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1 Introduction and preliminaries

In studying the Riemann hypothesis it is important to establish a connection between
spectrum of operators and zeros of the Riemann zeta function. This is our continued
effort for finding such an interplay.

Let S(R) be the Schwartz space on R. Functions in S(R) are smooth and rapid de-
creasing when |x| → ∞. That is,

S(R) =
{

f ∈ C∞(R)
∣∣∣ sup

x∈R

|xm f (n)(x)| < ∞ for m, n ∈N
}

,

where N = {0, 1, · · · }. Denote by H∩ the subspace of all even functions f in S(R) with
f (0) = F f (0) = 0. Here

F f (x) =
∫ ∞

−∞
f (y)e−2πixydy
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is the Fourier transform of f . In this paper, we may identify functions in H∩ with their
restrictions on (0, ∞).

Denote by H− the set of all smooth functions on (0, ∞) that decrease rapidly when
x → 0+ and ∞. Specifically,

H− =
{

f ∈ C∞(0, ∞)
∣∣∣ sup

x>0
|xm f (n)(x)| < ∞ for |m|, n ∈N

}
.

For f ∈ H∩ we denote by Z the action given by

Z f (x) =
∞

∑
n=1

f (nx), x > 0.

By Poisson’s summation formula, ZH∩ ⊆ H−. The quotient space H−/ZH∩, denoted by
H, is regarded as a Hilbert-Pólya space, although such a quotient does not carry a Hilbert
space structure.

The fundamental differential operator D on H− is given by

D f (x) = −x f ′(x), f ∈ H−.

Notice that DH− ⊆ H− and D(ZH∩) ⊆ ZH∩. The operator D thus induces a differential
operator on H, which we denote by D−. We follow the notation introduced in [5]. For
basics on the Riemann zeta function ζ(s), we refer to [6].

The Hilbert-Pólya conjecture states that the non-trivial zeros of the Riemann ζ-
function correspond (in certain canonical way) to the eigenvalues of some operator, and
Riemann Hypothesis is equivalent to the self-adjointness of the operator.

In the direction of the Hilbert-Pólya conjecture, a spectral interpretation for zeros on
the critical line Re(s) = 1

2 was given by A. Connes [1]. He constructed a closed, densely
defined, unbounded differential operator Dχ and a Hilbert-Pólya space Hχ. His operator
Dχ has discrete spectrum, which is the set of imaginary parts of critical zeros of the L-
function with Grössencharacter χ [1, Theorem 1, pp. 40].

In [2], L. Ge studied the action of the differential operator D on a Hilbert-Pólya space,
which is slightly different from H, and obtained that the point spectrum of D coincides
with the nontrivial zeros of ζ(s).

Meyer proved in [5, Corrollary 4.2, pp. 8] that the eigenvalues of the transpose Dt
− of

D− (acting on the space of continuous linear functionals on H) are exactly the non-trivial
zeors of ζ(s), and the algebraic multiplicity of an eigenvalue is equal to the vanishing
order of the corresponding zero of ζ(s).

Li [4] proved by an explicit construction that the nontrivial zeros of ζ(s) are the eigen-
values of D− acting on H (instead of Dt

− in [5]), which we state as follows (Theorem 1.1
and Theorem 1.4 in [4]).

Theorem 1.1 ([4]). Let ρ be a nontrivial zero of ζ(s). Let Fρ be the function given by

Fρ(x) =
∫ ∞

1
Zη(tx)tρ−1dt,
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where

η(x) = 8πx2
(

πx2 − 3
2

)
e−πx2

.

Then Fρ is an eigenfunction of D− on H associated with eigenvalue ρ. Moreover, the eigenvalue
ρ has geometric multiplicity one.

A question is that whether or not every eigenvalue of D− on H is a nontrivial zero of
the Riemann zeta function. In this paper, we give an affirmative answer to the question
by proving that there is a one-to-one correspondence between the set of eigenvalues of
D− acting on H and the set of nontrivial zeros of ζ(s). Moreover, we also show that
the algebraic multiplicity of any eigenvalue of D− is equal to the vanishing order of the
corresponding zero of ζ(s). Recall that the algebraic multiplicity of an eigenvalue λ of
an operator T is the dimension of the space

⋃
n≥1 ker(T − λ)n. Some of these results are

hinted in [5]. The goal of this paper is to give a detailed proof of our main result which
we state as the following theorem.

Theorem 1.2. A complex number ρ is an eigenvalue of D− on H if and only if ρ is a nontrivial
zero of ζ(s). Moreover, its algebraic multiplicity is equal to the vanishing order of ζ(s) at ρ.

The proof of Theorem 1.2 will be presented in Section 3. In Section 2, we study the
eigenvalues of D− and will show that they have a similar distribution as the nontrivial
zeros of ζ(s), which is stated as follows.

Theorem 1.3. If λ is an eigenvalue of D− on H, then 0 < Re(λ) < 1.

Now we give the detailed proof of this theorem in the following section.

2 Eigenvalues of D−

Let f be a measurable function on (0, ∞). Denote by

f̂ (s) =
∫ ∞

0
f (x)xs−1dx, s ∈ C,

the Mellin transform of f , provided that the above integral exists for some s. For f ∈ H−,
it is not hard to check that f̂ (s) is entire on C and, from integration by parts,

D̂ f (s) = −
∫ ∞

0
x f ′(x)xs−1dx = −

∫ ∞

0
xsd f (x) = s

∫ ∞

0
f (x)xs−1dx = s f̂ (s).

Let g be a function in H∩. Since g(x) decreases rapidly as x → ∞ and g is continuous
at 0, the integral ∫ ∞

0
g(x)xs−1dx
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exists when Re(s) > 0, and we have

Ẑg(s) =
∫ ∞

0

(
∞

∑
n=1

g(nx)

)
xs−1dx =

∞

∑
n=1

∫ ∞

0
g(y)

( y
n

)s−1
d
( y

n

)
= ζ(s)ĝ(s)

when Re(s) > 1. Now we have some key properties of the operators D and Z. We need
to introduce another operator J.

Let f be a function in H−. Denote by J the operator given by J f (x) = x−1 f (x−1). It
is easy to see that JH− = H− and Ĵ f (s) = f̂ (1− s). The operator J plays an important
role in the symmetry of C along the critical line Re(s) = 1/2 and induces a unitary
operator from L2(0, 1) onto L2(1, ∞) (see [3]). Here we are interested in its connections
with operators Z, F and the Mellin transform.

For g ∈ H∩, we have Fg ∈ H∩. Applying the Poisson summation formula to g ∈ H∩,
since both g and Fg are even functions vanishing at zero, we have

JZg(x) =
1
x

∞

∑
n=1

g
(n

x

)
=

∞

∑
n=1

Fg(nx) = ZFg(x).

Hence
ĴZg(s) = Ẑg(1− s) = ẐFg(s). (2.1)

So JZH∩ ⊆ ZH∩. Notice that J2 is the identity operator, we have

JZH∩ = ZH∩.

With the above discussion, we are ready to prove the following lemma.

Lemma 2.1. Let λ be an eigenvalue of D− on H. Then λ and 1− λ are both eigenvalues of D−
on H.

Proof. For any given λ, an eigenvalue of D− on H, there is a function f ∈ H− \ ZH∩ and
a g ∈ H∩ such that D f − λ f ∈ ZH∩ and

−x f ′(x) = λ f (x) + Zg(x). (2.2)

Taking conjugate we have

−x f ′(x) = λ f (x) + Zg(x), i.e., D f = λ f + Zg.

Notice that f ∈ H− \ ZH∩ and g ∈ H∩, we see that λ is an eigenvalue of D− on H.
Next we prove that 1 − λ is also an eigenvalue of D− on H by showing that J f is

an eigenfunction with eigenvalue 1− λ. Since JH− = H− and JZH∩ = ZH∩, we have
J f ∈ H− \ ZH∩. Applying the Mellin transform to (2.2), we have

s f̂ (s) = λ f̂ (s) + ζ(s)ĝ(s).
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Replacing s by 1− s and applying (2.1), we obtain

(1− s) f̂ (1− s) = λ f̂ (1− s) + ζ(1− s)ĝ(1− s)

=λ f̂ (1− s) + ĴZg(s) = λ f̂ (1− s) + ẐFg(s).

This formula implies that

s f̂ (1− s) = (1− λ) f̂ (1− s)− ζ(s)F̂g(s).

Notice that Ĵ f (s) = f̂ (1− s), we thus have

s Ĵ f (s) = (1− λ) Ĵ f (s)− ζ(s)F̂g(s).

Since J f ∈ H− \ ZH∩ and Fg ∈ H∩, applying the Mellin inverse transform we obtain

−x(J f )′(x) = (1− λ)J f (x) + Z(−Fg)(x).

Hence 1−λ is also an eigenvalue of D− on H. This completes the proof of the lemma.

We already see that the integral
∫ ∞

0 g(x)xs−1dx exists when Re(s) > 0, where g is
a function in H∩. In fact, we can show that the above integral exists when Re(s) > −2.
Since g is an even Schwartz function, the derivative g′ is odd which implies that g′(0) = 0.
Let

c = sup
|x|≤1
|g′′(x)|

be the maximum of g′′ on [−1, 1]. For x ∈ [−1, 1], we have, by Mean Value Theorem,

|g(x)− g(0)| = |g(x)| ≤ |g′(ξ)x| = |g′(ξ)− g′(0)||x| ≤ |g′′(ξ ′)x||x| ≤ cx2,

where −1 < ξ, ξ ′ < 1. Hence for s ∈ C with Re(s) > −2, the integral
∫ 1

0 g(x)xs−1dx
exists. While

∫ ∞
1 g(x)xs−1dx is well defined for any s ∈ C,

∫ ∞
0 g(x)xs−1dx exists when

Re(s) > −2.
When g is not even and g ∈ S(R), we do not know the behavior of g(x) near x = 0.

But we can show that ĝ admits a meromorphic continuation on C. In fact, from integra-
tion by parts,∫ ∞

0
g(x)xs−1dx =

xs

s
g(x)

∣∣∣∣∞
0
− 1

s

∫ ∞

0
g′(x)xsdx = −1

s

∫ ∞

0
g′(x)xsdx

for s ∈ C with Re(s) > 0. Since g ∈ S(R), we have g′ ∈ S(R). So the last integral exists for
Re(s) > −1. Hence we obtain a meromorphic continuation of ĝ on {s ∈ C | Re(s) > −1}.
Repeating this procedure, we obtain a meromorphic continuation of ĝ to the complex
plane C. Such technique can be applied to the extension of the Mellin transform of more
general functions.

To prove Theorem 1.3, we need to establish a lemma on functions in H∩.
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Lemma 2.2. Assume g ∈ H∩. Suppose that ĝ(s0) = 0 for some s0 ∈ C with Re(s0) > −1 and
Re(s0) 6= 1. Define, for x ∈ R,

f (x) =
∫ ∞

1
g(tx)ts0−1dt.

Then we have

i) f (x) =
∫ ∞

1 g(tx)ts0−1dt = −
∫ 1

0 g(tx)ts0−1dt;

ii) f ∈ H∩; and

iii) ĝ(s) = f̂ (s)(s− s0).

Proof. First we prove i). Notice that |g(x)| ≤ c|x| for c = supx∈R |g′(x)| < ∞. The integral∫ ∞
0 g(t)ts−1 exists when Re(s) > −1. Hence we only need to show that∫ ∞

0
g(tx)ts0−1dt = 0

holds for any x ∈ R.
Note that ∫ ∞

0
g(t)ts0−1dt = ĝ(s0) = 0.

For any given x > 0, substituting t by tx in the above equation, we have

xs0

∫ ∞

0
g(tx)ts0−1dt =

∫ ∞

0
g(t)ts0−1dt = ĝ(s0) = 0.

So ∫ ∞

0
g(tx)ts0−1dt = 0

for x > 0. For x < 0, since g is even, we also have∫ ∞

0
g(tx)ts0−1dt =

∫ ∞

0
g(−tx)ts0−1dt = 0.

For x = 0, we have ∫ ∞

0
g(t · 0)ts0−1dt =

∫ ∞

0
g(0)ts0−1dt = 0

as g(0) = 0. Hence ∫ ∞

0
g(tx)ts0−1dt = 0
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for x ∈ R. Therefore,

f (x) =
∫ ∞

1
g(tx)ts0−1dt = −

∫ 1

0
g(tx)ts0−1dt.

Next we verify ii). It is clear that f is an even function. First we check the smoothness
of f . Since g is a Schwartz function, by Lebesgue’s Dominated Convergence Theorem,
we see that f is smooth on R \ {0} and, for x 6= 0, n ∈N,

f (n)(x) =
∫ ∞

1
g(n)(tx)tn+s0−1dt = −

∫ 1

0
g(n)(tx)tn+s0−1dt.

It remains to show that f is smooth at 0. We start with the continuity of f at 0. Since
|g(x)| ≤ c|x| for x ∈ [0, 1], we have

| f (x)| ≤ c
∫ 1

0
txtRe(s0)−1dt ≤ cx.

Hence
lim
x→0

f (x) = 0 = f (0).

Next we prove inductively that f (n)(0) exists for n ≥ 1. Notice that, by Mean Value
Theorem, the function g(t)−g(0)

t is bounded by supx∈R |g′(x)| for t 6= 0. Since Re(s0) > −1,
we have, by Lebesgue’s dominated convergence theorem,

f ′(0) = lim
x→0

−
∫ 1

0 g(tx)ts0−1dt +
∫ 1

0 g(0)ts0−1dt
x

= lim
x→0
−
∫ 1

0

g(tx)− g(0)
tx

ts0 dt = −
∫ 1

0
g′(0)ts0 dt.

Assume that

f (k)(0) = −
∫ 1

0
g(k)(0)tk+s0−1dt (2.3)

for some k ≥ 1. Notice that the function g(k)(t)−g(k)(0)
t is bounded by supx∈R |gk+1(x)| for

t 6= 0. For n = k + 1, we apply the above equation (2.3), use Lebesgue’s Dominated
Convergence Theorem, and then obtain

f (k+1)(0) = lim
x→0

−
∫ 1

0 g(k)(tx)tk+s0−1dt +
∫ 1

0 g(k)(0)tk+s0−1dt
x

= lim
x→0
−
∫ 1

0

g(k)(tx)− g(k)(0)
tx

tk+s0 dt = −
∫ 1

0
g(k+1)(0)tk+s0 dt.

Thus, (2.3) holds for all k ∈N. Hence f is smooth on R.
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Now we prove that f (x) decays rapidly as |x| → ∞, it suffices to check that
xm f (n)(x)→ 0 when |x| → ∞ for any m, n ∈ N. Since g is a Schwartz function, there is a
constant C > 0 such that∣∣∣xm f (n)(x)

∣∣∣ = ∣∣∣∣xm
∫ ∞

1
gm(tx)tn+s0−1dt

∣∣∣∣
≤C

∣∣∣∣∫ ∞

1
xm(tx)−m−1−Re(s0)tn+s0−1dt

∣∣∣∣
≤ C
|x|

∫ ∞

1
t−2dt =

C
|x| → 0, |x| → ∞.

Hence f ∈ S(R).
In the above, we have seen that f (0) = 0. It remains to show that F f (0) = 0. If

−1 < Re(s0) < 1, then there is a δ such that 0 < δ < 1 and Re(s0) < δ. Thus we have

|F f (0)| =
∣∣∣∣∫ ∞

−∞
f (x)dx

∣∣∣∣ = ∣∣∣∣∫ ∞

−∞

∫ ∞

1
g(tx)ts0−1dtdx

∣∣∣∣
≤
∫
|x|<1

∫ ∞

1
|g(tx)|tRe(s0)−1dtdx +

∫
|x|≥1

∫ ∞

1
|g(tx)|tRe(s0)−1dtdx

≤
∫
|x|<1

∫ ∞

1
C1(tx)−δtRe(s0)−1dxdt +

∫
|x|≥1

∫ ∞

1
C2(tx)−2tRe(s0)−1dxdt

for some constants C1, C2 > 0. So the double integral
∫ ∞
−∞

∫ ∞
1 g(tx)ts0−1dtdx is absolutely

integrable. By Fubini’s Theorem,

F f (0) =
∫ ∞

1
ts0−1

∫ ∞

−∞
g(tx)dxdt =

∫ ∞

1
ts0−2

∫ ∞

−∞
g(x)dxdt = 0.

If Re(s0) > 1, then we can choose δ′ such that δ′ > 1 and Re(s0)− 1− δ′ > −1. Then
we have

|F f (0)| =
∣∣∣∣∫ ∞

−∞
f (x)dx

∣∣∣∣ = ∣∣∣∣∫ ∞

−∞

∫ 1

0
g(tx)ts0−1dtdx

∣∣∣∣
≤
∫
|x|<1

∫ 1

0
|g(tx)|tRe(s0)−1dtdx +

∫
|x|≥1

∫ 1

0
|g(tx)|tRe(s0)−1dtdx

≤
∫
|x|<1

∫ 1

0
C3tRe(s0)−1dxdt +

∫
|x|≥1

∫ 1

0
C4(tx)−δ′ tRe(s0)−1dxdt

for some constants C3, C4 > 0. Again, by Fubini’s Theorem,

F f (0) = −
∫ 1

0
ts0−1

∫ ∞

−∞
g(tx)dxdt = −

∫ 1

0
ts0−2

∫ ∞

−∞
g(x)dxdt = 0.

Therefore f ∈ H∩.
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Finally, we prove statement iii). By partial integration we have

−x f ′(x) =
∫ ∞

1
−xg′(tx)ts0 dt = −g(tx)ts0

∣∣∣∣∞
1
+ s0

∫ ∞

1
g(tx)ts0−1dt = g(x) + s0 f (x).

Applying the Mellin transform, we obtain that s f̂ (s) = ĝ(s) + s0 f̂ (s). Hence ĝ(s) =

f̂ (s)(s− s0). This completes the proof of the lemma.

Now we are ready to prove Theorem 1.3.

Proof. By Lemma 2.1, it suffices to show that D− has no eigenvalue λ on H with Re(λ) >
1 or Re(λ) = 0.

Assume on the contrary that such λ exists, i.e., λ is an eigenvalue of D− on H sat-
isfying Re(λ) > 1 or Re(λ) = 0. Then there is a function f ∈ H− \ ZH∩ and a
g ∈ H∩ such that −x f ′(x) = λ f (x) + Zg(x). Applying the Mellin transform, we have
s f̂ (s) = λ f̂ (s) + ζ(s)ĝ(s). Hence

f̂ (s)
ζ(s)

=
ĝ(s)
s− λ

.

By the assumption that λ satisfies Re(λ) = 0 or Re(λ) > 1, we have ζ(λ) 6= 0. So
f̂ (s)/ζ(s) is analytic at λ. Hence we have ĝ(λ) = 0. By Lemma 2.2 iii), there is a function
g1 ∈ H∩ such that ĝ(s) = ĝ1(s)(s − s0). Thus f̂ (s) = ζ(s)ĝ1(s), which implies that
f = Zg1 ∈ ZH∩. This contradicts the fact that f ∈ H− \ ZH∩. Hence D− has no
eigenvalue λ with Re(λ) = 0 or Re(λ) > 1. This completes the proof of Theorem 1.3.

We may summarize the argument in the proof of Theorem 1.3 and obtain the follow-
ing corollary. We will apply this corollary several times in the next section.

Corollary 2.1. Let λ be a complex number with Re(λ) > −1 and Re(λ) 6= 1. Assume that
f ∈ H− \ ZH∩ and g ∈ H∩ satisfy −x f ′(x) = λ f (x) + Zg(x) for x > 0. Then ĝ(λ) 6= 0 and
f̂ (s)/ζ(s) has a simple pole at λ, which implies that λ is a nontrivial zero of the Riemann zeta
function.

3 Proof of Theorem 1.2

We first prove a technical lemma.

Lemma 3.1. Let G be an entire function on C. Then G is the Mellin transform of some function
in H− if and only if, for every m ∈N, smG(s) is bounded in any vertical strip with finite width.

Proof. Let S = {σ + it | α ≤ σ ≤ β, t ∈ R} be a vertical strip with finite width β − α,
where −∞ < α < β < ∞. We first show that if G = ĝ for some g ∈ H−, then for every
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m ∈ N, smG(s) is bounded in any vertical strip with finite width. Since g ∈ H−, for any
s ∈ S, we have

|ĝ(s)| =
∣∣∣∣∫ ∞

0
g(x)xs−1dx

∣∣∣∣
≤
∫ 1

0
|g(x)xs−1|dx +

∫ ∞

1
|g(x)xs−1|dx

≤
∫ 1

0
|g(x)xα|dx +

∫ ∞

1
|g(x)xβ+1−2|dx ≤ C1 + C2,

where

C1 = sup
0<x<1

|g(x)xα| and C2 = sup
x≥1
|g(x)xβ+1|.

Hence ĝ is bounded in S.
Next we show that the function sm ĝ(s) is bounded in S for m ∈ N>0. For s ∈ S with

|Im(s)| ≤ 1, sm ĝ(s) is bounded by continuity. For s ∈ S with |Im(s)| > 1, s
s+j is bounded

for j = 0, 1, · · · , m− 1. Thus there is a constant C > 0 such that

|sm| ≤ C|s(s + 1) · · · (s + m− 1)|.

By partial integration, we have

|sm ĝ(s)| ≤C |s(s + 1) · · · (s + m− 1)ĝ(s)|

=C
∣∣∣∣s(s + 1) · · · (s + m− 1)

∫ ∞

0
g(x)xs−1dx

∣∣∣∣
=C

∣∣∣∣∫ ∞

0
g(m)(x)xs+m−1dx

∣∣∣∣ .

The last integral in the above formula is the Mellin transform of the function xmg(m)(x).
Since g(m) ∈ H−, we have that this integral is bounded in S. Hence sm ĝ(m)(s) is bounded
in S. This shows that G = ĝ satisfies the desired property.

Conversely, suppose that G is an entire function on C such that for every m ∈ N,
smG(s) is bounded in any vertical strip with finite width. Let

h(x) =
1

2πi

∫ c+i∞

c−i∞
G(s)x−sds, x > 0,

be the Mellin inverse transform of G. The above integral exists for all c ∈ R and is
independent of c. It is enough to show that h ∈ H−.

Since G decreases rapidly on every vertical line, we have

h(n)(x) =
1

2πi

∫ c+i∞

c−i∞
G(s)x−s−n(−s)(−s− 1) · · · (−s− n + 1)dx



L. M. Ge, X. J. Li, D. S. Wu and B. Q. Xue / Anal. Theory Appl., 36 (2020), pp. 283-294 293

for n ∈N. So h is smooth on (0, ∞). Also, for any k ∈ Z and x > 0, we have∣∣∣xkh(n)(x)
∣∣∣ = ∣∣∣∣ 1

2πi

∫ k−n+i∞

k−n−i∞
G(s)(−s)(−s− 1) · · · (−s− n + 1)xk−n−sds

∣∣∣∣
≤ 1

2π

∫ k−n+i∞

k−n−i∞
|G(s)(−s)(−s− 1) · · · (−s− n + 1)| ds < ∞.

Hence h ∈ H−. This completes the proof of the lemma.

Now we can prove our main theorem.

Proof. We first show that a complex number ρ is an eigenvalue of D− on H if and only if
ρ is a nontrivial zero of the Riemann zeta function.

Let ρ be a nontrivial zero of ζ(s). We see that ρ is an eigenvalue of D− by Li’s Theo-
rem [4, Therorem 1.1].

Conversely, let ρ be an eigenvalue of D−. By Theorem 1.3, we have 0 < Re(ρ) < 1.
Then by Corollary 2.1, ρ is a nontrivial zero of ζ(s). This proves the first part of Theorem
1.2.

It remains to show that the algebraic multiplicity of the eigenvalue ρ is equal to the
vanishing order of ζ(s) at ρ. Suppose that the function ζ(s) has vanishing order m0 > 0
at ρ. We shall show that the algebraic multiplicity of D− at ρ is also m0.

Let F1 ∈ H− \ ZH∩ and g1 ∈ H∩ such that −xF′1(x) = ρF1(x) + Zg1. We have, by
Proposition 2.1, that the function F̂1(s)/ζ(s) has a simple pole at ρ. So F̂1(s) has vanishing
order m0 − 1 at ρ.

Notice that for every m ∈N, sm F̂1(s) is bounded in any vertical strip with finite width.
Then the function Hi, 0 ≤ i < m0, given by

Hi(s) =
F̂1(s)

(s− ρ)i

also admits the same property. By Lemma 3.1, Hi is the Mellin transform of some function
Fi+1 in H−.

To show that the algebraic multiplicity of D− at ρ is m0, we let, for n ≥ 1,

Vn =
{

f ∈ H−
∣∣(D− ρ)n f ∈ ZH∩

}
.

Notice that the dimension of the subspace
⋃∞

n=1 Vn/ZH∩ in H is equal to the algebraic
multiplicity of the eigenvalue ρ of D− acting on H. Denote by Wn = Vn/ZH∩. To prove
our theorem, it is sufficient to show the following formula

dim Wn =

{
n, 1 ≤ n ≤ m0,
m0, n > m0,

(3.1)

holds.
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Now we prove formula (3.1). First we show that Vn = Vn−1 for n > m0, which implies
that Wn = Wn−1 for n ≥ m0. Assume that there is an f ∈ Vn \ Vn−1. We show that, in
this case, n ≤ m0. The assumption f ∈ Vn \ Vn−1 means that (D − ρ)n f ∈ ZH∩ and
(D − ρ)n−1 f /∈ ZH∩. Denote by f1 the function (D − ρ)n−1 f . Then there is a function
g ∈ H∩ such that −x f ′1(x) = ρ f1(x) + Zg(x) for x > 0. By Proposition 2.1, the function
f̂1(s)/ζ(s) has a simple pole at ρ. Since ζ(s) has vanishing order m0 at ρ, the vanishing
order of the function f̂1(s) = (s− ρ)n−1 f̂ (s) at ρ is m0 − 1. Because f̂ is analytic at ρ, we
must have n ≤ m0. Hence Wn = Wn−1 for n > m0.

Next we show that dim Wn = n for 1 ≤ n ≤ m0. The case n = 1 follows from Li’s The-
orem [4, Theorem 1.4]. For 1 < n ≤ m0, it is sufficient to show that dim(Vn/Vn−1) = 1.
Recall that Fn ∈ H− is the Mellin inverse transform of Hn−1. Applying Mellin transform
to (D − ρ)nFn and (D − ρ)n−1Fn and noticing that F1 /∈ ZH∩ but (D − ρ)F1 ∈ ZH∩, we
conclude that Fn ∈ Vn \Vn−1. Hence dim(Vn/Vn−1) ≥ 1.

Finally, we show that dim(Vn/Vn−1) ≤ 1. Let G1 ans G2 be two functions in Vn \Vn−1.
Then (D − ρ)n−1G1, (D − ρ)n−1G2 ∈ V1 \ ZH∩. By Li’s Theorem, there is a complex
number µ such that

(D− ρ)n−1G1 − µ(D− ρ)n−1G2 = (D− ρ)n−1(G1 − µG2) ∈ ZH∩.

So G1 − µG2 ∈ Vn−1. Hence dim(Vn/Vn−1) ≤ 1. Therefore

dim(Wn/Wn−1) = dim(Vn/Vn−1) = 1

for 1 ≤ n ≤ m0 and (3.1) holds. This completes the proof of the theorem.
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