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Abstract. In this paper, some two-grid finite-volume methods are constructed for solv-
ing the steady-state Schrodinger equation. The method projects the original coupled
problem onto a coarser grid, on which it is less expensive to solve, and then prolon-
gates the approximated coarse solution back to the fine grid, on which it is not much
more difficult to solve the decoupled problem. We have shown, both theoretically and
numerically, that our schemes are more efficient and achieve asymptotically optimal
accuracy as long as the mesh sizes satisfy h=O(H?).
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1 Introduction

In this paper, we will study two-grid finite volume element discretization schemes for
the following boundary value problem of the steady-state Schrodinger equation [1]:

—AP(x)+V(x)p(x)=f(x), VxeQ, (1.1a)
¥(x) =0, ¥x€aQ), (1.1b)

where Q) C R? is a convex polygonal domain, f(x), V(x) and unknown function ¢(x) are
complex-valued.

For any complex-valued function i, we denote its real part by ¢, the imaginary part
by ¢>. Then problem (1.1a)-(1.1b) is equivalent to the following coupled equations:

— A1 (%) + V1 (x) 1 (x) = Va (x) 92 (x) = f1(x), Vx€Q, (1.2a)
— APy (x) + V1 (X) P2 (x) + Vo (x) 91 (x) = f2(x), VxeQ, (1.2b)
Pi(x) =0, =12, Vx € 0Q). (1.2¢)
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Finite volume method has the local conservation of certain physical quantities and the
convenience in numerical implementation, so it has been efficiently used in lot of prac-
tical computations and extensively studied in theory [2-19,35-43]. Zhou et al. con-
structed symmetric finite volume schemes for selfadjoint elliptic problems [2] in 2002
and for parabolic problems [6] in 2003 respectively. Also, there are different finite vol-
ume methods for elliptic problems [9,11-13,15]. Wang et al. [7] develop a second-order
finite volume scheme to simulate three dimensional truncated pyramidal QDs in 2006,
where the scheme has successfully computed all the confined energy states and visu-
alized the corresponding wave functions. He et al. [8] proposed finite volume method
based on stabilized finite elements for the nonstationary Navier-Stokes problem in 2007,
where the resulting solution, verified by theoretical analysis and numerical experiments,
achieves optimal accuracy, and so on.

On the other hand, the two-grid discretization method, proposed originally by Xu [20]
in 1992, is an efficient numerical method. And it was further investigated and applied to
solving many problems, such as nonlinear parabolic equations [21], nonlinear elasticity
problems [22], nonlinear PDEs [23], Navier-Stokes equations [24, 25], evolution equa-
tions [26], two-phase mixed-domain PEMFC model [27], nonlinear natural convection
system [28], Schrodinger equations [1,29-34] and so on.

Later on, more authors connected finite volume method with two-grid method and
obtained some important results, for instance, Bi et al. [35] constructed two-grid fi-
nite volume element method for linear and nonlinear elliptic problems in 2007; Chen
et al. proposed semi-discrete two-grid finite volume element method for semilinear
parabolic [36] and for second-order nonlinear hyperbolic equations [37] respectively in
2010; For nonlinear parabolic equations, Chen et al. [38] in 2009 and Zhang et al. [39] in
2011 constructed full-discrete two-grid finite volume element method respectively; Also
Zhang [40] proposed two-grid characteristic finite volume element method for nonlinear
parabolic equations in 2013; And Zhang [41] constructed semi-discrete two-grid finite
volume element method for nonlinear convection-diffusion problems in 2011; Chen et
al. [42] proposed two-grid characteristic finite volume element method for semilinear
advection-dominated diffusion equations in 2013; Li et al. [43] show both wavelet pre-
conditioners and multilevel preconditioners of linear systems which resulted from the
finite volume method for elliptic boundary value problems in 2012. In the above results,
some rigorous theoretical analyses are given, and some numerical experiments are pre-
sented to confirm the theoretical findings.

In this paper, we explore the two-grid finite volume method to decouple the systems
of partial differential equations (1.2a)-(1.2c). Specifically, we extended the approach given
in [2,6] to solve the original problem directly on the coarse grid, and constructed a new
finite volume method to solve the decoupled equations on the fine grid. The resulting
solution, verified by theoretical analysis and numerical experiments, achieves optimal
accuracy (h+H?) in H! —norm.

The rest of the paper is organized as follows: Section 2 is a description and analysis
of the finite volume method for Schrodinger equation. In Section 3, we construct the
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two-grid finite volume schemes and derive the error estimates. In Section 4, we provide
numerical examples to verify the efficiency and effectiveness of the schemes.

2 The finite volume approximation

For any real-valued and complex-valued function, the inner product (-,-) and standard
Sobolev norms (|| - ||,p, || - || m,00) have been defined in the same way as in [44].

Then ¢(x), the weak solution of problem (1.2a)-(1.2c), is defined as follows: Find
¥(x) € H} x H} such that

A(p,x)=(f.x), VxeHxH, (2.1)

where

AY,x) =V, Vi) + (Vi Vxo) + (Vi1 = Voo, x1) + (Vi + Vahr,x2),  (2.2a)
(f.x)=(fux1)+(fax2)- (2.2b)

Throughout this paper, we assume that
f(x),2(x) €L?(Q); V1(x),Va(x) EL®(Q) and  Vi(x) >0. (2.3)

Under the assumption (2.3), the variational problem (2.1) has a unique solution ¥, €
H?(Q) x H2(Q), which satisfies (see, e.g., [1, Theorem 1]),

lpll2< £, (2.4)
and the bilinear form A(-,-) satisfies
AQux) 2 IxNIE, Yx€Hyx Hy. (2.5)

Let T, be a quasi-uniform triangulation of () with mesh size 1>0, Z;, be the set of all nodes
or vertices of T, Si C H} be the corresponding piecewise linear finite element space.

For simplicity, let the notation ” <” be equivalent to ” <C” and ” 2" be equivalent to
” > C” for some positive constant C.

Then y;,(x), the finite element approximation of problem (2.1), is defined as the fol-
lowing:

Find 1, (x) € S x S such that

A(nxn) = (fxn), Vxn€SxSg. (2.6)

It was shown in [1, Theorem 2] that
I —ynlls Sl s=0,1, 2.7)

where ), satisfies (2.6).
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Figure 1: Barycenter Control Volume b, eB".

Now we construct a barycenter dual mesh B based upon T” in the same way as
in [2,11,12,35], as follows: for each e € T", find the barycenter point O; of e, then connect
O; by straight-line segments to the edge midpoints M; of e. These segments decompose
each e into three subregions. With each vertex x, € Z;, we associate the barycenter control
volume by, € B" (see Fig. 1), which consists of the union of the subregions sharing the
vertex xp.

Associated with b,, we define a constant finite element spaces by

V={we L™ (Q):wly, =constant, Vb, € B"}.
We then introduce I,: C(Q)) — Vp satisfying

_ [ w(xp), Vxeb,eB,
() _{ 0, others. (2.8)

The interpolation operator I, has the following properties [11,35,39].
Lemma 2.1. Let e T", For any x € Sk we have
/ (x—Inx)dx=0, (2.9a)
e
HX_Ih?(”o,q,eghe,?dl,q,e/ 1<g<oo. (2.9b)

Now we formulate the finite volume method for the problems (1.2a)-(1.2b) as follows.
For any vertex x,, integrating (1.2a)-(1.2b) over the barycenter control volume b, and
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using Green’s formula, we obtain

— ai’l S+/ V1l/)1—V21/J2 dx /fldx Vb GBh

ab,
- al’l:lzds—kv/ (Vay + Vi )dx = /fzdx Wb, € B",

by

(2.10)

where 1 denotes the unit outer-normal of the domain.

In order to decouple the problems (1.2a)-(1.2b), approximating (2.10), we get the stan-
dard finite volume scheme (see, e.g., [2]):

Find " € Sl x S! such that

p) h
L ﬁder / Vil dx— / Valyplidx = / fadx, Vb, eB,

(2.11)
— dS+/ Vz[hlpildx—l—/ V1Ih1p2dx /fzdx Vb € B".
b, an
Namely,
— Z/ 1Ih)(1d5+ Z / Vllhlpllh)(ldx— Z / V2Ih1/121h7(1dx
xpEZy xpEZy Xp€Zy
=) /fllh)ﬁdx VX1 €S8,
XpEZ;,
o (2.12)
- Z/ 21h7(2d5+ ) / Valypi Iyxodx+ Y / V1Ll I xodx
XpEZy XpEZy XpEZy
=) /fth)Czdx Vx2 €S
L xpeZh
By the following lemma (cf. [2, Lemma 2.1]),
Lemma 2.2. If matrix A= (a;j)2x2 satisfies a;; € Vg, (1<1,j<2), then
— Z/ (Vw TAnIhv /(Vw)TAVv, Vw,ve Sk, (2.13)
b,eB"
we have
-y / ’Ihxlds—(Vl/Jl,VXl) =12, (2.14)
XPGZ; abV

So we get a finite volume scheme as follows:
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Find " € Sl x Sk such that

A" x)=(f.X)n VXESEXSE, (2.15)

where

Ap(,x) =:(Vi,Vxi) + Vil Inx1) — (Valnpo, Inxa)
+(Vp2, Vx2) + (Valypr, Inx2) + (Vilpa, Inx2), (2.16a)
(0 =:(fInx) =: (fr,Inx1) + (f2. Inx2)- (2.16b)

Next we introduce the norm as follows:
lw||p=: (Iyw,Iw)2, YweShxSk. (2.17)
So we can get
Lemma 2.3. The norm ||w||;, is equivalent to the norm ||w||, namely
lelln S llwll Sllwlln, Ve S§x Sg. (2.18)
Following from (2.16a) and (2.18), we have
Lemma 2.4. Assume that (2.3), then Ay(-,-), the bilinear form in (2.16a), satisfies
[An( 0l S Il lxlh, Wip,x €50 % S, (2.19)
An(9 ) 2119117, Wip € S X S (2.19b)

Therefore, by the Lax-Milgram theorem and Lemma 2.4, the problems (1.2a)-(1.2b)
havs a unique solution ¢ € St x Sp.

Next, to describe error estimates for the finite volume scheme (2.15), we will give
some useful lemmas. By Friedrich inequality, we have

Lemma 2.5 ([45]). Let

.1 /dx
8= tmeasure(e) JS™

if Vg e WLP(e), then
Hg_geHO,p,erShHgHLp,e/ 1<p<oco.

So, we can get

Lemma 2.6. For any i € Sk x Sk, we have

(=B SHIflpllellng Ve (WP () (2.20)

where%—i—%:l,lgp,qgoo.
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Proof. Let
1
o= [ fdx, i=12, VYecT",
fie measure(e)/gfZ ot c<

from (2.9a), (2.9b), Lemma 2.5 and Holder inequality, we obtain

|(fp—Tn)| :‘ Y. Al —1h¢1)+f2(¢2—1h¢2)]dx‘

ecTh”®

:‘ Y. /[(fl—fl,e)(lPl—1h¢1)+(f2—f2,e)(1/12—1h1/)2)]dx‘

eeTh”®

S Y (fai—frellopelltr—Iprlloge+ L f2— faellopell vz — Inipllog.e)

ecTh

SEY (1A= frellopelilige+ 12— Foellopelzlige)

ecTh
S Allp e lg+ 1220l pl921,0)
SE2|| fll1,pll]],q-

Thus, we complete the proof. O
By the following lemma (cf. (3.10) in [2]),
Lemma 2.7. For any « € WY, w,v € Sk, then holds
|(wlyw, 1yo) = (aw,v)| SH{|wll1p][0]l1q, (2.21)
where %—I—%:l, 1<p,qg<c0.
We have

Lemma 2.8. If V € (WV*®)2, then
[Ax) =A@ 01 SHllplx g, Vi,x €S6x g, (2.22)
1.,1_
where §+§—1/ 1<p,g<co.
Proof. From (2.2a) and (2.16a), noticing that V € (W'*)2, we have

|A(Y,x) = AP ) S|V, x1) — (Vilyws, nxa) |+ | (Vaz, x1) — (Va o, Inxa) |
+(Viga, x2) — (Vilupa, Inx2) |+ [ (Vap1,x2) — (Valnpr, Inx2) |- (2:23)

Therefore, (2.22) follow from (2.21) and (2.23). O

Lemma 2.9. ", the finite volume solution defined in (2.15), has the estimate:

1" S IIF - (2.24)
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Proof. From (2.19b), (2.15) and (2.18), we have

19" (13 SAR (" 9") = (F ")
<[ £ S A"

Therefore, (2.24) holds.

183

O]

Lemma 2.10. If V€ (WY®)2, f € (H")2, yy,, the finite element solution defined in (2.6), and ",

the finite volume solution defined in (2.15), have the estimates:

A"~ 0l SH I fllllxll,  Yx €St S5,
=" 11 SH| £l

Proof. From (2.6) and (2.15), we have

A" —yn )| =| A" x) — A (l/)h, =[AW"0)—(f.x)]
=| A" 20 = A" 0+ (08— (£
SIAW" X —An(yp ,X)!Jrl(f,?c)h—(flx)\-

Noticing (2.16b), (2.20), (2.22) and (2.24), where p=g=2, from (2.26), we have

(A" =m0 SN p Xl g +12 1 F Ll g
S| fllx -

(2.25a)
(2.25b)

(2.26)

(2.27)

Therefore, (2.25a) holds. Furthermore, let x = " — 1, in (2.25a), noticing (4.1), we obtain

(2.25Db).
Theorem 2.1. Assume that
Ve(Wh)?, fe(HY? and V>0 in Q.
Then ", the finite volume approximation of 1, has the error estimate:
ly—y"lls<H [ fll, s=0,1.

Proof. From (2.7), (2.25b) and (2.4), we obtain

=" lls <llp—ulls+llgn— 9"l SE> [ pll2+ 12 £l
SEEAIIAI) SH Il s=0,1.

We complete the proof.

O]

(2.28)

(2.29)
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3 The two-grid finite volume schemes

In this section, following the idea of decoupling in [1], we construct the two-grid finite
volume algorithms for problem (1.1a)-(1.1b). The basic mechanisms in our approach is
another finite element space S x SJ(C Sl x SI) defined on a coarser quasi-uniform trian-
gulations of (2 with mesh size H>h>0.

Set the bilinear forms

Ah(l/J/X)Zi/QV’Pl'VX1dx+(V11h1,111,1h)c1)+/QV¢2-VX2dx—I—(Vllhgbz,lhxz), (3.1a)
Nu(,x) =:(Vapr, Inx2) — (Vapa, Inx1)- (3.1b)

Algorithm 3.1.
Step 1. Find ¢ € Sk x SE' such that

Ag(W? xm)=(f.xu), Vxu €S xSk

Step 2. Find ¢! € Sl x S!, such that

A xn)+Nu (@, x0) = (f.xn)n  Vxn€ St x Sg. (3.2)

Theorem 3.1. If V€ (W'®)2, V; >0, f € (H')?, then ¢z’}, the two-grid finite volume solution
defined in Algorithm 3.1, has the following error estimates:

1" — 5l < (h+H?)|f - (33)

Consequently,
lp—ull < (e +H) | f 1.

Proof. From (2.15) and (3.2), we have

A" =l x) = (Valyp = Vayd! Iixo) — (Valnphs — Vol Ix1), VX €SixSh,  (34)

Noticing (2.3), (2.18), (2.9b), (2.24) and (2.28), We obtain

|(VaInps = Va3, x|

| (VoI = Vo, L) | +| (Vo = Vaus! Inxa )|

(V2 (Tns =) |+ | Va (s — 5 ID [ I |

(s = w5 |+ 195 =3 D1 x 11 Vallo,eo

L3 1+ g2 =31+l — 95 ANV lloeo

[l £ llo+ w2 — w3l + g2 — 93 1111l

(r+E) I f 1 llxll- (3.5)

AR AR ZAN VAN VAN AN
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Following the idea of (3.5), it holds

|(Val = Vot 1) | S (- HE) £l (36)
We can easily check that
Ap(w,w) > ||w|?, YweSkxSE. (3.7)
Taking x = th — ¢! in (3.4), from (3.5), (3.6) and (3.7), we obtain
" = b3 <l AN (" — 0. 9" —y5)]
S(+HY) | fll 9" = ysll,

Thus (3.3) holds.
From (2.28) and (3.3), it holds

lp— il <llp— "l + 9" — ¢kl
Shllflli+ (h+H?)|| f]lx
S(h+H?)|| ]

So, we complete the proof. O

Next, by slightly simplifying the coefficient matrix of the system in Step 2, we can get
an alternative of Algorithm 3.2. Let the bilinear forms

Alpx) = [ pn-Viads+ [ Vi Vs, (3.82)
Ny (,x) =: (Vi1 = Vapo, Inx1) + (Vitga + Vaip, Ix2).- (3.8b)

Algorithm 3.2.
Step 1. Find ' € Sf' x S{! such that

An(t,xm)=(f.xu), VaxmeSH xSy
Step 2. Find ¢!, € Sk x S}, such that
Al xn)+ N xn) = (f.xn)n  Vxn €St xSt (3.9)

Theorem 3.2. If V€ (WY®)2, V; >0, f € (H)?, then ¢! ,, the two-grid finite volume solution
defined in Algorithm 3.2, has the following error estimates:

"=l |l S (h+H?)| £ (3.10)

Consequently,
9= 5,1 S (- HY) I f |1 (311)
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Proof. From (2.15) and (3.9), we can obtain

A" =l x) == (Valyh = Vas! Inxa) + (Vi = Vit Lxa)
+(Valuy = Vot Lxa) + (Vilups = Vigs' nxa),  Vx €S5xSg, (3.12)

we can easily check that
A(w,w) 2 |w|}, VweSExSg. (3.13)

Taking x = ¢"— ¢!, in (3.12), and right-hand sides following the idea of (3.5), noticing
(3.13), we can get

A(y"—ylt "=yl )|

1"~ 13 <
Sh+E)flllly" 5.l (3.14)

which implies that (3.10) holds. Furthermore, from (2.28) and (3.10), we get

lp—oh N <lp—¢" 1 +l9" =yl |1
Shlflli+(+H?)||f |1
S(h+H?) | fl1-

Thus, we complete the proof. O

4 Numerical example

In this section, we carry out the numerical examples to demonstrate the efficiency of our
algorithms.

Example 4.1. For problem (1.1a)-(1.1b), let
. Lo, ov, 1 o o
V=1+i and V= E(x1 —|—x2)—|—z§(x1 +x3),
respectively, Q=0,1] x [0,1], and f be so chosen that

Pp=(1—x1)(1—x2)sin(x1x2)+i(1—2x1)xzsin[x1 (1 —x2)]

is the exact solution.

Here ) is uniformly divided into families Ty and Tj of triangulations, and SH,
Sh C H} are linear finite element spaces defined on Ty, T, respectively. We construct
barycenter dual meshes B" and B based upon T" and TH respectively. For h = H* and
H=1/4,1/8,1/16,1/32, y! and ¢ , are computed by Algorithm 3.1 and Algorithm 3.2,
respectively. Also ", the standard finite volume solution, and ], two-grid fine element
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Table 1: Errors and CPU time of ¢/ and ¢/, V=1+i.

187

mesh(h) | [[p—ylilli v cpu@s) | [y—y"li r  cpu(s)
1/16 3.247E-2 0.22 3.244E-2 0.53
1/64 8.148E-3  3.989 3.05 8.141E-3 3.985 7.63
1/256 2.038E-3  3.998 54.37 2036 E-3 3998 123.72

1/1024 5.094E-4 4.000 1837.56 | 5.090 E-4 4.000 3331.99

Table 2: Errors and CPU time of ¢ and 1/),3, V:%(x%—l—x%)—&—i%(x%—l—x%).

mesh(h) | [p—yillh v cpus) [[ly—¢illi r  cpuls)
1/16 3.245E-2 0.26 3.244E-2 0.29
1/64 | 8.143E-3 3.985  4.20 8.142E-3 3984  0.78
1/256 | 2.037E-3 3.998 59.64 | 2.036E-3 3.999  30.25
1/1024 | 5.114E-4 3.983 1463.55 | 5.090E-4 4.000 3845.05
Table 3: Errors and CPU time of !, and ¢f, V=1+i.
mesh(h) [ ly—y5.li v cpu@ [lly—yyls r  cpu(s
1/16 3.254E-2 0.21 3.253E-2 0.26
1/64 8.159E-3 3988  3.84 8.162E-3 3986  0.74
1/256 2.040E-3  4.000 5535 | 2.041E-3 3999 30.28
1/1024 | 5.099E-4  4.001 145830 | 5.102 E-4 4.000 3910.43

Table 4: Errors and CPU time of ¢!, and ¢/, V=1 (x2+x3)+i% (x3+x3).

mesh(h) | [y—¢i. i v cpu) [lpy—¢"li r  cpu(s)
1/16 3.246E-2 0.17 3.244E-2 0.19
1/64 8.144E-3 3.986 2.73 8.141E-3 3.985 2.84
1/256 2.036E-3 4.000 50.95 2.036E-3 4.999 64.292

1/1024 5.091E-4 3.999 1503.67 | 5.090E-4 4.000 3259.72

solution, are computed by (2.15) and Algorithm A1 in [1] respectively. From the numeri-
cal results from Table 1 to Table 4, we can see that

lp—wili=O(H?) (= O(h)) and [lp—y}. 1~ O(H*)(=O(h)),

which coincide with the theoretical results obtained in Theorem 3.1 and Theorem 3.2, re-
spectively. And, on running CPU time, we find that our two-grid finite volume methods
are much more efficient than the standard finite volume method and the two-grid finite
element method, when the calculation scale is too high.
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5 Conclusions

In this paper, we constructed and analyzed two-grid finite volume schemes for the
steady-state Schrodinger equation. The discretization schemes of the coupled equations
on a fine grid are reduced to the finite volume schemes of the original equations on a
much coarser grid together with the approximated discretization schemes of the decou-
pled equations on a finer grid. Both theoretical analysis and numerical examples show
that our schemes work efficiently and can reach the optimal accuracy in H!-norm.
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