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1 Introduction

In this paper, we consider the following model:



























































ut=∇(∇u−χu∇v)+
∫ t

0
f [u(·,τ)]dτ in Ω×(0,T),

vt =∆v−v+u in Ω×(0,T),

u(·,0)=u0 in Ω×{0},

v(·,0)=v0 in Ω×{0},

∂u

∂~n
=

∂v

∂~n
=0 on ∂Ω×(0,T),

(1.1)
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where Ω⊂R
N, a bounded open domain with smooth boundary ∂Ω, ~n is the unit outer

normal on ∂Ω and χ is a nonnegative constant. And f is a continuous linear function and

it satisfies the condition: ‖ f (x1)− f (x2)‖≤ L‖x1−x2‖, where L is a positive constant.

Our model is initiated by the PKS model which is a mathematical model of biologi-

cal phenomena. And this model for chemosensitive movement has been developed by

Patlak, Keller and Segel [1].






ut=∇(∇u−χ(v)u∇v),

εvt =∆v+g(u,v),
(1.2)

where u represents the population density and v denotes the density of the external stim-

ulus, χ is the sensitive coefficient, the time constant ε (0≤ ε≤1) indicates that the spatial

spread of the organisms u and the signal v are on different time scales. The case ε = 0

corresponds to a quasi-steady state assumption for the signal distribution.

Since the PKS model is designed to describe the behavior of bacteria and bacteria

aggregates, the question arises whether or not this model is able to show aggregation.

Plenty of theoretical research uncovered exact conditions for aggregations and for blow

up (see, e.g., Childress and Percus [2, 3], Jäger and Luckhaus [4], Nagai [5], Gajewski et

al. [6], Senba [7], Rasde and Ziti [8], Herrera and Velasquez [9], Othmer and Stevens [10]

or Levine and Sleeman [11]).

Global existence below these thresholds has been proven using a Lyapunov function-

al in Gajewski, et al. [6], Nagai, et al. [12] and Biler [13]. Besides, a number of theoret-

ical research found exact conditions for aggregations and other properties [14–16]. Free

boundary problems for the chemotaxis model are considered [17–20].

Our study of (1.1) is also motivated by the following problem for the heat equation

with a general time integral boundary condition [21]:























ut=∆u x∈Ω, t>0,

∂u

∂~n
=

∫ t

0
f [u(x,s)]ds x∈∂Ω, t>0,

u(x,0)=u0(x) x∈Ω,

(1.3)

where Ω is a bounded domain in R
Nwith boundary ∂Ω⊂C1+µ(0<µ<1),~n is the outward

normal, and u0(x) is a nonnegative function such that

∂u0

∂~n
=0 for x∈∂Ω,

f is a nondecreasing function with f ∈C1(0,∞) and f (0)>0.

Considering the nonlinear time integral condition governing flux through the bound-

ary, the model (1.1) involves a continuous time delay which is often referred to as a mem-

ory condition in the literature. This memory term can perfectly describe the movement
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of population density or the movement of single particles. Especially, the movement be-

havior of most species is guided by external signals: insects orient towards light sources,

the smell of a sexual partner makes it favorable to choose a certain direction.

Models with memory terms present in the boundary flux have been formulated in

many applied sciences. For example, in [22], a linear memory boundary condition is

introduced for the study of thermodynamics. It takes into account the hereditary effects

on the boundary as those studied in [23, 24]. Similar hereditary boundary conditions

have been employed in models of time-dependent electromagnetic fields at dissipative

boundaries [25].

From the mathematical point of view, it is significant to study the local existence of

weak solution for chemotaxis system with memory terms and the finite-time blow-up for

this system. In our previous work, we have done something for this [26].

2 Some basic lemmas

Choose a constant σ which satisfies

1<σ<2, (2.1)

and

N<2σ<N+2. (2.2)

It is easy to check that (2.1) and (2.2) can be simultaneously satisfied in the case of

1≤N≤3. We define

Xu =C

(

[0,t0],H
σ(Ω)∩

{

∂u

∂~n
=0 on ∂Ω

})

,

Xv =C

(

[0,t0],H
2(Ω)∩

{

∂v

∂~n
=0 on ∂Ω

})

,

X=Hσ(Ω)∩
{

∂u

∂~n
=0 on ∂Ω

}

.

Here, u(x,t) ∈ C([0,t0],Hσ(Ω)∩{ ∂u
∂~n = 0 on ∂Ω}) means that u(x,t) ∈ Hσ(Ω)∩{ ∂u

∂~n =
0 on ∂Ω} for each t∈ [0,t0] and ‖u(·,t)‖Hσ ∈C([0,t0]). In the Sections 2 and 3, inessential

constants will be denoted by the same letter c, even if they may vary from line to line.

Lemma 2.1. Let p(z) be a holomorphic semigroup on a Banach space Y, with generator A. Then

t>0, f ∈Y ⇒ p(t) f ∈D(A),

and

‖Ap(t) f‖Y ≤ c

t
‖ f‖Y , f or 0< t≤1.
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Proof. The proof can be found in [27, Proposition 7.2].

If Ω is a bounded open domain with smooth boundary, on which the Neumann

boundary condition is placed, then we know that et∆ defines a holomorphic semigroup

on the Hilbert space L2(Ω). So by Lemma 2.1, we have that

f ∈L2(Ω) ⇒ ‖et∆ f‖H2(Ω)≤
c

t
‖ f‖L2(Ω), (2.3)

where

D(∆)=

{

u∈H2(Ω), x
∂u

∂~n
=0 on ∂Ω

}

.

Applying interpolation to (2.3) yields

‖et∆ f‖Hσ(Ω)≤ ct−
σ
2 ‖ f‖L2(Ω) for 1<σ<2, 0< t≤1. (2.4)

Lemma 2.2. We assume that u∈X, a Banach space of functions, and that there is another Banach

space Y such that the following four conditions hold:

et∆ : X→X is a strongly continuous semigroup, for t≥0,

Ψ : X→Y is Lipschitz, uniformly on bounded sets,

et∆ : Y→X, for t>0,

and, for some γ<1,
w

w

w
et∆

w

w

w

L(Y,X)
≤Ct−γ, for t∈ (0,1].

Then we have a bound ‖Ψ(u(s))‖Y ≤K1 and

w

w

w

w

∫ t

0
e(t−s)∆

Ψ(u(s))ds

w

w

w

w

X

≤Cγt1−γK1.

Proof. The proof can be found in [27].

Dividing system (1.1) into two parts:



























ut=∇(∇u−χu∇v)+
∫ t

0
f [u(·,τ)]dτ in Ω×(0,T),

u(·,0)=u0 in Ω×{0},

∂u

∂~n
=0 on ∂Ω×(0,T),

(2.5)
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and


























vt =∆v−v+u in Ω×(0,T),

v(·,0)=v0 in Ω×{0},

∂v

∂~n
=0 on ∂Ω×(0,T),

(2.6)

then we have the following lemmas.

Lemma 2.3. For u∈Xu, v0 ∈H2(Ω)∩{ ∂v
∂~n =0 on ∂Ω}, t0 >0 small enough, problem (2.6) has

a unique solution v∈Xv, and v satisfies

‖v(·,t)‖Xv ≤ c‖v0‖H2+ct
1− σ

2
0 sup

0≤t≤t0

‖u(·,t)‖L2 , 0≤ t≤ t0, (2.7)

where c is a constant which is independent of T.

Proof. It is obvious that Eq. (2.6) has a solution and the solution is unique. So what we

need to proof is (2.7). Let T(t)= et∆, where D(∆)=H2(Ω)∩{ ∂v
∂~n =0 on ∂Ω}, then

v(t)=T(t)v0−
∫ t

0
T(t−s)v(s)ds+

∫ t

0
T(t−s)u(s)ds.

By (2.3), Lemma 2.2, we calculate

‖v(·,t)‖H2 ≤ c‖v0‖H2 +ct
1− σ

2
0 sup

0≤t≤t0

‖v(·,t)‖L2 +ct
1− σ

2
0 sup

0≤t≤t0

‖u(·,t)‖L2

≤ c‖v0‖H2 +ct
1− σ

2
0 sup

0≤t≤t0

‖v(·,t)‖H2 +ct
1− σ

2
0 sup

0≤t≤t0

‖u(·,t)‖L2 , 0≤ t≤ t0.

Thus for small enough t0, (2.7) holds.

Lemma 2.4. For each u0∈Hσ(Ω) and v∈Xv, σ and N satisfy (2.1) and (2.2). The problem (2.5)

has a unique solution u∈ c([0,t0],Hσ(Ω)), and the solution can be written as

u(t)=T(t)u0−χ
∫ t

0
T(t−s)∇u∇vds−χ

∫ t

0
T(t−s)u∆vds

+
∫ t

0
T(t−s)

∫ s

0
f (u)dτds. (2.8)

Proof. We consider the following problem first



























ut=∆u−χ∇(ũ∇v)+
∫ t

0
f [ũ(·,τ)]dτ in Ω×(0,T),

u(·,0)=u0 in Ω×{0},

∂u

∂~n
=0 on ∂Ω×(0,T),

(2.9)
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where ũ∈Xu is fixed. Using the semigroup notation T(t)= et∆ , we can write the solution

of (2.9) as

u(t)=T(t)u0−χ
∫ t

0
T(t−s)∇v∇ũds−χ

∫ t

0
T(t−s)ũ∆vds

+
∫ t

0
T(t−s)

∫ s

0
f [ũ(·,τ)]dτds.

Define a mapping

G1 : Xu →Xu,

G1(ũ)=u,

where u is the corresponding solution of (2.9).

Then we claim that for t0 small enough, G1 is a contract mapping. In fact, let ũ1,ũ2∈Xu,

we have

G1(ũ1)−G1(ũ2)=−χ
∫ t

0
T(t−s)∇((ũ1−ũ2)∇v)ds

+
∫ t

0
T(t−s)

∫ s

0
( f [ũ1(·,τ)]− f [ũ2(·,τ)])dτds. (2.10)

By Sobolev imbedding theorems, we have

H1(Ω) →֒ L∞(Ω) for N=1,

H1(Ω) →֒ Lq(Ω),1<q<∞ for N=2,

H1(Ω) →֒ L
2N

N−2 (Ω) for N=3.

If N=1,

‖χ∇(ũ1−ũ2)∇v‖L2 ≤χ‖∇(ũ1−ũ2)‖L2‖∇v‖L∞

≤c‖ũ1−ũ2‖H1‖∇v‖H1 ≤ c‖ũ1−ũ2‖Hσ‖v‖H2 .

If N=2,3, according to (2.1) and (2.2), we obtain that

H1(Ω) →֒ L
N

σ−1 (Ω), Hσ−1(Ω) →֒ L
2N

N−2(σ−1) (Ω).

We know that ∇(ũ1−ũ2)∈Hσ−1 and ∇v∈H1, then |∇(ũ1−ũ2)|2∈L
N

N−2(σ−1) (Ω) and |∇v|2∈
L

N
2(σ−1) (Ω). Hence, Hölder’s inequality yields

‖|∇(ũ1−ũ2)|2 ·|∇v|2‖L1 ≤‖|∇(ũ1−ũ2)|2‖
L

N
N−2(σ−1)

‖|∇v|2‖
L

N
2(σ−1)

,
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which implies

‖χ∇(ũ1−ũ2)∇v‖L2 ≤χ‖∇(ũ1−ũ2)‖
L

2N
N−2(σ−1)

‖∇v‖
L

N
σ−1

≤ c‖ũ1−ũ2‖Hσ‖v‖H2 .

Hence for N=1,2,3, we have

‖χ∇(ũ1−ũ2)∇v‖L2 ≤ c‖ũ1−ũ2‖Hσ‖v‖H2 . (2.11)

Similarly, we have

‖χ(ũ1−ũ2)∆v‖L2 ≤ c‖ũ1−ũ2‖Hσ‖v‖H2 . (2.12)

So for the first term on the right side of (2.10), N=1,2,3, by (2.11) and (2.12), we have

w

w

w

w

∫ t

0
T(t−s)∇((ũ1−ũ2)∇v)ds

w

w

w

w

Hσ

≤ct
1− σ

2
0 sup

0≤s≤t

‖∇((ũ1−ũ2)∇v)‖L2

≤ct
1− σ

2
0 sup

0≤s≤t

{

‖∇(ũ1−ũ2)∇v‖L2 +‖(ũ1−ũ2)∆v‖L2

}

≤ct
1− σ

2
0 sup

0≤s≤t

‖ũ1−ũ2‖Hσ‖v‖H2 . (2.11)

For the second term on the right side of (2.10), we have

w

w

w

w

∫ t

0
T(t−s)

∫ s

0
( f [ũ1(·,τ)]− f [ũ2(·,τ)])dτds

w

w

w

w

Hσ

≤
∫ t

0
‖T(t−s)

∫ s

0
( f [ũ1(·,τ)]− f [ũ2(·,τ)])dτ‖Hσ ds

≤
∫ t

0
c(t−s)−

σ
2 ‖

∫ s

0
( f [ũ1(·,τ)]− f [ũ2(·,τ)])dτ‖L2ds

≤ct
1− σ

2
0 sup

0≤s≤t

w

w

w

w

∫ s

0
(ũ1−ũ2)dτ

w

w

w

w

L2

≤ ct
1− σ

2
0 sup

0≤s≤t

∫ s

0
‖(ũ1−ũ2)‖Hσ dτ

≤ct
1− σ

2
0 sup

0≤s≤t

sup
0≤τ≤s

‖ũ1−ũ2‖Hσ ≤ ct
1− σ

2
0 sup

0≤τ≤t

‖ũ1−ũ2‖Hσ . (2.12)

So we have

‖G1(ũ1)−G1(ũ2)‖Xu ≤ ct
1− σ

2
0 ‖ũ1−ũ2‖Xu‖v‖Xv +ct

1− σ
2

0 ‖ũ1−ũ2‖Xu ,
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which implies for t0 > 0 small enough, G1 is contract. By Banach fixed point theorem,

there exists a unique fixed point ũ such that G1(ũ)= ũ. Then we have the local solution

of the problem (2.5):

u(t)=T(t)u0−χ
∫ t

0
T(t−s)∇u∇vds−χ

∫ t

0
T(t−s)u∆vds

+
∫ t

0
T(t−s)

∫ s

0
f (u)dτds.

This completes the proof of the lemma.

Lemma 2.5. Assume σ,N as given by (2.1) and (2.2). For solution u∈Xu of (2.5), we have

‖u‖Xu ≤ c‖u0‖Hσ +ct
1− σ

2
0 ‖v‖Xv‖u‖Xu , 0≤ t≤ t0. (2.13)

Proof. By Lemma 2.3, (2.5) has a unique solution, and the solution can be written as

u(t)=T(t)u0−χ
∫ t

0
T(t−s)∇u∇vds−χ

∫ t

0
T(t−s)u∆vds

+
∫ t

0
T(t−s)

∫ s

0
f (u)dτds.

Next we prove estimate (2.13). By (2.4) we have

w

w

w

w

∫ t

0
T(t−s)∇u∇vds

w

w

w

w

Hσ

≤ ct
1− σ

2
0 sup

0≤s≤t

‖∇u(·,s)∇v(·,s)‖L2 .

By Sobolev imbedding theorem, H1(Ω) →֒ L∞(Ω) for N=1, we have

‖∇u∇v‖L2 ≤‖∇u‖L2‖∇v‖L∞ ≤ c‖u‖H1‖v‖H2 ≤ c‖u‖Hσ‖v‖H2 .

For N=2,3, we have

‖∇u∇v‖L2 ≤‖∇u‖
L

2N
N−2(σ−1)

‖∇v‖
L

N
σ−1

≤ c‖∇u‖
L

2N
N−2(σ−1)

‖∇v‖H1

≤c‖∇u‖Hσ−1‖v‖H2 ≤ c‖u‖Hσ‖v‖H2 .

So we obtain that, for 0≤ t≤ t0,
w

w

w

w

∫ t

0
T(t−s)∇u∇vds

w

w

w

w

Hσ

≤ ct1− σ
2 sup

0≤s≤t

‖∇u∇v‖L2

≤ct1− σ
2 sup

0≤s≤t

‖u‖Hσ‖v‖H2 ≤ ct
1− σ

2
0 ‖u‖Xu‖v‖Xv .
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Meanwhile, we deduce
w

w

w

w

∫ t

0
T(t−s)u∆vds

w

w

w

w

Hσ

≤ ct1− σ
2 sup

0≤s≤t

‖u∆v‖L2

≤ct
1− σ

2
0 sup

0≤s≤t0

‖u‖L∞‖∆v‖L2 ≤ ct
1− σ

2
0 sup

0≤s≤t0

‖u‖Hσ sup
0≤s≤t0

‖v‖H2 ≤ ct
1− σ

2
0 ‖u‖Xu‖v‖Xv ,

and
w

w

w

w

∫ t

0
T(t−s)

∫ s

0
f [u(·,τ)]dτds

w

w

w

w

Hσ

≤
∫ t

0

w

w

w

w

T(t−s)
∫ s

0
f (u)dτ

w

w

w

w

Hσ

ds

≤
∫ t

0
c(t−s)−

σ
2

w

w

w

w

∫ s

0
f (u)dτ

w

w

w

w

L2

ds≤ ct
1− σ

2
0 sup

0≤s≤t

w

w

w

w

∫ s

0
f (u)dτ

w

w

w

w

L2

≤ct
1− σ

2
0 sup

0≤s≤t

∫ s

0
‖u‖Hσ dτ≤ ct

1− σ
2

0 sup
0≤s≤t

sup
0≤τ≤s

‖u‖Hσ ≤ ct
1− σ

2
0 sup

0≤τ≤t0

‖u‖Hσ .

Hence we declare that

‖u(t)‖Hσ ≤‖T(t)u0‖Hσ+χ

w

w

w

w

∫ t

0
T(t−s)∇u∇vds

w

w

w

w

Hσ

+χ

w

w

w

w

∫ t

0
T(t−s)u∆vds

w

w

w

w

Hσ

+

w

w

w

w

∫ t

0
T(t−s)

∫ s

0
udτds

w

w

w

w

Hσ

≤c‖u0‖Hσ +ct
1− σ

2
0 ‖u‖Xu‖v‖Xv +ct

1− σ
2

0 ‖u‖Xu , 0≤ t≤ t0,

which implies for t0 small enough

‖u(t)‖Xu ≤ c‖u0‖Hσ +ct
1− σ

2
0 ‖u‖Xu‖v‖Xv .

Thus, Lemma 2.5 is proved.

3 Local existence of solution

In this section, we establish the local solution of system (1.1).

Theorem 3.1. Under conditions (2.1) and (2.2), for each initial data u0∈X,v0∈H2(Ω)∩{ ∂v
∂~n =

0 on ∂Ω}, problem (1.1) has a unique solution (u,v)∈Xu×Xv for some t0>0.

Proof. Consider g ∈ Xu and g(x,0) = u0(x) and let v = v(g) denotes the corresponding

solution of the equation


























vt =∆v−v+g in Ω×(0,t0),

v(·,0)=v0 in Ω×{0},

∂v

∂~n
=0 on ∂Ω×(0,t0).

(3.1)
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By Lemma 2.2, we have v∈Xv and

‖v(·,t)‖Xv ≤ c‖v0‖H2+ct
1− σ

2
0 sup

0≤t≤t0

‖g(·,t)‖L2 , t∈ (0,t0). (3.2)

For the solution v of (3.1), define u=u(v(g)) to be the corresponding solution of



























ut=∇(∇u−χu∇v)+
∫ t

0
f [u(·,τ)]dτ in Ω×(0,t0),

u(x,0)=u0(x) in Ω×{0},

∂u

∂~n
=0 on ∂Ω×(0,t0).

(3.3)

Define a mapping

G2g=u(v(g)).

Then Lemma 2.3 shows that G2 : Xu →Xu. Take M=2c‖u0‖Hσ and a ball

BM=
{

g∈Xu

∣

∣

∣
:‖g(·,t)‖Hσ ≤M, g(x,0)=u0(x), 0≤ t≤ t0

}

,

where the constant c is given by (2.13). Then we conclude from (2.13) and (3.2) that

‖G2g‖Xu ≤c‖u0‖Hσ +ct
1− σ

2
0 ‖v‖Xv‖G2g‖Xu

≤c‖u0‖Hσ +ct
1− σ

2
0 (c‖v0‖H2+ct

1− σ
2

0 sup
0≤t≤t0

‖g(·,t)‖L2 )‖G2g‖Xu .

If g∈BM ,‖g‖L2 ≤ c‖g‖Hσ ≤ cM, then for t0 >0 small enough ‖G2g‖Xu ≤2c‖u0‖Hσ . So for

t0>0 small enough, G2 maps BM into BM.

Next we demonstrate that for t0 small enough, G2 is a contract mapping. In fact, let

g1,g2∈BM ⊂Xu and v1,v2 denote the corresponding solutions of (3.1). Then

G2g1−G2g2=u1−u2

=−χ
∫ t

0
T(t−s)(u1∆v1−u2∆v2)ds−χ

∫ t

0
T(t−s)(∇u1∇v1−∇u2∇v2)ds

+
∫ t

0
T(t−s)

∫ s

0
f (u1)− f (u2)dτds. (3.4)

For the first term on the right side of (3.4),

w

w

w

w

∫ t

0
T(t−s)(u1∆v1−u2∆v2)ds

w

w

w

w

Hσ

≤
w

w

w

w

∫ t

0
T(t−s)u1(∆v1−∆v2)ds

w

w

w

w

Hσ

+

w

w

w

w

∫ t

0
T(t−s)(u1−u2)∆v2ds

w

w

w

w

Hσ

,
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where
w

w

w

w

∫ t

0
T(t−s)u1(∆v1−∆v2)ds

w

w

w

w

Hσ

≤ ct
1− σ

2
0 sup

0≤s≤t0

‖u1(∆v1−∆v2)‖Hσ

≤ct
1− σ

2
0 sup

0≤s≤t0

‖u1‖L∞‖∆(v1−v2)‖L2 ≤ cMt
1− σ

2
0 sup

0≤s≤t0

‖v1−v2‖H2 ,

and
w

w

w

w

∫ t

0
T(t−s)(u1−u2)∆v2ds

w

w

w

w

Hσ

≤ ct
1− σ

2
0 sup

0≤s≤t0

‖(u1−u2)∆v2‖L2

≤ct
1− σ

2
0 sup

0≤s≤t0

‖v2‖H2‖u1−u2‖L∞ ≤ ct
1− σ

2
0 ‖v2‖Xv‖u1−u2‖Xu .

Therefore
w

w

w

w

∫ t

0
T(t−s)(u1∆v1−u2∆v2)ds

w

w

w

w

Hσ

≤ct
1− σ

2
0 ‖v1−v2‖Xv +ct

1− σ
2

0 ‖v2‖Xv‖u1−u2‖Xu , (3.5)

where 0≤ t≤ t0. For the second term on the right side of (3.4), we have

w

w

w

w

∫ t

0
T(t−s)(∇u1∇v1−∇u2∇v2)ds

w

w

w

w

Hσ

≤
w

w

w

w

∫ t

0
T(t−s)(∇u1∇v1−∇u2∇v1)ds

w

w

w

w

Hσ

+

w

w

w

w

∫ t

0
T(t−s)(∇u2∇v1−∇u2∇v2)ds

w

w

w

w

Hσ

,

where
w

w

w

w

∫ t

0
T(t−s)(∇u1∇v1−∇u2∇v1)ds

w

w

w

w

Hσ

≤ct
1− σ

2
0 sup

0≤t≤t0

‖∇v1∇(u1−u2)‖L2 , 0≤ t≤ t0.

As we have done in Lemma 2.3 and 2.4, we obtain that
w

w

w

w

∫ t

0
T(t−s)(∇u1∇v1−∇u2∇v1)ds

w

w

w

w

Hσ

≤ ct
1− σ

2
0 ‖v1‖Xv‖u1−u2‖Xu , 0≤ t≤ t0.

Similarly

w

w

w

w

∫ t

0
T(t−s)(∇u2∇v1−∇u2∇v2)ds

w

w

w

w

Hσ

≤ ct
1− σ

2
0 sup

0≤t≤t0

‖∇u2∇(v1−v2)‖L2
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≤ct
1− σ

2
0 ‖u2‖Xu‖v1−v2‖Xv ≤ cMt

1− σ
2

0 ‖v1−v2‖Xv , 0≤ t≤ t0.

Then
w

w

w

w

∫ t

0
T(t−s)(∇u1∇v1−∇u2∇v2)ds

w

w

w

w

Hσ

≤ct
1− σ

2
0 ‖v1‖Xv‖u1−u2‖Xu +ct

1− σ
2

0 ‖v1−v2‖Xv , 0≤ t≤ t0. (3.6)

For the last term on the right side of (3.4), we have

w

w

w

w

∫ t

0
T(t−s)

∫ s

0
f (u1)− f (u2)dτds

w

w

w

w

Hσ

≤ ct
1− σ

2
0 ‖u1−u2‖Xu . (3.7)

Combining the estimates (3.5), (3.6), and (3.7), it follows that

‖G2g1−G2g2‖Xu

≤ct
1− σ

2
0 ‖v1−v2‖Xv +ct

1− σ
2

0 ‖v2‖Xv‖u1−u2‖Xu

+ct
1− σ

2
0 ‖v1‖Xv‖u1−u2‖Xu +ct

1− σ
2

0 ‖v1−v2‖Xv +ct
1− σ

2
0 ‖u1−u2‖Xu ,

which implies

‖G2g1−G2g2‖Xu

≤2ct
1− σ

2
0 ‖v1−v2‖Xv +ct

1− σ
2

0

(

‖v2‖Xv +‖v1‖Xv +1
)

‖G2g1−G2g2‖Xu .

Consider the following equation























(v1−v2)t=∆(v1−v2)−(v1−v2)+(g1−g2) in Ω×(0,t0),

(v1−v2)(·,0)=0 in Ω×{0},

∂(v1−v2)

∂~n
=0 on ∂Ω×(0,t0).

By (2.7), we obtain

‖v1−v2‖Xv ≤ ct
1− σ

2
0 sup

0≤t≤t0

‖g1−g2‖L2 ≤ ct
1− σ

2
0 sup

0≤t≤t0

‖g1−g2‖Hσ .

Moreover, we have

‖v1‖Xv ≤ c‖v0‖H2 +ct
1− σ

2
0 sup

0≤t≤t0

‖g1‖L2 ≤ c‖v0‖H2+ct
1− σ

2
0 M, 0≤ t≤ t0,
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‖v2‖Xv ≤ c‖v0‖H2 +ct
1− σ

2
0 sup

0≤t≤t0

‖g2‖L2 ≤ c‖v0‖H2 +ct
1− σ

2
0 M, 0≤ t≤ t0.

Thus for t0>0 small enough, G2 is contract.

From the process above, we have proved that problem (1.1) has a solution (u,v) ∈
Xu×Xv by Lemmas 2.2, 2.3 and 2.4. We derive the uniqueness by Banach fixed point

theorem.

4 Blow-up in finite time

We then introduce an auxiliary function F(u) defined by

F(u)=
∫ u

0
f (σ)dσ.

And we suppose that N=1, then we have the following result.

Theorem 4.1. If f(u) is a convex function on [0,∞), and F(u) satisfies

∫

∞

0
F−1/2(u)du<∞, (4.1)

then all nonnegative solutions of (1.1) blow up in finite time.

Proof. In the section, without causing any confusion, we may use Ci (i=0,1,2...) to denote

various positive constants.

ut=∇(∇u−χu∇v)+
∫ τ

0
f [u(x,s)]ds.

Integrate both sides of the equation on Ω,

d

dt

∫

Ω

udx=
∫

Ω

(

∇(∇u−χu∇v)
)

dx+
∫

Ω

∫ τ

0
f [u(x,s)]dsdx.

By using ∂u
∂~n =

∂v
∂~n =0, we can get the following equality:

∫

Ω

udx−
∫

Ω

u0dx=
∫

Ω

∫ τ

0

∫ t

0
f [u(x,s)]dsdxdt.

Set

K(t)=
∫

Ω

u(x,t)dx for t>0.

By using Jensen’s inequality, we find

C1

∫ t

0

∫ τ

0
f (K(s))dsdτ≤

∫

Ω

∫ τ

0

∫ t

0
f [u(x,s)]dsdxdt.
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Then we can get that K(t) satisfies

K(t)≥C2+C1

∫ t

0

∫ τ

0
f (K(s))dsdτ t>0.

Assume to the contrary that (1.1) has a global solution u. Then for any positive number

T, we have

K(t)≥C2+C1

∫ τ

T

∫ t

T
f (K(s))dsdτ for T≤ t≤2T.

Thus, by comparision, K(t)≥ k(t) on [T,2T], where

k(t)≥C2+C1

∫ τ

T

∫ t

T
f (k(s))dsdτ for ≤ t≤2T.

Clearly, k(t) satisfies

k′′(t)=C1 f (k(t)), T< t<2T,

k(T)=C2, k′(T)=0. (4.2)

Multiplying the equation in (4.2) by k
′
(t) and integrating from T to t, we obtain

k′(t)=C3 |F(k(t))−F(k(T))|1/2
.

Integration of this relation over (T,2T) then leads to

C3T=
∫ k(2T)

k(T)
[F(z)−F(k(T))]−1/2dz

≤
∫ c

k(T)
[F(z)−F(k(T))]−1/2dz+

∫

∞

c
[F(z)−F(k(T))]−1/2dz

≤[ f (C2)]
−1/2

∫ c

C2

[z−C2]
−1/2dz+

∫

∞

c
[F(z)−F(z)/2]−1/2dz

=2(c−C2)
1/2 f−1/2(C2)+

√
2
∫

∞

c
F−1/2(z)dz, (4.3)

where c is a positive constant chosen so that F(c)= 2F(k(T))= 2F(C2). For sufficiently

large T, inequality (4.3) yields a contraction to condition (4.1), which completes the proof.
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