φ∗

n ∈ Πs
n such that

J∗
n =

∫
Kn

rn(i, a)µ
∗(i, da) and µ∗(i, da) = µ̃φ∗

n
n (i, da),

which implies that φ∗
n is optimal for Mn. The proof is completed.

The proof of the following lemma is similar to that of Theorem 8.14 in [16] with

one constraint, we prove it here for the sake of completeness.

Lemma 3.8 Suppose that Assumptions 2.1 and 3.1-3.4 hold. Then, for each

n ∈ N, there exist µ∗
n ∈ Λn and λ∗

n ∈ (−∞, 0]p such that

J∗
n = sup

µ∈Λn

inf
λ∈(−∞,0]p

{∫
Kn

[rn(i, a) + ⟨λ, cn(i, a)− dn⟩]µ(i,da)
}

= inf
λ∈(−∞,0]p

sup
µ∈Λn

{∫
Kn

[rn(i, a) + ⟨λ, cn(i, a)− dn⟩]µ(i,da)
}

= sup
µ∈Λn

{∫
Kn

[rn(i, a) + ⟨λ∗
n, cn(i, a)− dn⟩]µ(i,da)

}
= inf

λ∈(−∞,0]p

{∫
Kn

[rn(i, a) + ⟨λ, cn(i, a)− dn⟩]µ∗
n(i,da)

}
.

Proof Let λ∗
n be the vector as in Lemma 3.7, we can get the third equality. For

each fixed n ∈ N, suppose that µ ∈ Λn such that the l-th constraints is violated,

that is
∫
Kn

cln(i, a)µ(i, da) > dln. It follows that

inf
λ∈(−∞,0]p

{∫
Kn

[rn(i, a) + ⟨λ, cn(i, a)− dn⟩]µ(i, da)
}
= −∞.

Hence,
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sup
µ∈Λn

inf
λ∈(−∞,0]p

{∫
Kn

[rn(i, a) + ⟨λ, cn(i, a)− dn⟩]µ(i, da)
}

= sup
µ∈Λf

n

inf
λ∈(−∞,0]p

{∫
Kn

[rn(i, a) + ⟨λ, cn(i, a)− dn⟩]µ(i, da)
}

= sup
µ∈Λf

n

{∫
Kn

rn(i, a)µ(i, da)
}
,

which together with Lemma 3.7 implies the first equality.

Let Tn(µ, λ) :=
∫
Kn

[rn(i, a) + ⟨λ, cn(i, a) − dn⟩]µ(i,da) for each µ ∈ Λn and

λ ∈ (−∞, 0]p. For arbitrary fixed λ ∈ (−∞, 0]p, β ∈ (0, 1) and µ1, µ2 ∈ Λn, we have

that

βTn(µ1, λ) + (1− β)Tn(µ2, λ)

= β

∫
Kn

[rn(i, a) + ⟨λ, cn(i, a)− dn⟩]µ1(i,da)

+(1− β)

∫
Kn

[rn(i, a) + ⟨λ, cn(i, a)− dn⟩]µ2(i, da)

=

∫
Kn

(
rn(i, a) + ⟨λ, cn(i, a)− dn⟩

)
[βµ1 + (1− β)µ2](i, da)

= Tn(βµ1 + (1− β)µ2, λ).

Hence, Tn(µ, λ) is convex in µ for each fixed λ.

Let f(i, a) := rn(i, a) +
p∑

l=1

λl(cln(i, a)− dln), then

|f(i, a)| ≤ Mw(i) + p|λ|max[Mw(i) + dmax
n ] ≤ M

(
1 + p|λ|max +

p|λ|maxd
max
n

M

)
w(i),

where |λ|max := max
1≤l≤p

{|λl|} and dmax
n := max

1≤l≤p
{|dln|}, which together with Assump-

tion 3.1(b) implies that f ∈ Cw(Kn). Now, suppose that {µm} ⊆ Λn such that

µm
w−→ µ, we have µ ∈ Λn and

lim
m→∞

∫
Kn

f(i, a)µm(i,da) =

∫
Kn

f(i, a)µ(i, da),

which implies that Tn(µ, λ) is upper semi-continuous in µ for each fixed λ.

For each fixed µ ∈ Λn, let λ1, λ2 ∈ (−∞, 0]p. It follows that

βTn(µ, λ1)+(1−β)Tn(µ, λ2) =

∫
Kn

[rn(i, a)+ ⟨βλ1+(1−β)λ2, cn(i, a)−dn⟩]µ(i, da)

which implies that Tn(µ, λ) is concave in λ for each µ. By the Minmax Theorem

in [2, p.129] or [7, Theorem 2], we have
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sup
µ∈Λn

inf
λ∈(−∞,0]p

Tn(µ, λ) = inf
λ∈(−∞,0]p

sup
µ∈Λn

Tn(µ, λ),

that is

sup
µ∈Λn

inf
λ∈(−∞,0]p

{∫
Kn

[rn(i, a) + ⟨λ, cn(i, a)− dn⟩]µ(i,da)
}

= inf
λ∈(−∞,0]p

sup
µ∈Λn

{∫
Kn

[rn(i, a) + ⟨λ, cn(i, a)− dn⟩]µ(i,da)
}
,

which implies the second equality. By Lemma 3.7, there exists a stationary policy

φ∗
n ∈ Φs

n such that J∗
n = J0

n(γn, φ
∗
n). Let µ

∗
n := µ̃

φ∗
n

n , then

J∗
n =

∫
Kn

rn(i, a)µ
∗
n(i, da) = inf

λ∈(−∞,0]p

{∫
Kn

[rn(i, a) + ⟨λ, cn(i, a)− dn⟩]µ∗
n(i, da)

}
.

Hence, the last inequality holds. The proof of Lemma 3.8 is finished.

4 The Main Results

Theorem 4.1 Suppose that Assumptions 2.1 and 3.1-3.4 hold. Then, lim
n→∞

J∗
n =

J∗
∞.

Proof Let φn be the policy in Lemma 3.6, B := M
κ′
1

ρ′1
and δ < θ be fixed. By

Lemmas 3.1 and 3.7 and (3.5),

B ≥ J∗
n = sup

φ∈Πs
n

{∫
Kn

[rn(i, a) + ⟨λ∗
n, cn(i, a)− dn⟩]µ̃φ

n(i, da)
}

≥
∫
Kn

[rn(i, a) + ⟨λ∗
n, cn(i, a)− dn⟩]µ̃φn

n (i,da)

≥ −B + ⟨λ∗
n, gn(µ̃

φn
n )− dn⟩ = −B + ⟨−λ∗

n, dn − gn(µ̃
φn
n )⟩

> −B + ⟨−λ∗
n, θ − δ⟩.

Then, we have

⟨−λ∗
n, e⟩ ≤

2B

θ − δ
, for any n ≥ N. (4.1)

As in Lemma 3.6, there exists a stationary policy φ̃ ∈ Πs
∞ such that J l

∞(γ∞, φ̃) <

dl∞ for each 1 ≤ l ≤ p. Similarly, we have

B ≥ J∗
∞ = sup

φ∈Πs
∞

{∫
K∞

[r∞(i, a) + ⟨λ∗
∞, c∞(i, a)− d∞⟩]µ̃φ

∞(i, da)
}

≥
∫
K∞

[r∞(i, a) + ⟨λ∗
∞, c∞(i, a)− d∞⟩]µ̃φ̃

∞(i, da)

≥ −B + ⟨−λ∗
∞, d∞ − g∞(φ̃)⟩ > −B + ⟨−λ∗

∞, θ⟩,



462 ANN. OF APPL. MATH. Vol.35

which implies that

⟨−λ∗
∞, e⟩ ≤ 2B

θ
≤ 2B

θ − δ
. (4.2)

Under Assumptions 2.1, 3.1 and 3.3, by Lemma 3.8, there exists µ∗
∞ ∈ Λ∞ such that

J∗
∞ ≤

∫
K∞

[r∞(i, a) + ⟨λ∗
n, c∞(i, a)− d∞⟩]µ∗

∞(i, da). (4.3)

By (4.1) and (4.3), there exists φ ∈ Πs
∞ such that µ∗

∞ = µ̃φ
∞. Let φ̂n := φ|Sn denote

the restriction of φ in the set Sn, then

J∗
∞ − J∗

n

≤
∫
K∞

[r∞(i, a) + ⟨λ∗
n, c∞(i, a)− d∞⟩]µ∗

∞(i,da)

− sup
µ∈Λn

{∫
Kn

[rn(i, a) + ⟨λ∗
n, cn(i, a)− dn⟩]µ(i, da)

}
≤

∫
K∞

[r∞(i, a) + ⟨λ∗
n, c∞(i, a)− d∞⟩]µ∗

∞(i,da)

−
∫
Kn

[rn(i, a) + ⟨λ∗
n, cn(i, a)− dn⟩]µ̃φ̂n

n (i, da)

= g0∞(φ) + ⟨λ∗
n, g∞(φ)− d∞⟩ − g0n(φ̂n)− ⟨λ∗

n, gn(φ̂n)− dn⟩
≤ ϵ1(n) + ⟨λ∗

n, g∞(φ)− gn(φ̂n)⟩+ ⟨λ∗
n, dn − d∞⟩

≤ ϵ1(n) + ⟨−λ∗
n, ϵ1(n)⟩+ ⟨−λ∗

n, ϵ2(n)⟩ = ϵ1(n) + [ϵ1(n) + ϵ2(n)]
2B

θ − δ
.

Similarly, by Lemma 3.8, there exists µ∗
n ∈ Λn such that

J∗
n ≤

∫
Kn

[rn(i, a) + ⟨λ∗
∞, cn(i, a)− dn⟩]µ∗

n(i, da). (4.4)

Then, there exists φn ∈ Πs
n such that µ∗

n = µ̃φn
n for each n ∈ N. Let n ∈ N be fixed

and φ̃n denote an extension of φn to Πs
∞ by:

φ̃n(·|i) :=

{
φn(·|i) if i ∈ Sn,

ν if i ∈ Sc
n, where ν ∈ P(A(i)) is chosen arbitrarily.

(4.5)

It follows from (4.2) and (4.4)-(4.5) that

J∗
n − J∗

∞

= inf
λ∈(−∞,0]p

∫
Kn

[rn(i, a) + ⟨λ, cn(i, a)− dn⟩]µ∗
n(i, da)

− sup
µ∈Λ∞

∫
K∞

[r∞(i, a) + ⟨λ∗
∞, c∞(i, a)− d∞⟩]µ(i,da)
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≤
∫
Kn

[rn(i, a) + ⟨λ∗
∞, cn(i, a)− dn⟩]µ∗

n(i, da)

−
∫
K∞

[r∞(i, a) + ⟨λ∗
∞, c∞(i, a)− d∞⟩]µ̃φ̃n

∞ (i,da)

= g0n(φn)− g0∞(φ̃n) + ⟨λ∗
∞, gn(φn)− g∞(φ̃n) + d∞ − dn⟩

≤ ϵ1(n) + ⟨−λ∗
∞, g∞(φ̃n)− gn(φn)⟩+ ⟨−λ∗

∞, dn − d∞⟩
≤ ϵ1(n) + [ϵ1(n) + ϵ2(n)]⟨−λ∗

∞, e⟩

≤ ϵ1(n) + [ϵ1(n) + ϵ2(n)]
2B

θ − δ
.

Hence, there exists an integer N such that for each n ≥ N , |J∗
n − J∗

∞| ≤ ϵ1(n) +

[ϵ1(n) + ϵ2(n)]
2B
θ−δ , which implies the desired result. The proof is completed.

Lemma 4.1[11] Suppose that Assumptions 2.1, 3.1 and 3.3 hold. For any fixed

n ∈ N, if there exists {φm} ⊆ Πs
n such that φm → φ ∈ Πs

n, then lim
m→∞

gln(φm) =

gln(φ) for each 0 ≤ l ≤ p.

Theorem 4.2 Suppose that Assumptions 2.1 and 3.1-3.4 hold. If φ∗
n ∈ Πs

n is an

optimal policy of Mn for each n ∈ N and φ∗
n → φ∞ ∈ Πs

∞, then φ∞ is an optimal

policy of M∞.

Proof First, we should show that φ∞ is a feasible solution of M∞. Let φ̃∗
n

denote an extension of φ∗
n to Πs

∞ by replacing φn in (4.5) with φ∗
n here. Under

Assumptions 2.1 and 3.1-3.3, by Lemmas 3.2 and 4.1, for each ϵ > 0, there exists an

integer N such that |gln(φ∗
n) − gl∞(φ̃∗

n)| ≤ ϵ
2 and |gl∞(φ̃∗

n) − gl∞(φ∞)| ≤ ϵ
2 for each

n ≥ N and 1 ≤ l ≤ p. Hence,

|gln(φ∗
n)− gl∞(φ∞)| = |gln(φ∗

n)− gl∞(φ̃∗
n) + gl∞(φ̃∗

n)− gl∞(φ∞)| ≤ ϵ,

which together with Assumption 3.2(c) implies that

dl∞ = lim
n→∞

dln ≥ lim
n→∞

∫
Kn

cln(i, a)µ̃
φ∗
n

n (i,da) =

∫
K∞

cl∞(i, a)µ̃φ∞
∞ (i, da),

for each 1 ≤ l ≤ p. Hence, φ∞ is feasible for M∞. By Lemma 4.1 and Theorem 3.6,

we have that

g0∞(φ∞) = lim
n→∞

g0∞(φ̃∗
n)

≥ lim
n→∞

[g0n(φ
∗
n)− sup

φ∈Πs
∞

|g0n(φ|Sn)− g0∞(φ)|]

= lim
n→∞

J∗
n − lim

n→∞
sup

φ∈Πs
∞

|g0n(φ|Sn)− g0∞(φ)| = J∗
∞.

Hence, φ∞ is optimal for M∞. The proof is completed.
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