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Abstract. In this paper, we propose a finite element time-domain (FETD) method for
the Maxwell’s equations in chiral metamaterials (CMMs). The time-domain model
equations are constructed by the auxiliary differential equations (ADEs) method. The
source excitation method entitled total-field and scattered-field (TF/SF) decomposi-
tion technique is applied to FETD method for the first time in simulating the propaga-
tion of electromagnetic wave in CMMs, based on which a unified ADE-FETD-UPML-
TF/SF scheme is proposed to simulate the wave in CMMs. The following properties
of CMMs can be observed successfully from the numerical experiments based on our
method, i.e., the ability of the polarization rotation, and the negative phase velocity.
The amplitude of reflected wave can effectively be controlled by the physical parame-
ters of CMMs.

AMS subject classifications: 78M10, 35Q61
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1 Introduction

As one kind of artificial electromagnetic material, metamaterials are different from the
ordinary materials by their special features. One of the most representative features of the
metamaterials is their negative refractive index [9, 12], which can be obtained when the
permittivity and permeability are simultaneously negative [8]. Because of their special
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electromagnetic properties, metamaterials have been widely concerned by the scientific
community in recent years, and have been successfully applied to the design of radar,
antenna, and other microwave devices.

Chirality is a geometric concept, which describes the property of an object or a system
that it can be distinguished from its mirror image. There are many examples for the natu-
ral chiral materials such as shells, snails, DNA, and for the artificial chiral materials such
as spring, spiral ladder. The chiral media [1] are the special materials which can pro-
duce the polarization rotation phenomenons. Among those chiral materials, the chiral
metamaterial is a new kind of metamaterials with excellent optical activity and circular
dichroism, which potentially provides a simpler approach to achieve the negative refrac-
tion [2]. The study on CMMs belongs to the category of subwavelength electromagnetics.
The chirality can be obviously observed from the electromagnetic wave propagating in
the chiral metamaterial. Many amazing electromagnetic characteristics can be generated
by the interaction between electromagnetic wave and subwavelength structure, such as
negative refractive index, sub-wavelength optical waveguides, circular dichroism, cloak-
ing devices, polarization rotation, etc. [4–7].

Numerical simulation play an important role in the design and application of CMMs.
There have been many numerical methods in the market for the purpose, such as the
popular finite difference time domain (FDTD) method [1–3,13], method of moments [15]
and Transmission Line Matrix (TLM) algorithm [10, 14]. As one of the most successful
numerical methods, the finite element method has been studied systematically in solving
the temporal equations, and has been widely applied in a variety of areas such as compu-
tational fluid dynamics, computational electromagnetics and micromagnetics etc.. One
outstanding feature is its ability on handling the complex geometry from the practical
problems, which also is an attractive feature for the interface problems in the elctromag-
netics. In [11, 16, 17], the finite element time domain (FETD) method has been proposed
and explored in the study of electromagnetic (EM) waves.

Although the finite element method has many advantages, as far as we know, there
is no work about FETD method which is used to simulate the propagation of electro-
magnetic wave in CMMs. In this paper, we study the FETD method of the Maxwell’s
equations for CMMs. Because CMMs belongs to the dispersive media, there have been
many methods to deal with the time-domain problems of electromagnetic wave propaga-
tion in dispersive media, including auxiliary differential equations (ADEs) method [18],
recursive convolution method, shift operator method, and Z-transform method. It is
noted that the computational resource required by ADEs method is lower among those
methods, so in this paper we use ADE-FETD method to solve the EM problems with both
frequency dispersion and chirality at the same time. In general, when the wave source
is outside the electromagnetic material, we need to design the incident wave with some
special methods. Total-field and scattered-field (TF/SF) decomposition technique has
attracted wide attention because of its superior performance on controling the incident
error. It is worth to mentioning that TF/SF method has been successfully applied to elec-
tromagnetic field simulation in chiral media and metamaterials for FDTD method [2,13].
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Consequently, in this paper, we also employ the TF/SF decomposition technique for the
proposed FETD framework in the simulations. Finally, to restrain the reflected wave at
the truncated boundary, the UPML method [21] is used.

Based on the above components, a unified framework entitled ADE-FETD-UPML-
TF/SF scheme is proposed for the simulation of electromagnetic (EM) wave propagation
in CMMs. Numerical results show the effectiveness of the proposed framework, i.e., from
the numerical results the polarization rotation ability of CMMs, and the negative phase
velocity can be observed successfully. The amplitude of reflected wave can be effectively
controlled by the physical parameters of CMMs.

The paper is organized as follows. In Section 2, time-domain form of the Maxwell’s
equations are established with ADEs method in dispersive CMMs. In Section 3, the
framework ADE-FETD-UMPL-TF/SF is described in detail. In Section 4, numerical re-
sults show the singular phenomena (such as cross-polarization, negative refractive index
and negative phase velocity [19]) that wave propagation in CMMs slab under the differ-
ent physical parameters.

2 Time domain modeling equations in dispersive CMMs and
UPML equations

The constitutive relation for frequency dispersive chiral media can be expressed as fol-
lows [2, 14]:

D= ε(ω)E− jκ(ω)c−1H, (2.1a)

B=µ(ω)H+ jκ(ω)c−1E, (2.1b)

where c is the speed of light in vacuum, D and B are the electric displacement and mag-
netic induction, respectively, ε, µ and κ, are permittivity, permeability, and chirality pa-
rameter [20], respectively

ε(ω)= ε0εr = ε∞+
(εs−ε∞)ω2

e
ω2

e−ω2+2jξeω
, (2.2a)

µ(ω)=µ0µr =µ∞+
(µs−µ∞)ω2

h
ω2

h−ω2+2jξhω
, (2.2b)

κ(ω)=
τκω2

κω

ω2
κ−ω2+2jωκξκω

, (2.2c)

where ε∞, εs are the permittivities at infinite and zero frequecies; µ∞ and µs are the per-
meabilities at infinite and zero frequecies; ξe, ξh and ξκ are damping factors; ωe, ωh and
ωκ are resonance angular frequencies; and τκ is a characteristic time constant describing
the magnitude of chirality.
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By the ADEs method, the time-domain governing equations of EM wave in CMMs
can be written as follows [2, 14]:

∇×H= ε∞∂tE+ J+Kc+ Js, (2.3a)

∂2
t2 J+2ξe∂t J+ω2

e J=(εs−ε∞)ω
2
e ∂tE, (2.3b)

∂2
t2 Kc+2ωκξκ∂tKc+ω2

κKc =−(τκω2
κ/c)∂2

t2 H, (2.3c)
∇×E=−µ∞∂tH−K− Jc, (2.3d)

∂2
t2 K+2ξh∂tK+ω2

hK=(µs−µ∞)ω
2
h∂tH, (2.3e)

∂2
t2 Jc+2ωκξκ∂t Jc+ω2

κ Jc =(τκω2
κ/c)∂2

t2 E, (2.3f)

where ∂2
t2 =

∂2

∂t2 .
To derive the time-domain uniaxial perfectly matched layer (UPML) model equations

used for our chiral metamaterials model, we first rewrite the standard 3D Eqs. (2.3a) and
(2.3d) in the frequency domain [21] as follows:

∇×H= jωε∞ΛE+ J+ Js+Kc, (2.4a)
∇×E=−jωµ∞ΛH−K− Jc, (2.4b)

where

Λ=


sysz

sx
0 0

0
sxsz

sy
0

0 0
sxsy

sz


with

sx =κx+
σx

jωε0
, sy =κy+

σy

jωε0
, sz =κz+

σz

jωε0
,

where κx =κy =κz =1, j=
√
−1 is the imaginary unit, and σx, σy, and σz are the damping

functions in the x−, y−, and z− directions, respectively.
We can obtain the time-domain form of Eqs. (2.4) by utilizing serveral auxiliary vari-

ables. If ∂x =0 and ∂y =0, then sx =κx, sy =κy, the 1D-time-domain forms of Eq. (2.4) can
be written as follows:

−∂zHy = ε∞∂tEx+(ε∞/ε0)σzEx+ Jx+Kcx+ Jsx, (2.5a)
∂zHx = ε∞∂tEy+(ε∞/ε0)σzEy+ Jy+Kcy+ Jsy, (2.5b)
−∂zEy =−µ∞∂tHx−(µ∞/ε0)σzHx−Kx− Jcx, (2.5c)
∂zEx =−µ∞∂tHy−(µ∞/ε0)σzHy−Ky− Jcy. (2.5d)

In order to obtain simpler forms, we let

∂tP1i = Ji, ∂tQ1i =Kci, ∂tP2i =Ki, ∂tQ2i = Jci, (2.6)
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Eqs. (2.3b), (2.3c), (2.3e), (2.3f) can be rewritten as

∂t Ji+b1 Ji+b2P1i =b3Ei, (2.7a)
∂tKci+c1Kci+c2Q1i = c3∂tHi, (2.7b)
∂tKi+d1Ki+d2P2i =d3Hi, (2.7c)
∂t Jci+e1 Jci+e2Q2i = e3∂tEi, (2.7d)

where the subscript i represents x, and y, respectively and

b1=2ξe, b2=ω2
e , b3=(εs−ε∞)ω

2
e ,

c1=2ωκξκ, c2=ω2
κ , c3=−τκω2

κ/c,

d1=2ξh, d2=ω2
h, d3=(µs−µ∞)ω

2
h,

e1=2ωκξκ, e2=ω2
κ , e3=τκω2

κ/c.

3 The ADE-FETD-UPML-TF/SF scheme for CMMs

In order to excite electromagnetic wave into the computational region from the point Js
in Fig. 1, we use the TF/SF decomposition technique. By the equivalence principle, we
can obtain

Js =−nΩt×Hi|Γt , (3.1)

where
nΩt =(0,0,−1)T and Js =[Jsx, Jsy, Jsz]

T =[−Hiy,Hix,0]T.

According to TF/SF boundary conditions, we let Jsy = 0. Then the local linear finite
element equations in Ωe =[ze

1,ze
2] can be derived from Eqs. (2.5a) and (2.5d) as follows:

−
2

∑
j=1

He
y(j)Ae

ij =
2

∑
j=1

∂tEe
x(j)Me

ij+
2

∑
j=1

Ee
x(j)M̃e

ij+
2

∑
j=1

(Je
x(j)+Ke

cx(j))Me
ij+he

ix(i), (3.2a)

2

∑
j=1

Ee
x(j)Ae

ij =−
2

∑
j=1

∂tHe
y(j)Ge

ij−
2

∑
j=1

He
y(j)G̃e

ij−
2

∑
j=1

(Ke
y(j)+ Je

cy(j))Me
ij+he

y(i), (3.2b)

where he
ix(i)=δe,es(−Hes

iy(2)−Aes
i,2Hes

iy(2)−Mes
i,2∂tEes

ix(2)),

he
y(i)=δe,es(Aes

i,2Ees
ix(2)+Mes

i,2∂tHes
iy(2)),

(3.3)

with es is a label of element that represents the first element at the left side of the point Js
in Fig. 1, and

Ae
ij =(ϕe

i ,∂z ϕe
j )e, Ge

ij =(ϕe
i ,µ∞ ϕe

j )e, G̃e
ij =
(

ϕe
i ,

µ∞

ε0
σz ϕe

j

)
e
, (3.4a)

Me
ij =(ϕe

i ,ϕ
e
j )e, Me

ij =(ϕe
i ,ε∞ ϕe

j )e, M̃e
ij =
(

ϕe
i ,

ε∞

ε0
σz ϕe

j

)
e
, (3.4b)
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Figure 1: Configuration of 1D ADE-FETD-UPML-TF/SF method for wave propagation into a CMMs slab.

with
(u,v)e =

∫
Ωe

u(z)·v(z)dz.

We can easily get the semi-discrete global equations as follows:

−AHy−M∂tEx−M̃Ex−M(Jx+Kcx)=hix, (3.5a)

AEx+G∂tHy+G̃Hy+M(Ky+ Jcy)=hy, (3.5b)

where
MI J = ∑

(i,e)=I
∑

(j,e)=J
Me

ij

is the global stiffness matrix of Me, the global stiffness matrice of Ae, M̃e, Me, G̃e, Ge
can

be written similarly, and

hix(I)= ∑
(i,e)=I

he
ix(i), hy(I)= ∑

(i,e)=I
he

y(i).

Similarly, we can derive the other two semi-descrete global equations from Eqs. (2.5b)
and (2.5c).

Now we can give the fully discrete scheme for the governing Eqs. (2.6), (2.7), (3.5) and
the equations derived from (2.5b) and (2.5c). Here we use the leap-log scheme which is an
explicit and conditionally stable scheme. In this scheme, the electric field and magnetic
current are discrete at the integer time steps, and the magnetic field and electric current
are taken at the half-integer time steps. Then the fully discrete equations of 1D ADE-
FETD-UPML-TF/SF method for CMMs are

[M1]{Hn+ 1
2 }=[M2]{Hn− 1

2 }+[A][{En
y},−{En

x}]T−[M]({Kn}+{Jn
c })+{hn}, (3.6a)

b̃+{Jn+ 1
2 }= b̃−{Jn− 1

2 }−b2{Pn
1 }+b3{En}, (3.6b)

ẽ+{K
n+ 1

2
c }= c̃−{K

n− 1
2

c }−c2{Qn
1}+(c3/τ)({Hn+ 1

2 }−{Hn− 1
2 }), (3.6c)

[M3]{En+1}=[M4]{En}+[A][−{Hn+ 1
2

y },{Hn+ 1
2

x }]T

−[M]({Jn+ 1
2 }+{Kn+ 1

2
c })−{hn+ 1

2
i }, (3.6d)

d̃+{Kn+1}= d̃−{Kn}−d2{P
n+ 1

2
2 }+d3{Hn+ 1

2 }, (3.6e)

ẽ+{Jn+1
c }= ẽ−{Jn

c }−e2{Q
n+ 1

2
2 }+(e3/τ)({En+1}−{En}), (3.6f)
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where

b̃+=
1
τ
+

b1

2
, b̃−=

1
τ
− b1

2
, c̃+=

1
τ
+

c1

2
, c̃−=

1
τ
− c1

2
,

d̃+=
1
τ
+

d1

2
, d̃−=

1
τ
− d1

2
, ẽ+=

1
τ
+

e1

2
, ẽ−=

1
τ
− e1

2
,

H=[Hx,Hy]
T, E=[Ex,Ey]

T, J=[Jx, Jy]
T, Jc =[Jcx, Jcy]

T,

K=[Kx,Ky]
T, Kc =[Kcx,Kcy]

T, hi =[hix,0]T, h=[0,hy]
T,

[M1]=
G
τ
+

G̃
2

, [M2]=
G
τ
− G̃

2
, [M3]=

M
τ
+

M̃
2

, [M4]=
M
τ
− M̃

2
,

and
[M4]{En}=[[M4]{En

x},[M4]{En
x}]T.

Meanwhile, one can update {P1}, {P2}, {Q1}, {Q2} by the second order central dif-
ference quotient formulas of (2.6).

As deduced in Eqs. (3.6), it can be seen that the electric field components and the
magnetic field components are (Ex,Ey) and (Hx,Hy), respectively. The electromagnetic
field components exist in both free space and CMMs area, but the physical quantities Kx,
Jx, Kcx, Jcx, and Ky, Jy, Kcy, Jcy only exist in CMMs region (see Fig. 1). So the computational
cost and computer memory requirement on solving linear equations of FETD method for
CMMs are larger compared with those of conventional FETD method for normal media.

4 Numerical discussion

CMMs have many good properties for further development and application prospects,
such as optical rotation and negative refractive index. However, the manufacture of
CMMs can be so complicated that numerical simulations by combining mathematical
methods and computers are very essential for the manufacture. In the introduction, we
pointed out that when adding sources outside the simulated medium, special sources
are usually used to add sources. Due to the high-dimensional situation, this method
of adding sources is more complicated. In addition, the calculation of the algorithm in-
creases exponentially with the increase of the dimensions. In this paper, we only consider
the 1D case for some phenomena of CMMs in our simulations.

In the numerical experiments in this section, we use the positive direction of the z axis
as the transmission direction of the wave, and take the multiple cycle m-n-m pulse wave
(defined in [2]) as the incident wave. The position of the source of the incident wave is Js
(see Fig. 1). For the simulated environment (as shown in Fig. 1), we have the following
settings: The thickness of the CMMs slab is 2λ0, and the thickness of the free space on the
left of the CMMs is λ0, on the right, the thickness of the free space is λ0/2. The thickness
of the PML on both sides is 50 cells, the grid of the spatial layer is taken as ∆z=λ0/500,
and the time step is ∆t=∆z/3c, where λ0=c/ f0 is the wavelength of the incident wave. In
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order to facilitate the observation of physical phenomena, we set the observation points
P0, P1 and P2, and their coordinates are 90∆z, 510∆z and 520∆z, respectively.

4.1 Case 1: |εrµr|> |κ|2

The numerical electric and magnetic fields obtained by our ADE-FETD-UPML-TF/SF
method at different working frequencies in the dispersive and lossy CMMs slab with
|εrµr|> |κ|2 are shown in Fig. 2. The physical material parameters for the CMMs slab
are chosen to be εs = 4.6ε0, ε∞ = 3.6ε0, µs = 1.1µ0, µ∞ = µ0, ξe = 0.048ωe, ξh = 0.009ωh,
ωh = 2π×8.5GHz, ωe =ωκ = 2π×8.25GHz, ξκ = 0.09 and τκ = 1ps. In Figs. 2(a)-2(d), the
chirality parameter κ≈−0.0256−0.0023j, and the real parts of εr≈ 3.3954−0.0098j and
µr≈0.9780−0.0002j are both positive at f0 =20GHz (λ0≈0.015m). In Figs. 2(e)-2(h), the
chirality parameter κ≈−0.1096−0.2374j, and the real parts of εr≈−1.3450−5.7111j and
µr≈−1.6538−2.0421i are both negative at f0 =8.6GHz (λ0≈0.0349m). In Figs. 2(b) and
2(f), we can see the dispersive effect in the CMMs as the time step increases.

The leading portion of copolarized Ex at P0 and cross-polarized Ey, Hx at P1, P2 are
shown in Figs. 2(a), 2(e), 2(c)-2(d) and Figs. 2(g)-2(h). The presence of the chiral parameter
κ causes cross-polarization in CMMs and generates electromagnetic field components
Ey and Hx. When the physical parameters of the chiral media are the same, the chiral
parameters corresponding to waves with different frequencies are different. Under this
premise, the larger the module of κ is, the greater the amplitudes of the cross-polarized
waves are. In Figs. 2(b) and 2(f), it can be clearly seen that the electric field component Ex
reaches its peak at the observation points P1 and P2. When the frequency of the incident
wave is 20GHz, the real parts of εr and µr are both positive, so the peak of Ex at P1 appears
earlier than that at P2; However, when the frequency of the incident wave is 8.6GHz, the
real parts of εr and µr are both negative, so the peak of Ex at P1 appears later than that
at P2. This is because the latter εr and µr cause CMMs to have negative refractive index,
which causes negative phase velocity in the wave propagation process (see Fig. 2(f)).

4.2 Case 2: |εrµr|< |κ|2

In this case, the chirality parameter of the CMMs slab satisfies the conditions |εrµr|< |κ|2.
The material parameters of the CMMs slab are chosen as εs =4.4ε0, ε∞ =3.5ε0, µs =1.1µ0,
µ∞=µ0, ξe=0.045ωe, ξh=0.08ωh, ξk=0.01, τk=1.2ps, ωe=2π×7.8GHz, ωk=2π×8.25GHz
and ωh=2π×8.2GHz. In Figs. 3(a) and 3(c), the chirality parameter κ≈−0.5653−0.1064j,
and the real parts of εr≈0.3462−1.2971j and µr≈0.2186−0.1056j are both positive at f0=
8.7GHz (λ0≈0.0345m). In Figs. 3(b) and 3(d), the chirality parameter κ≈−0.9366−0.3137j,
and the real parts of εr≈−0.2683−1.9707j and µr≈−0.2788−0.2846j are both negative at
f0=8.5GHz (λ0≈0.0353m).

Because of the negative refractive index of CMMs, we can clearly see the negative
phase velocity in Fig. 3(d).

In Figs. 2(a), 2(e), Figs. 3(a) and 3(b), we can see clearly the reflected waves because of
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Figure 2: The obtained copolarized Ex and cross-polarized Ey, Hx in the CMMs slab at the observation points
P0, P1 and P2. (b) and (f): the numbers in the legends are the time steps at which the waves reach their peaks
at P1 and P2, respectively.
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Figure 3: The obtained copolarized Ex in the chiral media and CMMs slab measured at P0, P1, and P2. (c)-(d):
the numbers in the legends are the time steps at which the waves reach their peaks at P1 and P2.

the mismatch of the impedance matching condition at the interface between the CMMs
and free space. In Fig. 2, we see that the amplitudes of the cross-polarized electric field Ey

and magnetic field Hx are satisfied with AEy /AHx≈
√

µ∞/ε∞ at the same point. Compar-
ing our numerical results in Figs. 2 and 3, we can conclude that the sign of phase velocity
of the wave in the CMMs slab is determined only by the signs of permittivity and perme-
ability, which is the same as the results by using the FDTD method in the paper [2]. And
from Figs. 2(a) and 2(e), we can obtain that the amplitude of the reflected wave is related
to the chirality parameter κ.

5 Conclusions

In this paper, a unified ADE-FETD-UPML-TF/SF scheme is proposed for the Maxwell’s
equations in CMMs. In our numerical simulations, the EM wave propagation in 1D
CMMs slab is studied by using the proposed scheme. Numerical results are presented
to confirm the effectiveness and applications of our scheme to model many interesting
phenomena while wave propagating in the CMMs. In the future, we will design and
analyze the FETD method for the three-dimensional Maxwell’s equations in chiral media
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and CMMs.
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