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Abstract. In this paper, a fifth-order weighted essentially nonoscillatory scheme is
presented for simulating dam-break flows in a finite difference framework. The new
scheme is a convex combination of two quadratic polynomials with a fourth-degree
polynomial in a classical WENO fashion. The distinguishing feature of the present
method is that the same five-point information is used but smaller absolute truncation
errors and the same accuracy order in the smooth region are obtained. The new non-
linear weights are presented by Taylor expansion of the smoothness indicators of the
small stencils to sustain the optimal fifth-order accuracy. The linear advection equa-
tion, nonlinear scalar Burgers equation, and one- and two-dimensional Euler equations
are used to validate the high-order accuracy and excellent resolution of the presented
method. Finally, one- and two-dimensional Saint-Venant equations are tested by using
the new fifth-order scheme to simulate a dam-break flow.
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1 Introduction

Dam-break simulations are very important in hydraulic engineering, as the work is re-
lated to people’s lives and property safety. The governing equation of a dam break is
the shallow water equation, also referred to as the Saint-Venant system [1]. It is widely
applied in ocean and hydraulic engineering. This system describes the flow as a conser-
vation law with an additional source. In one-dimensional space, the equation takes the
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form [2]

∂h
∂t

+
∂(hu)

∂x
=0, (1.1a)

∂(hu)
∂t

+
∂(hu2+ 1

2 gh2)

∂x
=−gh

∂b
∂x

, (1.1b)

where b is the vertical height of the bottom topography, h denotes the water height, u
is the velocity of the fluid and g is the gravitational constant. Because of the practical
importance of the shallow water equation, studies on numerical methods for this system
have attracted much attention in the past few years [1–4] and recently [5–9]. In the ho-
mogeneous case, the system is equivalent to a Euler system, which satisfies hyperbolic
conservation laws.

One characteristic of the hyperbolic conservation laws is that they may develop dis-
continuities in the solution even if the initial conditions are smooth. Thus, classical nu-
merical methods that depend on Taylor expansion fail to obtain an approximate solu-
tion for hyperbolic conservation laws. In the past few decades, many high-order finite
difference or finite volume methods have been investigated to solve hyperbolic con-
servation laws [10–17]. However, high-order approximation leads to spurious oscilla-
tions in the solution. To overcome this phenomenon, total variation diminishing (TVD)
schemes constructed by Harten [10, 18] are based on the principle that the total variation
in the approximation of the numerical solution must be nonincreasing in time, however,
it has been found that TVD schemes are at most first-order accurate near smooth ex-
trema [19]. To improve the accuracy of TVD schemes, essentially non-oscillatory (ENO)
and weighted essentially non-oscillatory (WENO) schemes have been applied quite suc-
cessfully to solve problems with strong shocks, contact discontinuities and sophisticated
smooth structures [20–30]. A series of ENO schemes were developed by Harten et al. [12]
to solve the one-dimensional problem, where instead of using a single fixed stencil to
approximate spatial fluxes, the ENO scheme used a set of candidate stencils determined
by smoothness indicators. However, the ENO scheme is not effective, as such adaption
of stencils is not necessary in smooth regions. Thus, the WENO scheme was introduced
by Liu et al. [20] to overcome the drawbacks of the ENO scheme while maintaining ro-
bustness and high-order accuracy, in such schemes, spatial derivatives are calculated by
using a convex combination of numerical fluxes associated with each candidate stencil.
Jiang and Shu developed a classical method to calculate the smoothness indicators of the
stencils, called the WENO-JS scheme, where the convergence accuracy of the WENO-JS
scheme is fifth order in theory, but its actual rate of convergence is less than fifth order
at critical points for many problems. The mapped WENO scheme (WENO-M) [31] was
developed to have a formal fifth-order convergence at critical points of a smooth solu-
tion. This scheme uses a mapping function k(ε), which renders the nonlinear weights
closer to optimality to satisfy sufficient criteria for fifth-order convergence, however, the
CPU cost is 1.25 times that of the WENO-JS scheme. By a simple combination of classical
smoothness indicators, the WENO-Z scheme was presented in [15, 32], which not only
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improves the convergence order at the critical points but also has the same CPU cost as
the WENO-JS scheme, exhibiting a 0.25 reduction in CPU cost over that of the WENO-M
scheme. The WENO-ZQ [33] scheme was developed by Zhu and Qiu for its simplicity
and high-order accuracy, when a large, centered stencil permits optimal stability and ac-
curacy to be reached, this method certainly reaches that stability and accuracy, especially
when the solution on the stencil is rough.

In this paper, we aim to develop a new fifth-order finite difference WENO scheme.
Like [33], we obtain a convex combination of a fourth-degree polynomial with two
quadratic polynomials in the classical fashion. The new nonlinear weights are proposed
by Taylor expansion for the smoothness indicators of the small stencils in the framework
of a conventional WENO-Z scheme.

This paper is organized as follows. The new fifth-order finite difference WENO
scheme is introduced in Section 2 in detail. In Section 3, some numerical tests are pre-
sented to verify the numerical accuracy and efficiency of the present WENO scheme, and
the one- and two-dimensional dam-break problem is simulated. Concluding remarks are
given in Section 4.

2 A new high-order finite difference WENO scheme

In this section, we present a new fifth-order finite difference weighted essentially non-
oscillatory scheme. Without loss of generality, we consider a scalar hyperbolic conserva-
tion law equation in one dimension,{

ut+ fx(u)=0,
u(x,0)=u0(x),

(2.1)

and the semidiscretized form of (2.1) is

dui(t)
dt

=L(ui(t)), (2.2)

where L(u) is the high-order spatial discrete formulation of − fx(u). Consider a uniform
grid defined by the points xi = i∆x, where the cells are Ii = [xi−1/2,xi+1/2], cell size is
denoted as ∆x = xi+1/2−xi−1/2, and cell centers are denoted as xi =

1
2 (xi−1/2+xi+1/2),

i=1,··· ,N. The right-hand side of (2.2) can then be reformulated as

L(ui(t))=−
1

∆x
( f̂i+1/2+ f̂i−1/2), (2.3)

where ui(t) is defined as a nodal point value u(xi,t), and f̂i+1/2 is a numerical flux that
has a fifth-order approximation of flux f (u) at the cell boundary xi+1/2 of cell Ii.

In general, the flux can be split into positive and negative parts by the flux vector
splitting method:

f (u)= f+(u)+ f−(u), (2.4)
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Figure 1: The computational uniform grid xi with the 5-point stencil S1 and two 3-point stencils S2 and S3
used for the fifth-order WENO reconstruction step.

where d f+(u)
du ≥0, d f−(u)

du ≤0.
In this paper, we use Lax-Friedrichs flux vector splitting:

f±(u)=
1
2
( f (u)±αu), (2.5)

where α is taken as α=max{| f ′(u)|} over the relevant u. f̂+i+1/2 and f̂−i+1/2 are the numer-
ical fluxes at x= xi+1/2 for positive and negative parts, respectively. Thus,

f̂i+1/2= f̂+i+1/2+ f̂−i+1/2. (2.6)

Hereafter, we only describe how f̂+i+1/2 is approximated because f̂−i+1/2 is symmetric to
f̂+i+1/2 with respect to x=xi+1/2. We will drop the ”+” sign in the superscript for simplic-
ity.

The large stencil (Fig. 1) is chosen as S1 ={xi−2,xi−1,xi,xi+1,xi+2}. It is easy to obtain
a fourth-degree reconstructed polynomial q1(x):

q1(x)= fi+
fi+2−8 fi+1+8 fi−1− fi−2

12∆x
(x−xi)

− fi+2−16 fi+1+30 fi−16 fi−1+ fi−2

24∆x2 (x−xi)
2

+
fi+2−2 fi+1+2 fi−1− fi−2

12∆x3 (x−xi)
3

+
fi+2−4 fi+1+6 fi−4 fi−1+ fi−2

24∆x4 (x−xi)
4

− 1
24

∆x2 ∂2 p1(x)
∂x2 +

1
5760

∆x4 ∂4 p1(x)
∂x4 , (2.7)

where p1(x) is a fourth-degree Lagrangian interpolation polynomial. This reconstructed
polynomial is also given in [33] with a different expression, where the fifth-order accurate
numerical flux is given by

f̂ 1
i+1/2=q1(xi+1/2)=

1
30

fi−2−
13
60

fi−1+
47
60

fi+
9

20
fi+1−

1
20

fi+2. (2.8)
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Choose two small stencils (Fig. 1): S2={xi−2,xi−1,xi} and S3={xi,xi+1,xi+2}. It is also
easy to obtain the two quadratic polynomials:

q2(x)= fi−1+
fi− fi−2

2∆x
(x−xi−1)−

fi−2 fi−1+ fi−2

2∆x2 (x−xi−1)
2

− 1
24

∆x2 ∂2 p2(x)
∂x2 , (2.9a)

q3(x)= fi+1+
fi+2− fi

2∆x
(x−xi+1)−

fi+2−2 fi+1+ fi

2∆x2 (x−xi+1)
2

− 1
24

∆x2 ∂2 p3(x)
∂x2 , (2.9b)

where p2(x) and p3(x) are quadratic Lagrangian interpolation polynomials. The third-
order accurate numerical fluxes are given by

f̂ 2
i+1/2=q2(xi+1/2)=

1
3

fi−2−
7
6

fi−1+
11
6

fi, (2.10a)

f̂ 3
i+1/2=q3(xi+1/2)=

1
3

fi+
5
6

fi+1−
1
6

fi+2. (2.10b)

The smoothness indicators are βn(n=1,2,3), which are used to measure the smoothness
of the functions pn(x). We use the smoothness indicators in [21]:

βn =
r

∑
α=1

∫
Ii

∆x2α−1
(dα pn(x)

dxα

)2
dx, n=1,2,3. (2.11)

The associated explicit expressions of smoothness indicators are

β1=
1

144
( fi−2−8 fi−1+8 fi+1− fi+2)

2

+
1

15600
(−11 fi−2+174 fi−1−362 fi+174 fi+1−11 fi+2)

2

+
781

2880
(− fi−2+2 fi−1−2 fi+1+ fi+2)

2

+
1421461
1310400

( fi−2−4 fi−1+6 fi−4 fi+1+ fi+2)
2, (2.12a)

β2=
13
12

( fi−2−2 fi−1+ fi)
2+

1
4
( fi−2−4 fi−1+3 fi)

2, (2.12b)

β3=
13
12

( fi−2 fi+1+ fi+2)
2+

1
4
(3 fi−4 fi+1+ fi+2)

2. (2.12c)

The Taylor series expansions of the smoothness indicators about fi are obtained:

β1=∆x2( f ′i )
2+

13
12

∆x4( f ′′i )
2+

1
5040

∆x6[5467( f ′′i )
2−14 f ′′i f (4)i −336 f ′i f (5)i ]+O(∆x8)

=∆x2( f ′i )
2[1+O(∆x2)]=O(∆x2), (2.13a)
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β2=∆x2( f ′i )
2+∆x4

[13
12

( f ′′i )
2− 2

3
f ′i f ′′′i

]
+∆x5

(
− 13

6
f ′′i f ′′′i +

1
2

f ′i f (4)i

)
+O(∆x6)

=∆x2( f ′i )
2[1+O(∆x2)]=O(∆x2), (2.13b)

β3=∆x2( f ′i )
2+∆x4

[13
12

( f ′′i )
2− 2

3
f ′i f ′′′i

]
+∆x5

(13
6

f ′′i f ′′′i −
1
2

f ′i f (4)i )+O(∆x6
)

=∆x2( f ′i )
2[1+O(∆x2)]=O(∆x2). (2.13c)

From Eqs. (2.13a)-(2.13c), we can obtain

β1−β2=
2
3

∆x4 f ′i f ′′′i +∆x5
(13

6
f ′′i f ′′′i −

1
2

f ′i f (4)i

)
+O(∆x6)

=

{
O(∆x4), f ′i 6=0, f ′′i 6=0,
O(∆x5), f ′i =0, f ′′i 6=0,

(2.14a)

β1−β3=
2
3

∆x4 f ′i f ′′′i +∆x5
(
− 13

6
f ′′i f ′′′i +

1
2

f ′i f (4)i

)
+O(∆x6)

=

{
O(∆x4), f ′i 6=0, f ′′i 6=0,
O(∆x5), f ′i =0, f ′′i 6=0.

(2.14b)

It is easy to verify

τ=
( |β1−β2|+|β1−β3|

2

)2

=

{
O(∆x8), f ′i 6=0, f ′′i 6=0,
O(∆x10), f ′i =0, f ′′i 6=0.

(2.15)

We define
ωn =

ω̄n

∑3
l=1 ω̄l

, ω̄n =γn

(
1+

τ

ε+βn

)
, n=1,2,3. (2.16)

Here, ε is a small positive number so that the denominator does not become zero. In the
smooth region, the following equation is satisfied

τ

ε+βn
=O(∆x6), n=1,2,3. (2.17)

Therefore, ωn(n = 1,2,3) satisfy the accuracy order condition. We take ε = 10−6 in our
computation.

The new reconstruction of the numerical flux at xi+1/2 is given by

f̂i+1/2=ω1

( 1
γ1

q1(xi+1/2)−
γ2

γ1
q2(xi+1/2)−

γ3

γ1
q3(xi+1/2)

)
+ω2q2(xi+1/2)+ω3q3(xi+1/2). (2.18)

The right side of (2.18) is different from the classical WENO scheme, with Eq. (2.18)
clearly holding for arbitrarily chosen linear weights γ1, γ2 and γ3, satisfying γ1+γ2+γ3=
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1. The purpose of this approach is to offer high-order approximation at point xi+1/2 to
numerical flux in the smooth region, if not, the scheme would degrade its optimal fifth-
order accuracy. In this way, the scheme can sustain high-order accuracy in the smooth
region and keep the shock transition sharp in the non-smooth region.

In the semidiscretized scheme of (2.2), time marching is used for the third-order total
variation diminishing Runge-Kutta scheme (RK-TVD):

u(1)=un+∆tL(un),

u(2)=
1
4
(3un+u(1)+∆tL(u(1))),

u(3)=
1
3
(un+2u(2)+2∆tL(u(2))).

(2.19)

3 Numerical experiments

In this section, we compare the numerical performance of the new WENO scheme,
termed WENO-Present, with the classical WENO-JS and the WENO-ZQ. First, a linear
advection equation with smooth exact solutions is used to test the order of the accuracy
of the WENO-Present scheme. Second, the good resolution of the WENO-Present scheme
is tested by a large gradient problem of the linear advection equation. Third, we solve
the nonlinear scalar Burgers equation by the WENO-Present scheme. Fourth, one- and
two-dimensional systems of the Euler equation are tested by the new scheme. Finally, the
dam-break model of one- and two-dimensional problems are simulated by the WENO-
Present scheme. To test whether the choice of γ would pollute the optimal order accuracy
of the WENO-Present scheme, we first set the following types of linear weights in Section
3.1: (1) γ1 =0.98, γ2 =0.01, and γ3 =0.01; (2) γ1 =1.0/3.0, γ2 =1.0/3.0, and γ3 =1.0/3.0;
(3) γ1=0.01, γ2=0.495, and γ3=0.495.

3.1 Linear advection example with smooth exact solution and periodic
boundary conditions

For
∂u
∂t

+
∂u
∂x

=0, x∈ [0,1], (3.1)

with the initial condition
u(x,0)=sin(2πx) (3.2)

and the exact solution
u(x,t)=sin(2π(x−t)). (3.3)

Tables 1 and 2 show the errors and convergence orders of the WENO-Present scheme
with different types of linear weights for Example 3.1 at t=1. The WENO-Present scheme
with different types of linear weights achieves the fifth order of accuracy, and the trunca-
tion error of WENO-Present(1) is smaller than that of the others.
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Table 1: L2 error and convergence order of the WENO-Present scheme with different types of linear weights
for Example 3.1.

Grid Points WENO-Present(1) WENO-Present(2) WENO-Present(3)
Error Order Error Order Error Order

10 9.60e-3 8.48e-3 1.02e-2
20 2.24e-4 5.42 2.33e-4 5.19 2.24e-4 5.40
40 7.07e-6 5.00 7.11e-6 5.03 7.16e-6 5.08
80 2.21e-7 5.00 2.21e-7 5.01 2.21e-7 5.01

160 6.92e-9 5.00 6.92e-9 5.00 6.92e-9 5.00

Table 2: L∞ error and convergence order of the WENO-Present scheme with different types of linear weights
for Example 3.1.

Grid Points WENO-Present(1) WENO-Present(2) WENO-Present(3)
Error Order Error Order Error Order

10 6.86e-3 1.23e-2 1.47e-2
20 3.13e-4 4.45 3.23e-4 5.25 3.45e-4 5.41
40 9.97e-6 4.97 1.02e-5 4.98 1.05e-5 5.04
80 3.12e-7 5.00 3.15e-7 5.02 3.17e-7 5.05

160 9.78e-9 5.00 9.80e-9 5.00 9.82e-9 5.01

Fig. 2 shows that the WENO-Present(1) scheme needs less CPU time than WENO-
Present(2) and WENO-Present(3) to obtain the same L2 and L∞ errors. Therefore, the
WENO-Present(1) scheme is the most efficient, and it is adopted in later sections.

Tables 3 and 4 show the errors and convergence orders for Example 3.1 at t=1. We can
see that the WENO-Present scheme achieves its designed order of accuracy. Additionally,
the L2 and L∞ errors of the WENO-Present scheme are less than those of the WENO-JS
and WENO-ZQ schemes.
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Figure 2: Computing time and error of the WENO-Present scheme with different linear weights for Example
3.1.
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Table 3: A comparison study of L2 error and convergence order of Example 3.1 at t=1.

Grid Points WENO-JS WENO-ZQ WENO-Present
Error Order Error Order Error Order

10 3.81e-2 4.76e-2 9.60e-3
20 1.92e-3 4.31 1.46e-3 5.00 2.24e-4 5.42
40 5.83e-5 5.04 4.52e-5 5.01 7.07e-6 5.00
80 1.76e-6 5.05 1.38e-6 5.03 2.21e-7 5.00

160 5.41e-8 5.02 4.32e-8 5.00 6.92e-9 5.00

Table 4: A comparison study of L∞ error and convergence order of Example 3.1 at t=1.

Grid Points WENO-JS WENO-ZQ WENO-Present
Error Order Error Order Error Order

10 5.08e-2 6.02e-2 6.86e-3
20 2.79e-3 4.19 2.23e-3 4.75 3.13e-4 4.45
40 9.82e-5 4.83 6.85e-5 5.02 9.97e-6 4.97
80 3.04e-6 5.01 2.11e-6 5.02 3.12e-7 5.00

160 9.45e-8 5.01 6.57e-8 5.00 9.78e-9 5.00

3.2 Linear advection example for the large gradient problem and periodic
boundary conditions

For
∂u
∂t

+
∂u
∂x

=0, x∈ [−1,1], (3.4)

with the initial condition
u(x,0)= e−300x2

(3.5)

and the exact solution
u(x,t)= e−300(x−t)2

. (3.6)

Fig. 3 shows that the dissipation of the WENO-Present scheme is less than that of the
WENO-JS and WENO-ZQ schemes. We can also see that the behavior of the WENO-
Present scheme is better than that of the others. Thus, the WENO-Present scheme is
better for simulating large gradient problems. Fig. 4 shows that the absolute error of
the WENO-Present scheme is minimal, therefore, the WENO-Present scheme has a high
resolution.

3.3 Nonlinear scalar Burgers equation with periodic boundary conditions

For
∂u
∂t

+
∂( u2

2 )

∂x
=0, x∈ [−1,1], (3.7)
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Figure 3: Numerical solution of Example 3.2 computed by the WENO-JS, WENO-ZQ and WENO-Present
schemes. The figures show the solution at t=0.5. N=100 points were used.
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Figure 4: Absolute error of Example 3.2 computed by the WENO-JS, WENO-ZQ and WENO-Present schemes.
The figures show the solution at t=0.5. N=100 points were used.

with the initial condition
u(x,0)=

1
2
+sin(πx). (3.8)

The exact solution is smooth up to t=1/π, then it develops a moving shock that in-
teracts with a rarefaction wave. When t=0.15, the solution is still smooth. The errors and
numerical orders of accuracy by the WENO-JS, WENO-ZQ and WENO-Present schemes
are shown in Tables 5 and 6. We can see that all the schemes achieve their designed or-
der of accuracy. The WENO-Present and WENO-ZQ schemes produce fewer truncation
errors than the WENO-JS scheme, and the error of WENO-Present is nearly the same as
that of WENO-ZQ for this smooth solution.

When t=0.5, the solution is discontinuous, the approximate solutions are then com-
puted by the WENO-JS, WENO-ZQ and WENO-Present schemes for the initial condi-
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Table 5: A comparison study of L2 error and convergence order of Example 3.3 at t=0.15.

Grid Points WENO-JS WENO-ZQ WENO-Present
Error Order Error Order Error Order

10 2.96e-2 2.92e-2 2.69e-2
20 3.42e-3 3.11 2.67e-3 3.45 2.64e-3 3.35
40 1.78e-4 4.26 1.49e-4 4.16 1.50e-4 4.12
80 6.36e-6 4.81 5.45e-6 4.77 5.44e-6 4.79

160 2.87e-7 4.45 1.99e-7 4.76 1.98e-7 4.78
320 9.90e-9 4.86 5.68e-9 5.12 5.68e-9 5.12

Table 6: A comparison study of L∞ error and convergence order of Example 3.3 at t=0.15.

Grid Points WENO-JS WENO-ZQ WENO-Present
Error Order Error Order Error Order

10 4.45e-2 4.06e-2 3.85e-2
20 5.65e-3 2.98 4.25e-3 3.26 4.26e-3 3.18
40 4.03e-4 3.81 3.47e-4 3.61 3.47e-4 3.62
80 1.58e-5 4.67 1.32e-5 4.72 1.32e-5 4.72

160 1.20e-6 3.72 7.48e-7 4.14 7.47e-7 4.14
320 6.28e-8 4.26 2.57e-8 4.86 2.57e-8 4.86

tions, Figs. 5 and 6 show the results with grid points N=40 and N=80 respectively. The
exact solution is calculated by the WENO-JS scheme with 2000 grid points. The shocks
are very well captured by all the schemes, but the WENO-Present scheme performs the
best.
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Figure 5: Numerical solution of Example 3.3 computed by the WENO-JS, WENO-ZQ and WENO-Present
schemes. The figures show the solution at t=0.5. N=40 points were used.
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Figure 6: Numerical solution of Example 3.3 computed by the WENO-JS, WENO-ZQ and WENO-Present
schemes. The figures show the solution at t=0.5. N=80 points were used.

3.4 One-dimensional Euler equations

In this section, we consider 1D Euler equations since one of the main application areas of
WENO schemes is compressible gas dynamics: ρ

ρu
E


t

+

 ρu
ρu2+p
(E+p)u


x

=0, (3.9)

where ρ, u, p, and E are density, velocity, pressure, and total energy, respectively. The
system of equations is closed by the equation of states for an ideal polytropic gas: E=

p
γ−1 +

1
2 ρu2, where the ratio of specific heats is γ=1.4.

The following two initial conditions combined with Euler equations (3.9) are consid-
ered.
1. Lax problem:

(ρ,u,p)=
{

(0.445,0.698,3.528), −0.5≤ x≤0,
(0.5,0,0.571), 0< x≤0.5.

(3.10)

The final computing time is t=0.16. We compare the performances of the exact solution
and the computed density obtained with the WENO-JS, WENO-ZQ and WENO-Present
schemes by using 200 grid points, the exact solution is the numerical solution of the
WENO-JS scheme with 2000 grid points. The results for different schemes are shown in
Fig. 7, we observe that the results obtained by WENO-ZQ and WENO-Present schemes
work a little overshoot near the shock for this problem.
2. Shu-Osher problem: For

(ρ,u,p)=
{

(3.857143,2.629369,10.33333), −5≤ x≤−4,
(1+0.2sin(5x−5),0,1), −4< x≤5.

(3.11)
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Figure 7: Numerical solution of the Riemann problem of Lax computed by the WENO-JS, WENO-ZQ and
WENO-Present schemes. The figures show the density of the solution at t=0.16. N=200 points were used.

The Shu-Osher problem describes shock interaction with entropy waves. It is a typical
problem with a moving shock interacting with sine waves in density, which means that
the solution contains both shocks and complex smooth region structures. The final time
is t= 1.8. In Fig. 8, we present the computed density against the exact solution, where
the exact solution is computed by the WENO-JS scheme with 2000 grid points. We can
see that the WENO-Present scheme shows a higher resolution than the WENO-JS and
WENO-ZQ schemes.

3.5 Two-dimensional Euler equations

In this example, we consider the 2D Euler equation:
ρ

ρu
ρv
E


t

+


ρu

ρu2+p
ρuv

(E+p)u


x

+


ρv

ρuv
ρv2+p
(E+p)v


y

=0, (3.12)

where the equation of state is

p=(γ−1)
(

E− 1
2

ρ(u2+v2)
)

.

1. Double Mach reflection of a strong shock.
This problem describes a Mach 10 shock reflected from the wall with an incidence

angle of 60◦. The computational domain is chosen to be [0,4]×[0,1], and the initial con-
ditions are

(ρ,u,v,p)=


(8.0,7.145,−4.125,116.5), x<

1
6
+

y√
3

,

(1.4,0,0,1), x≥ 1
6
+

y√
3

.
(3.13)
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Figure 8: Numerical solution of the Shu-Osher problem computed by the WENO-JS, WENO-ZQ and WENO-
Present schemes. The figures show the density of the solution at t=1.8. N=400 points were used.

The ratio of specific heats is γ=1.4. We run the computation until t=0.2. Fig. 9 shows the
results of WENO-Present and WENO-JS on the computation region with 960×240 grid
points. Details of the region around the double Mach stems are shown in Fig. 10. It can
be seen that the WENO-Present scheme resolves the instabilities better around the Mach
stem than the WENO-JS scheme.

2. Rayleigh-Taylor instability.

This problem describes the flow motions on the interface between fluids of different
densities. The heavy fluid moves into the region of the light fluid with a fingering nature,
causing the bubbles of the light fluid to rise into the heavy fluid and the spikes of the
heavy fluid to fall into the light fluid. The computational domain is [0, 1

4 ]×[0,1], and the
initial condition is

(ρ,u,v,p)=


(

2,0,−0.025
√

γp
ρ

cos(8πx),2y+1
)

, 0≤y<
1
2

,(
1,0,−0.025

√
γp
ρ

cos(8πx),y+1.5
)

,
1
2
≤y≤1,

(3.14)

where the ratio of specific heats is γ= 5
3 , and reflection boundary conditions are imposed

for the left and right boundaries. The top boundary is set as (ρ,u,v,p)= (1,0,0,2.5), and
(ρ,u,v,p)=(2,0,0,1) is the bottom boundary condition. The final time is t=1.95.

The solutions are computed by the WENO-JS, WENO-ZQ and WENO-Present
schemes with meshes of 100×400, as shown in Fig. 11. Like the double Mach reflection of
the strong shock problem, the WENO-Present scheme also possesses a higher resolution
for capturing the solution than the other schemes.
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Figure 9: The density of Double Mach reflection computed by the WENO-JS, WENO-ZQ and WENO-Present
schemes, and with 40 equally spaced contour lines from 1.8 to 20.
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Figure 10: The local enlarged density distributions around the triple point computed by the WENO-JS, WENO-
ZQ and WENO-Present schemes, with 40 equally spaced contour lines from 1.8 to 20.

3.6 One-dimensional ideal dam-break simulation

For the one-dimensional ideal dam-break model (Fig. 12), the computational region is
[0,1], and the vertical height of the bottom topography is b=0. Accordingly, the equations
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Figure 11: The density contour of the Rayleigh-Taylor instability computed by the WENO-JS, WENO-ZQ and
WENO-Present schemes with 30 contours in the range from 0.865 to 2.235.

Figure 12: One-dimensional ideal dam-break test model diagram.

are obtained from (1.1b):

∂h
∂t

+
∂(hu)

∂x
=0, (3.15a)

∂(hu)
∂t

+
∂(hu2+ 1

2 gh2)

∂x
=0, (3.15b)

with the initial condition {
hL =1.0, uL =0.0, x≤0.6,
hR =0.2, uR =0.0, x>0.6.

(3.16)

Fig. 13 provides the depth distribution at 0.08 after a dam break with N=200. Fig. 14
shows the velocity distribution at 0.08 after a dam break with N=200. According to the
behavior of the computational parameters near the shock for Figs. 13 and 14, we can see
that all the schemes simulate the dam-break flow very well, however, the WENO-Present
scheme has the advantage of high-order accuracy.
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Figure 13: Water surface profile distribution at t=0.08s after dam-break with N=200.
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Figure 14: Water velocity distribution at t=0.08s after dam-break with N=200.

3.7 Two-dimensional ideal dam-break simulation

For the two-dimensional ideal dam-break model, the failure of a dam in a 200×200m
basin of simplified geometry is depicted in Fig. 15. The dam site is 100m upstream, with
a dam width of 10m. The problem models a partial dam break or the rapid opening of a
sluice gate. At the instant of dam failure, water is released through a breach 75m wide,
forming a bore wave that propagates forward while spreading laterally. At the same
time, a negative depression wave spreads upstream. The vertical height of the bottom
topography is b=0. Accordingly, the following equations are obtained:

∂h
∂t

+
∂(hu)

∂x
+

∂(hv)
∂y

=0, (3.17a)

∂(hu)
∂t

+
∂(hu2+ 1

2 gh2)

∂x
+

∂(huv)
∂y

=0, (3.17b)
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∂(hv)
∂t

+
∂(huv)

∂x
+

∂(hv2+ 1
2 gh2)

∂y
=0, (3.17c)

with the initial condition{
hL =10, uL =0, vL =0, x≤95,
hR =5, uR =0, vR =0, x≥105.

(3.18)

A 40×40 cell rectangular grid was chosen in this case, taking into account the regular
shape of the domain of integration. Fig. 16 shows a 3D view of the water surface eleva-
tion, as obtained at time t=7.2s, when the waves have not yet reached all the boundaries.
Fig. 17 provides a map of level lines for the depth. These lines manifest as abrupt depres-
sions in the water surface elevation in these regions. As can be observed, the numerical
solutions of the WENO-JS and WENO-Present schemes exhibit stability and good behav-
ior everywhere, but the WENO-Present scheme has a better simulation effect.

Figure 15: Two-dimensional ideal dam-break test model diagram.

(a) WENO-JS (b) WENO-Present

Figure 16: Water surface elevation at t=7.2s after dam-break.
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Figure 17: Contour plot showing depth distribution for partial dam-break test case.
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Figure 18: Water surface elevation at t=0.55s after dam-break.

Another interesting test case for assessing algorithm performance is the breaking of a
dam with cylindrical symmetry and the subsequent time evolution of the wave pattern.
The dam in a 50×50m region has the initial conditions{

hin =10, uin =0, vin =0,
√

x2+y2≤11,

hout =1, uout =0, vout =0,
√

x2+y2>11,
(3.19)

where two regions of still water are separated by a cylindrical wall (radius= 11m) with
one region on the inner side of hin=10m and the other region hout=1m outside the dam.
All the boundaries were assumed to be rigid.

The numerical results obtained with the new fifth-order scheme (WENO-Present) and
the WENO-JS scheme on each of the grids for time t= 0.55s are shown in Fig. 17. This
figure shows a perspective view plot of the free-surface results computed in the rectangu-
lar grid. The irregularities around the propagating front and in the zone between it and
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Figure 19: Contour plot showing depth distribution for the circular dam-break test case.

the depression wave mentioned above are visible in this image. Fig. 19 represents the
respective level line maps of the depth. The results produced in the rectangular mesh are
somewhat square, although perfect circular symmetry is expected. These observations
illustrate that the WENO-Present scheme adequately simulates the breaking of a circular
dam.

3.8 The dam-breaking problem with nonflat bottom topography

In this section, we combine the WENO-Present scheme with the well-balanced method,
which is presented in [2] to simulate the dam-breaking problem with nonflat bottom
topography. The detailed information about the well-balanced method for the shallow
water equation can be seen in [2, 6].

3.8.1 Test for the exact C-property

First, we should verify that the well-balanced WENO-Present scheme maintains the exact
C-property over a nonflat bottom, two functions for the bottom topography are given by
(0≤ x≤10):

b(x)=5e−
2
5 (x−5)2

, (3.20)

which is smooth, and

b(x)=
{

4, if 4≤ x≤8,
0, otherwise,

(3.21)

which is discontinuous. The initial condition is the stationary solution:

h+b=10, hu=0. (3.22)

We compute the solution using the well-balanced WENO-Present scheme with N =
100,200 and 400 cells, the final time is t=0.5. The computed surface level h+b and bottom
b are plotted in Fig. 20.
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Figure 20: The surface level h+b and the bottom b for stationary flow.

The double precision is used to perform the computation, L∞ and L2 errors for the
surface level h+b and water discharge hu are shown in Tables 7 and 8. It can be seen that
the L∞ and L2 errors for both the smooth and discontinuous bottom topographies are
at level of round-off errors, therefore, the WENO-Present scheme can preserve the exact
C-property.

Table 7: L∞ and L2 errors in the water surface level h+b and water discharge hu as computed by the WENO-
Present scheme with the smooth bottom topography (3.19).

N L∞ error L2 error
h+b hu h+b hu

100 9.38e-14 8.56e-13 5.24e-14 5.86e-13
200 2.07e-13 1.79e-12 1.10e-13 1.24e-12
400 4.15e-13 3.76e-12 2.15e-13 2.49e-12

Table 8: L∞ and L2 errors in the water surface level h+b and water discharge hu as computed by the WENO-
Present scheme with the smooth bottom topography (3.20).

N L∞ error L2 error
h+b hu h+b hu

100 4.66e-14 1.93e-13 2.66e-14 1.27e-13
200 9.15e-13 3.49e-12 4.09e-14 3.83e-13
400 2.85e-13 9.36e-12 1.11e-14 7.05e-13

3.8.2 The dam-breaking problem over a rectangular bump

In this example, the dam-breaking problem over a rectangular bump is chosen to in-
vestigate the capability of the WENO-Present scheme in shock capturing, this classical
example was also used in [1, 2, 6].



X. G. Li, G. D. Li and Y. B. Ge / Adv. Appl. Math. Mech., 13 (2021), pp. 58-82 79

0 250 500 750 1000 1250 1500
0

2

4

6

8

10

12

14

16

18

20

22

su
rfa

ce
 le

ve
l h

+b
, b

ot
to

m
 b

X

 bottom b
 initial h+b

Figure 21: The initial surface level h+b and bottom topography b for the dam-breaking problem.
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Figure 22: The surface level h+b for the dam-breaking problem at time t=15s.

The bottom topography is given by

b(x)=
{

8, if | x−750 |≤1500/8,
0, otherwise,

(3.23)

for x∈ [0,1500]. The initial conditions are:

(hu)(x,0)=0 and h(x,0)=
{

20−b(x), if x≤750,
15−b(x), otherwise.

(3.24)

The initial surface level h+b and the bottom b are plotted in Fig. 21. The final surface
levels h+b computed by the WENO-Present scheme with grid points N = 500 at times
t= 15s and t= 60s are plotted in Figs. 22 and 23, the reference solution is computed by
the WENO-JS scheme with grid points N = 5000. The good performance of the WENO-
Present scheme is demonstrated in the figures, and the final surface levels h+b at different
times are in good agreement with the results of [2, 6].
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Figure 23: The surface level h+b for the dam-breaking problem at time t=60s.

4 Conclusions

In this paper, we derived a simple fifth-order finite difference WENO scheme called
WENO-Present for dam-break simulations. The WENO-Present scheme uses the infor-
mation that lies in one five-point stencil and two smaller three-point stencils, thus, the
scheme makes use of more information contained in the point than does the WENO-ZQ
scheme, smaller error and higher precision were obtained by the WENO-Present scheme
than by the WENO-ZQ scheme. Another advantage of the WENO-Present scheme is its
simplicity. The construction of WENO-Present is based on WENO interpolation in spa-
tial fields, after which a third-order TVD Runge-Kutta time discretization procedure is
used to solve the ODE. Compared with classical WENO schemes, the WENO-Present
scheme is very simple in the computation of problems with shocks. Meanwhile, the
proposed scheme can obtain the same accuracy order. Our analysis also indicates that
the WENO-Present scheme has an excellent resolution over the WENO-JS scheme when
solving problems with large gradients and shocks. Finally, one- and two-dimensional
ideal dam-break flow, dam breaking with a nonflat bottom topography are tested by the
WENO-Present scheme, and the efficiency and stability of this scheme are verified.
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